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Abstract

Feature selection on high dimensional data along with the interaction effects is a critical

challenge for classical statistical learning techniques. Existing feature selection algorithms

such as random LASSO leverages LASSO capability to handle high dimensional data. How-

ever, the technique has two main limitations, namely the inability to consider interaction

terms and the lack of a statistical test for determining the significance of selected features.

This study proposes a High Dimensional Selection with Interactions (HDSI) algorithm, a

new feature selection method, which can handle high-dimensional data, incorporate interac-

tion terms, provide the statistical inferences of selected features and leverage the capability

of existing classical statistical techniques. The method allows the application of any statisti-

cal technique like LASSO and subset selection on multiple bootstrapped samples; each

contains randomly selected features. Each bootstrap data incorporates interaction terms for

the randomly sampled features. The selected features from each model are pooled and

their statistical significance is determined. The selected statistically significant features are

used as the final output of the approach, whose final coefficients are estimated using appro-

priate statistical techniques. The performance of HDSI is evaluated using both simulated

data and real studies. In general, HDSI outperforms the commonly used algorithms such as

LASSO, subset selection, adaptive LASSO, random LASSO and group LASSO.

Introduction

Classical statistical models have been the mainstay for data analysis. However, the growth in

dataset sizes both in terms of sample size (n) and feature dimension (p) had triggered some

challenges for traditional approaches of statistical data analysis. In the case of p>n, classical

approaches cannot control for false discovery rate of identified features. In the case of n>p
sample size, an increase in the size of a feature set would exponentially increase the feature

combination set that needs evaluation which leads to an exponential increase in requirement

for computation time and resources [1]. Furthermore, the original input feature set might not

contain complete information. Hence, the incorporation of interaction terms in the feature set
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might be necessary [2], which exacerbates the challenge of processing the feature combination

set.

Feature selection has been used as a common approach to address the high dimensional-

ity challenge by identifying the significant features from the input feature space for per-

forming final statistical analysis. Different strategies are in use for performing feature

selection which can be categorized into three primary types and two sub-types, as shown in

Fig 1. The first primary approach is expert-based feature selection which relies upon the use

of experience of experts to shortlist variables for final model development [3, 4]. It is subjec-

tive and becomes more challenging to perform with an increase in feature set and interac-

tion terms.

Statistics-based feature selection is another primary approach which uses various statisti-

cal techniques to perform the feature selection. One strategy is to select features based on

the intrinsic properties of the features like multicollinearity [5] and distribution [6].

Another strategy is to select features based on their statistical significance (i.e. p-value) dur-

ing univariate analysis [4, 5]. Linear regression-based screening is a common approach in

univariate analysis [7]. The third strategy is to select features based on their importance in

the model during multivariate analysis [4, 5]. Some of the conventional approaches used in

multivariate analysis are subset selection and penalized regression [2, 8]. However, they

have certain limitations like subset selection approach can work only if p<<n and LASSO

regression cannot select features more than n [9]. Besides classic LASSO, many extensions

have been proposed. Elastic LASSO can be used for p>n cases, however, it may not be

immune from selecting the noise variables [10]. Group LASSO is another approach which

has been used to improve the performance of LASSO in selecting variables which need to be

selected in a group such as marginal and interaction terms. However, they follow a selection

hierarchy and may not select interaction terms if marginal features are not selected. Further,

the groups need to be predefined [9].

One of the sub-type approaches is expert-statistics hybrid based feature selection. This

approach incorporates the domain knowledge in the feature selection process. The domain

knowledge and statistical analysis sequence can occur in two ways. One strategy is to first

assign importance to the features based on the domain knowledge followed by implementation

of statistical analysis on the feature set for feature selection. This approach is inherent in Bayes-

ian regression-based approaches [11]. The second strategy is to perform statistical analysis for

preliminary feature selection. The final features are selected from the preliminary selected fea-

ture set based on their importance estimated from the domain knowledge. Differential gene

Fig 1. Feature selection approaches suggested in literature with examples.

https://doi.org/10.1371/journal.pone.0246159.g001
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expression analysis commonly employs this strategy [12]. However, the issues of expert-based

feature selection approach prevail.

The third primary approach is machine learning (ML) based feature selection which can

deal with high dimensional data but focus less on interpretability of the selection process. Ran-

dom Forest is a common ML technique which can perform feature selection [13]. It provides

the importance of a feature in model prediction, which can be a metric for feature selection.

The technique allows the use of different ensemble methods like bagging [14], random sub-

space sampling [15] or both [16] for model building. Bagging and random subspace sampling

methods enable creating robust models in noisy settings [17].

Consequently, the ML ensemble methods have been integrated with classical statistical

techniques to create ML-statistics hybrid based feature selection as the other sub-type

approach. BoLASSO is one such technique which performs LASSO regression on differ-

ent bootstrap samples of n [18]. The features are selected based on the number of models

in which feature was selected. regRSM is another technique in which subsamples of fea-

ture set are created with/without weighted selection probability followed with linear

regression on each of the feature subsets [19]. The feature selection is based on their per-

formance in t-statistic metric across different models. Random LASSO technique is a

two-step procedure which integrates both bagging and random subspace sampling with

LASSO for feature selection [20]. Bootstrapping and random subspace sampling creates

subsamples of a dataset. In the first step, application of LASSO on each subsample pro-

vides the importance of each feature. In the second step, application of LASSO or adap-

tive LASSO on each subsample enables in obtaining the final coefficient estimate of the

features.

All these techniques do not directly consider the interaction effects in the feature selec-

tion process. In the case of LASSO-based techniques, they may select only the interaction

feature while ignoring their marginal features. Further, random LASSO is comprehensive in

feature selection and could outperform elastic net [20], but it is also computationally inten-

sive due to its two-step approach. Random LASSO performs both feature selection and esti-

mation but does not give the user flexibility to stop the process at feature selection or use

techniques other than LASSO or adaptive LASSO. It does not provide a guideline to address

the interaction terms in the model as well as the significance of estimated coefficients. Fur-

ther, the estimates may suffer from systematic bias as during feature selection and estima-

tion it assigns zero value to features not sampled. Additionally, its selection step may have

interpretability issues as it uses a user assigned threshold value to determine the feature

performance.

In this paper, we focus on addressing the challenge of incorporating interaction effects in

the feature selection approach with lesser computational intensiveness as compared to random

LASSO. We propose a novel strategy, named High Dimensional Selection with Interactions

(HDSI) algorithm for improved feature selection. Our approach combines bootstrapping and

random subspace sampling with classical statistical model selection techniques with the in-

built capability to handle interaction terms. Further, the approach addresses the shortcomings

of random LASSO by allowing use of multiple statistical techniques in feature selection, reduce

the systematic bias in feature selection and improve interpretability of feature selection pro-

cess. The paper is organized as follows. The proposed strategy is explained in the Methodology

Section with the evaluation of the method performance in the Simulation Study Section. The

strategy is tested using real data studies in the Real Data Studies Section, followed by the Con-

clusion and Discussion Section.
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Methodology

In this section, first, we will describe some of the existing feature selection algorithms such

as LASSO, random forest and random LASSO and is followed by the proposed HDSI

algorithm.

LASSO

LASSO is a penalized regression method proposed by (Tibshirani, 1996) [21] which enables

the features selection. Its criterion performs L1-penalization of the regression coefficients,

minb
Pn

i¼1
ðyi �

Pp
j¼1
bjxijÞ

2
þ l

Pp
j¼1
jbjj, where i represents the ith subject of totally n sub-

jects, βj represents the regression coefficient of jth feature in p feature set. yi represents the

response feature and xi = (xi1,. . ..,xip) represents a p-dimensional vector of features. λ is a non-

negative tuning parameter.

The L1-norm penalty has the singularity of the derivative at |βj| = 0, so LASSO tries to

shrink the βj towards zero and some estimated βj will be precisely zero at sufficiently

large λ. However, this method has a few limitations. Firstly, in cases of p>n, it can only

select maximum n features. Secondly, among the highly correlated variables, it may

choose arbitrarily only one variable and drop the other variables [10]. Thirdly, in case of

interactions, these methods could select the interaction terms while dropping the main

features, since LASSO is neutral to the pattern in which features exist [22]. In cases where

interpretive models are desired, methods that allow retention of main features is

preferable.

Random forest

Random Forest is the extension of the decision tree method (a non-parametric

approach) [16]. In the decision-tree technique, variables selection is made parsimoni-

ously based on a series of logical criteria to separate the data into subsets and estimate

the outcome in each subset. The random forest creates multiple decision-trees. These

multiple decision-trees could be prepared by either bootstrapping the samples, ran-

domly selecting the features or both. The random forest estimates the overall importance

of features based on the influence of feature on the performance of multiple decision-

trees using some metric [16, 23, 24]. The features can be selected using the feature

importance scores. However, the approach may show bias due to the scale of measure-

ment of features [24]. Further, while, the random forest consider interaction terms in

building the model, it does not directly provide the importance score of the interaction

effects [25].

Random LASSO

Random LASSO is a dual procedure method as shown in Algorithm 1 [20]. In the first

procedure, the importance of features is estimated using bootstrapping and random sub-

space sampling. LASSO is used for feature estimation in each bootstrap. Then, in the sec-

ond procedure, bootstrapping and weighted random subspace sampling is performed to

get the estimates of the coefficients of features. LASSO (or, Adaptive LASSO) is used for

feature estimation in each bootstrap. The final estimates of the features are computed by

averaging multiple estimates obtained from bootstrapping over the total number of

bootstraps.
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High dimensional selection with interactions (HDSI)

Random LASSO is a comprehensive approach for feature selection in high dimensional set-

tings, but it has certain limitations. One of the limitations is that it is computationally inten-

sive and provides little flexibility in the coefficient estimation of selected features as it allows

use of only LASSO (or, Adaptive LASSO) for coefficient estimation. Secondly, random

LASSO does not consider any interaction terms in the feature selection process. Thirdly,

random LASSO does not provide any statistical guideline for various activities like the num-

ber of bootstrap samples, feature selection and its significance estimation. Fourthly, random

LASSO assigns zero value to coefficients of the features unselected during random selection.

These values may create systematic bias as they are used to calculate the importance scores

of features.

The HDSI methodology (Algorithm 2) is developed to address its limitations. Fig 2 provides

a graphical representation of HDSI. The method generates random samples by bootstrapping

the original dataset and random subspace sampling of the features. Interaction terms of sam-

pled features are generated for each sample. The statistical modeling is performed on each

sample using appropriate feature selection techniques like penalized regression or subset selec-

tion. The results of samples are pooled to determine the statistical significance of the estimated

coefficients of features and select the significant features. The final coefficient estimation of the

selected features could be done with another set of appropriate statistical modeling technique

like simple linear regression. The proposed method is discussed below for more details.

Procedure flexibility. Random LASSO uses a two-stage procedure to perform feature

selection and coefficient estimation. However, double bootstrapping makes the method com-

putationally expensive. Besides that, while adaptive LASSO has global oracle property, its per-

formance is dependent on the estimator used for assigning weights to the coefficients of

predictors [26]. Further, random LASSO may bias the coefficients [20]. Hence, the user might

prefer using other techniques on selected features for coefficient estimation, but the whole pro-

cess needs to complete to get the feature selection results.

HDSI modifies random LASSO to increase procedure flexibility and reduce computation

intensiveness. The first modification is using the importance scores from Step I(d) as a metric

Algorithm 1: Random LASSO

Procedure I Generate the Importance Scores for the Features

I(a) Bootstrap B samples with size n from the original dataset.

I(b) For each Bootstrap sample, randomly select q(1) features (q(1)�n) from original p features.

I(c) Apply LASSO to estimate coefficient, bb
ð1Þ

ij ji ¼ f1; . . . ;Bg; j ¼ f1; . . . ; pg. The coefficients of

unselected features for each bootstrap sample are considered zero.

I(d) Compute the importance score, Ij ¼
PB

i¼1
jbb
ð1Þ

ij j=B.

Procedure

II

Generate the final coefficient estimates of the Features

II(a) Bootstrap another set of B samples with size n from the original dataset

II(b) For each Bootstrap sample, randomly select q(2) features (q(2)�n) from original p features with feature

selection probability proportional to importance scores, Ij.
II(c) Apply LASSO (or, Adaptive LASSO with weight, wj ¼ I� 1

j ) to estimate coefficient,

bb
ð2Þ

ij ji ¼ f1; . . . ;Bg; j ¼ f1; . . . ; pg. The coefficients of unselected features for each bootstrap sample

are considered zero.

II(d) Compute the final coefficient estimate, bb j ¼
PB

i¼1
jbb
ð2Þ

ij j=B. The features with final coefficients above

predefined threshold are selected.

https://doi.org/10.1371/journal.pone.0246159.t001
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for the feature selection. This modification allows the user to obtain preliminary results on fea-

ture selection and enable them to decide on the coefficient estimation step. The second modifi-

cation is to allow the use of techniques other than LASSO for coefficient estimation in

Procedure I. This will enable the user to use different techniques in the same procedure and

address the LASSO limitations.

Feature selection. Random LASSO performs the feature selection in its first stage of the

procedure. Similar to random LASSO (Step I(a) and Step I(b), Algorithm 1), HDSI (Step I

(a) and Step I(b), Algorithm 2) generates random samples from the dataset of n sample size

and p feature space. Multiple samples of size n from the original dataset is created with a

replacement through bootstrapping. For each of these samples, a feature sample of size q
from original feature space is created without replacement through random subspace

sampling.

While, random LASSO performs LASSO based statistical modeling for coefficient estima-

tion of each feature q in each sample (Step I(c), Algorithm 1), HDSI incorporates interaction

terms before statistical modeling (Step I(c) and Step I(d), Algorithm 2). HDSI generates all

possible interaction terms between q features. A final sample feature set of size p� is created for

each bootstrap sample which is the combination of q features and its interaction terms. The

statistical modeling of p� features is performed (Step I(e), Algorithm 2). Different modeling

techniques like LASSO, adaptive LASSO, regression and subset selection could be used for get-

ting coefficient estimates of features in each of the bootstrap samples. HDSI uses three differ-

ent techniques for feature selection, namely LASSO based (HDSI_L), adaptive LASSO based

(HDSI_AL) and regression based (HDSI_R).

Random LASSO pools the coefficient estimates of all features from all the bootstraps to esti-

mate the feature performance. It calculates the importance score of each feature by averaging

its estimates from bootstrapped datasets over the total number of bootstraps (Step I(d), Algo-

rithm 1). Random LASSO considers the coefficients of unselected features in a bootstrap sam-

ple as zero rather than missing, which causes systematic bias in the estimation of regression

coefficients. HDSI estimates the feature performance using two metrics, namely coefficient

estimates and model coefficient of determination (R2). HDSI treats the coefficients and model

Algorithm 2: HDSI

Procedure

I

Feature Selection

I(a) Bootstrap B samples with size n from the original dataset.

I(b) For each Bootstrap sample, randomly select q features (q�n) from original p features.

I(c) Prepare the χ interaction set from q features.

I(d) Create a final sample feature set, p� = χ[q.

I(e) Apply LASSO (or, any other feature selection technique) to estimate coefficient,

bb ijji ¼ 1; . . . ;Bg; j ¼ 1; ::; p; ::;
Po

k¼2

p
k

� �
g

��
. The coefficients of unselected features for each bootstrap

sample are considered missing.

I(f) Compute the mean coefficient estimate, bb j ¼
PB

i¼1
bb ij=bj, where bj is the number of bootstrap samples

containing the jth feature.

Compute jth feature minimum coefficient of determination (R2), minR2
j ¼ MinðR2

ijÞji 2 f1; . . . ;Bg.

I(g) Select significant features based on the quantile of coefficient estimate and minimum R2 value.

I(h) Add missing marginal features of significant interaction terms in the final selected feature set.

https://doi.org/10.1371/journal.pone.0246159.t002
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R2 of unselected features in a bootstrap sample as missing (Step I(f), Algorithm 2). Conse-

quently, during the computation step of the jth feature, bootstrap samples with the missing fea-

ture were dropped from the computation, as shown below:

bb j ¼
XB

i¼1

bb ij=bj ð1Þ

minR2

j ¼ MinðR2

ijÞji 2 f1; . . . ;Bg ð2Þ

where bj is the number of bootstrap samples containing the jth feature, bb j represents an aver-

aged coefficient estimation of the jth feature over bj bootstrap samples and minR2
j represents a

minimum model R2 of the jth feature over bj bootstrap samples.

Random LASSO does not provide any statistical guideline to determine the significance of

estimated coefficients. Since, coefficient estimate distribution is unknown, in HDSI the upper

and lower quantile values of coefficients are estimated using bbijji ¼ 1; . . . ; bj values as sample

data. If zero value is not present between the lower and upper quantile values, bb j is considered

to have a significant non-zero value.

Fig 2. Graphical representation of HDSI methodology. p: number of features in the dataset, n: sample size of the dataset, p�: number of features (including sampled

features and its interaction terms) used for modeling and n�: each bootstrapped dataset has the same sample size n used for modeling. The green colour steps represent the

proposed method and blue colour steps represent the process to estimate the coefficient of selected features.

https://doi.org/10.1371/journal.pone.0246159.g002
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Finally, the features with performance above a predefined threshold are selected. Random

LASSO uses heuristic rather than the statistical threshold to select the features based on the

estimated coefficients (Step II(d), Algorithm 1). HDSI selects the features which fulfil two cri-

teria (Step I(g), Algorithm 2). Firstly, the coefficient estimates between lower and upper quan-

tile values should not contain zero. The quantile (Qi) is a hyperparameter which needs to be

optimized where lower quantile is Qi/2, and upper quantile is 100−Qi/2. Secondly, the features

should have occurred in models with a high coefficient of determination, i.e. R2. A heuristic

cut-off value (Rf) for considering high R2 can be used. However, the heuristic cut-off value

may not be easy to interpret. Accordingly, the heuristic cut-off value is transformed into

mminR2 þ RfsminR2 , where mminR2ð¼
Pp�

j¼1
minR2

j =p
�Þ is the mean value of minR2

j values of p� fea-

tures. sMinR2
is the standard deviation of minR2

j values of p� features as given below.

sminR2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp�

j¼1
ðminR2

j � mminR2Þ
2

p� � 1

s

ð3Þ

minR2
j of the feature should be higher than mminR2 þ RfsminR2 for selection. The hyperpara-

meter Rf can take value from [−1,1]. Among the selected features, some interaction terms

could get selected while their corresponding marginal features are not. In such cases, the final

set of selected features incorporates the unselected marginal features of selected interaction

terms (Step I(h), Algorithm 2).

Interaction effects. Random LASSO does not provide any guideline in dealing with inter-

actions among the features. Further, non-group LASSO based LASSO methods have issues in

dealing with interactions since LASSO is neutral to feature pattern; hence any pattern of fea-

tures can exist [22]. Thus, a model based on LASSO and adaptive LASSO cannot deal with fea-

ture interactions. In HDSI, after the selection of q features for a bootstrap sample, all the

possible k = {2,. . .,ω} level interaction terms, χ, among the q features are created. A new sample

feature set, p� (= χ[q) is used for coefficient estimation.

w ¼
[o

k¼2

q
k

� �
ð4Þ

Number of feature samples. The pooling criteria is dependent on the feature perfor-

mance in different models. Accordingly, it is vital to ensure that every feature is sampled multi-

ple times. The current random LASSO algorithm provides no statistical guideline to determine

the number of bootstrap times a feature should be selected and modeled.

The HDSI method considers the hypothetical population mean value of a coefficient as

zero, then uses it as a reference value against which the estimated mean value of coefficient

could be compared. Since it is a one-sample case, the sample size of the coefficient values

for a feature could be estimated from following Lehr’s equation, L = 8/Δ2 [27]. L is the mini-

mum number of times a feature should be selected (i.e., the sample size of coefficient values)

and Δ is the effect size. As Cohen’s rule of thumb, Δ could be equal to 0.2, 0.5 or 0.8 for

‘small’, ‘medium’ and ‘large’ effect sizes [28]. The probability of a feature to be included in a

sample of q features for any bootstrap is ρ = q/p. In cases when interaction terms are consid-

ered ρ can be calculated as follows:

r ¼
Xo

k¼2

q
k

� �
=
Xo

k¼2

p
k

� �
ð5Þ

q and p are not added into the calculation because the marginal features would be selected

when the interaction terms are selected. Each B can be considered an independent trial for
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selecting a feature. Then, the probability of a feature to get selected L times, (Pr(X = L)), in B
trials is equivalent to the probability mass function of a binomial distribution,

B

L

 !

rLð1 � rÞ
B� L

. Since, L is the minimum number of desired selections of a feature, the

cumulative distribution function should be used as follows for calculating B:

PrðX � LÞ ¼ 1 �
XL� 1

m¼0

PrðX ¼ mÞ ð6Þ

B � f ðPrðX � LÞ; LÞ ð7Þ

Feature estimation. Random LASSO estimates the coefficient values of selected features

by performing the second stage of the procedure (Algorithm 1). The second stage repeats the

steps of the first stage of the procedure with some modifications. Firstly, weighted random

subspace sampling rather than random subspace sampling performs the sampling of features.

Secondly, adaptive LASSO (recommended) performs statistical modeling. In both modifica-

tions, the feature weight is proportional to its importance score obtained from step 1(d). The

importance score obtained in Step 2(d) is the estimated coefficient value of the features. The

features with the coefficient value above the heuristically determined threshold value are

selected.

HDSI does not perform stage two to reduce computation time. Further, the statistical tech-

nique will also depend on the user problem statement. The method gives the user flexibility in

choosing the appropriate statistical modeling technique for feature estimation. The current

study uses ordinary least squares based regression.

Hyperparameters. HDSI requires three hyperparameters, namely, number of fea-

tures in a sample (q), coefficient estimate quantile threshold (Qi) and minimum R2

threshold (Rf). The values of these hyperparameters depend on the dataset. Hence,

hyperparameter optimization is needed for optimal performance. Hyperparameter opti-

mization is done in three steps. In first step, Qi and Rf are kept constant at value five and

value zero respectively and q is optimized. Randomly, multiple values are generated for q
and value with the best predictive performance is selected. In second step, q and Rf are

kept constant at the best value obtained from first step and value zero respectively, while

Qi is optimized. Randomly, multiple values are generated for Qi and value with the best

predictive performance is selected. In third step, q and Qi are kept constant at the best

value obtained from step one and two respectively, while Rf is optimized. Randomly,

multiple values are generated for Rf and value with the best predictive performance is

selected.

Simulation studies. Simulated data are used to demonstrate the performance of the

proposed method and compare it with other methods. The current study considers only

two-way interactions, but the approach can be demonstrated for higher-order interactions

too. The simulation data are generated from the regression model, y = β0+β1x1+� � �

+βpxp+β12x12+� � �+�. ε~N(0, σ2), x1,. . .,xp~N(0, 1) and {x12,x13,. . .,x(p−1)p} represents the

two-way interactions between features {(x1,x2), (x1,x3),. . ., (xp−1, xp)}. Coefficient values are

zero for features unless mentioned (Table 1). Covariance matrix is defined to create multi-

collinearity in the model with non-zero covariance among {x1,. . .,x5} and zero covariance
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among all other cases as shown below:

x1x1 x1x2 : : x1x5 � � �

x2x1 x2x2 � � x2x5 � � �

∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶

x5x1 x5x1 � � x5x5 � � �

x6x1 x6x1 � � x6x5 � � �

� � � � � � � �

xpx1 � � � � � � �

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1 0:3 0:3 0:6 0:6 0 � 0

0:3 1 0:3 0:2 0:1 0 : 0

0:3 0:3 1 0:2 0:1 0 : 0

0:6 0:2 0:2 1 0:1 0 : 0

0:6 0:1 0:1 0:1 1 0 : 0

0 0 0 0 0 1 : 0

: : : : : : : 0

0 0 0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The data for each feature is generated from the multivariate normal distribution. Table 1

shows the different settings considered for evaluating the different models. The number of fea-

tures, p, considered across different settings varied from 25–100. The training and test dataset

used in each scenario is 500. Scenario 4 does not consider the marginal effect of the interaction

terms. The number of target variables is put less than n to enable comparison with standard

methods.

Hyperparameter optimal range

Scenario 1 dataset is used to perform the hyperparameter optimization for identifying the opti-

mal ranges of q, Qi and Rf. Different hyperparameter combinations are tried with HDSI_AL

technique on the training dataset. The hyperparameter combination with best mean predictive

performance on the five-fold cross-validated dataset is selected. The best hyperparameters pre-

dictive performance is tested on test data. Root mean square error (RMSE) is used to measure

predictive performance. Table 2 shows the results obtained from 10 trials.

Further, the hyperparameter optimization process is repeated with HDSI_R technique for

the same dataset. The hyperparameter range identified for each parameter is within two stan-

dard deviation range identified with HDSI_AL technique. Additionally, the RMSE perfor-

mance obtained from the two techniques is similar. The search region for optimal values of

Table 1. Description of the simulation data.

Scenario Features Effect β (Non-Zero coefficients) p Train set Test set σ2

Marginal Terms
1 Yes {β1, β2, β3, β12} = {0.2, 0.3, 0.4, 0.3} 25 500 500 0.25

2 Yes {β1, β2, β3, β12} = {0.2, 0.3, 0.4, 0.3} 50 500 500 0.25

3 Yes {β1, β2, β3, β12} = {0.2, 0.3, 0.4, 0.3} 100 500 500 0.25

4 No {β3, β12} = {0.4, 0.3} 50 500 500 0.25

https://doi.org/10.1371/journal.pone.0246159.t003

Table 2. Optimal region for hyperparameters.

HDSI Technique Hyperparameter (trials = 10) RMSE
q Qi Rf

Mean (±2SD) [Min, Max] Mean (±2SD) [Min, Max] Mean (±2SD) [Min, Max] Mean (95% CI)
HDSI_AL 12 (±14) [5,20] 7.22 (±11.01) [0.73,13.96] 0.98 (±2.16) [-0.90,2.13] 0.23(0.19–0.27)

HDSI_R 15 (±4) [9,18] 6.13 (±6.52) [3.08,15.25] 0.98 (±1.42) [-0.36,1.74] 0.25(0.18–0.31)

https://doi.org/10.1371/journal.pone.0246159.t004
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hyperparameters q, Qi and Rf is [2,26], (0, 18.24] and [-1.18,3.14] respectively. The optimal

region of q is truncated and depends upon feature space as q cannot take values less than 2 or

more than p. Similarly, the minimal value of Qi is truncated at zero as quantile intervals are not

negative.

Bootstraps analysis

Scenario 1 dataset is used to showcase the importance of bootstraps in the model performance.

The performance of HDSI_AL and HDSI_R is compared for different effect size and conse-

quently, different number of bootstraps as shown in Table 3. The mean values of hyperpara-

meters q, Qi and Rf optimal region are used for analysis. RMSE is used to measure predictive

performance. The results from 10 trials suggest that increase in the number of bootstraps

reduces the selection of noise variables and improves predictive performance. Effect size, Δ =

0.5, which corresponds to 186 bootstraps, can eliminate all noise features and only select target

features using HDSI_AL technique. In the case of HDSI_R, Δ = 0.5 can eliminate almost all

noise features and only select target features. Nevertheless, an increase in bootstraps helps in

reducing the noise features selection. Additionally, results suggest that HDSI could provide

good model performance even when globally optimal hyperparameters are not used.

HDSI comparison with standard methods

The performance of HDSI_L, HDSI_AL and HDSI_R are compared with various standard

methods, namely random LASSO, LASSO, adaptive LASSO, group LASSO and regression.

The large effect size is considered for the study. The simulation studies are performed in R.

Random LASSO is performed by modifying the existing algorithm available at GitHub

(https://github.com/samskhan/KSULasso/tree/master/R). The code was modified to allow the

algorithm to take different q values and provide the intercept term. Further, the original code

was unable to run if the importance score of features after the procedure I is zero, so negligible

value (1/(px106)) is assigned to it. The number of bootstrap samples used for the random

LASSO is 200, as suggested by [20] in their paper. The R package glmnet is used to perform

LASSO and adaptive LASSO [29]. Ridge regression precedes adaptive LASSO (except, when

adaptive LASSO is used in random LASSO) for obtaining weights for adaptive LASSO as sug-

gested by [26]. The R package glinternet [30] is used to perform group LASSO as it considers

interaction terms [31]. The R package MASS [32] is used to perform forward subset selection.

The performance of different methods is evaluated based on multiple criteria. The first cri-

terion is the ability of a method to select true features and reject noise features. Accordingly,

the number of target and noise features selected by a method is calculated. The second

Table 3. HDSI performance in different bootstraps.

L Δ Bootstraps Performance (Trials = 10)

HDSI_AL HDSI_R

Selected Features RMSE (95% CI) Selected Features RMSE (95% CI)
Marginal (Range) Interactions (Range) Marginal (Range) Interactions (Range)

1 2.8 14 6 (3–11) 4 (1–8) 0.23 (0.19–0.27) 18 (10–24) 22 (8–42) 0.27 (0.25–0.30)

5 1.3 40 3 (3–4) 1 (1–2) 0.23 (0.19–0.27) 10 (5–13) 8 (3–12) 0.23 (0.19–0.27)

13 0.8 80 3 (3–4) 1 (1–2) 0.23 (0.19–0.27) 6 (3–7) 4 (1–5) 0.23 (0.19–0.27)

32 0.5 186 3 (3–3) 1 (1–1) 0.23 (0.19–0.27) 4 (3–5) 2 (1–3) 0.23 (0.19–0.27)

200 0.2 1006 3 (3–3) 1 (1–1) 0.23 (0.19–0.27) 3 (3–4) 1 (1–2) 0.23 (0.19–0.27)

https://doi.org/10.1371/journal.pone.0246159.t005
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criterion is the prediction performance of a method. Root mean square error (RMSE) and R2

between the estimated outcome and actual outcome are used as evaluation parameters.

Table 4 shows that among the standard methods, LASSO, Adaptive LASSO and random

LASSO showed similar performance in terms of feature selection. They had successfully identi-

fied the marginal variables with non-zero coefficients. Similar results were reported by [20] in

their paper. Further, LASSO, adaptive LASSO and random LASSO did not select any non-zero

marginal coefficients in all the scenarios. These methods outperformed the regression and

group LASSO, which consistently selected the noise variables. However, other than Group

LASSO, no other standard method was able to identify the interaction variables. HDSI with

different selection techniques, i.e. HDSI_L, HDSI_AL and HDSI_R, outperformed the stan-

dard methods as they consistently selected the target variables while rejecting almost all noise

variables. Therefore, it seems that HDSI might be able to leverage the performance of existing

statistical feature selection methods.

Table 5 shows that outcome prediction performance of HDSI is better than the standard

methods in all the scenarios. Thus, HDSI seems to be a better option as compared to standard

methods in models with interaction terms having non-zero coefficients. Among the standard

Table 4. Feature selection performance of different approaches in simulated scenarios.

Scenario Performance Parameter (Number of Features

Selected)

Standard HDSI

LASSO Adaptive
LASSO

Group
LASSO

Random
LASSO

Regression HDSI_L HDSI_AL HDSI_R

1 Marginal (p = 25) 3 3 25 4 3 4 3 7

Target (s = 3) 3 3 3 3 3 3 3 3

Noise (s = 22) 0 0 22 1 0 1 0 4

Interaction (s = 300) 0 0 78 0 0 2 1 5

Target (s = 1) 0 0 1 0 0 1 1 1

Noise (s = 299) 0 0 77 0 0 1 0 4

Total Feature Selection (s = 4) 3 3 103 4 3 6 4 12

2 Marginal (p = 50) 3 3 50 3 5 3 3 7

Target (s = 3) 3 3 3 3 3 3 3 3

Noise (s = 47) 0 0 47 0 2 0 0 4

Interaction (s = 1225) 0 0 223 0 0 1 1 6

Target (s = 1) 0 0 1 0 0 1 1 1

Noise (s = 1224) 0 0 222 0 0 0 0 5

Total Feature Selection (s = 4) 3 3 273 3 5 4 4 13

3 Marginal (p = 100) 3 3 98 3 3 3 3 6

Target (s = 3) 3 3 3 3 3 3 3 3

Noise (s = 97) 0 0 95 0 0 0 0 3

Interaction (s = 4950) 0 0 263 0 0 1 1 6

Target (s = 1) 0 0 1 0 0 1 1 1

Noise (s = 4949) 0 0 262 0 0 0 0 5

Total Feature Selection (s = 4) 3 3 361 3 3 4 4 12

4 Marginal (p = 50) 1 1 50 1 1 3 3 24

Target (s = 3) 1 1 3 1 1 3 3 3

Noise (s = 47) 0 0 47 0 0 0 0 21

Interaction (s = 1225) 0 0 281 0 0 1 1 19

Target (s = 1) 0 0 1 0 0 1 1 1

Noise (s = 1224) 0 0 280 0 0 0 0 18

Total Feature Selection (s = 4) 1 1 331 1 1 4 4 43

https://doi.org/10.1371/journal.pone.0246159.t006
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methods, only group LASSO performance can detect interaction terms and outperformed

other standard methods. The performance of HDSI_L, HDSI_AL and HDSI_R in test dataset

is coincidentally is identical. Further, HDSI could enable in expanding the modeling function-

ality of basic statistical approaches like simple linear regression to high dimensional settings if

the number of target features is less than n. However, the main limitation is that HDSI process

is computationally intensive as compared to standard methods.

Real data studies

We implement the HDSI methods and compare them with other methods on five real-world

datasets. The features in these studies can be textual, continuous or categorical with many

missing values. For simplicity, the study only uses continuous features and remove features

with a large number of missing values.

Dataset I is Community Health Status Indicators (CHSI) dataset (available at https://

healthdata.gov/dataset/community-health-status-indicators-chsi-combat-obesity-heart-

disease-and-cancer) which contains USA county-level data on various demographics and

health parameters to help in making informed decisions in combating obesity, heart disease

and cancer. The dataset contains data on 578 features for 3141 US counties. The final dataset

has a sample size and feature size of 1156 and 55, respectively.

Dataset II and IV are National Social Life, health and Aging Project (NSHAP) datasets for

Wave 3 (2015–2016) (available at https://www.icpsr.umich.edu/icpsrweb/NACDA/studies/

36873) and Wave 1 (2005–2006) (available at https://www.icpsr.umich.edu/icpsrweb/

NACDA/studies/20541), respectively. The datasets contain data of USA population related to

health, social life and well being of older Americans. The Dataset II contains data on 1470 fea-

tures for 4377 residents. The final dataset of Dataset II has a sample size and feature size of

1292 and 19, respectively. The Dataset IV contains data on 820 features for 3005 residents. The

final dataset of Dataset IV has a sample size and feature size of 1511 and 27, respectively.

Dataset III is Study of Women’s Health Across the Nation (SWAN), 2006–2008 dataset

(available at https://www.icpsr.umich.edu/icpsrweb/NACDA/studies/32961) which contains

multi-site data for middle-aged women in USA on various physical, biological, psychological
and social parameters. The dataset contains data on 887 features for 2245 respondents. The

final dataset has a sample size and feature size of 1571 and 32, respectively.

Table 5. Outcome prediction performance of different approaches in simulated scenarios.

Scenario Performance Parameter (Outcome

prediction)

Standard HDSI

LASSO Adaptive LASSO Group LASSO Random LASSO Regression HDSI_L HDSI_AL HDSI_R
1 Test Dataset

RMSE 0.47 0.47 0.27 0.51 0.43 0.26 0.26 0.26

R2 0.72 0.71 0.90 0.71 0.72 0.90 0.90 0.90

2 Test Dataset
RMSE 0.41 0.40 0.28 0.50 0.42 0.25 0.25 0.25

R2 0.76 0.76 0.87 0.75 0.73 0.89 0.89 0.89

3 Test Dataset
RMSE 0.42 0.42 0.27 0.61 0.40 0.26 0.26 0.26

R2 0.75 0.75 0.88 0.72 0.74 0.89 0.89 0.89

4 Test Dataset
RMSE 0.41 0.40 0.29 0.48 0.42 0.25 0.25 0.26

R2 0.57 0.57 0.74 0.57 0.52 0.80 0.80 0.77

https://doi.org/10.1371/journal.pone.0246159.t007
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Dataset V is Hawaii Aging with HIV Cardiovascular Study dataset (available at https://

www.icpsr.umich.edu/icpsrweb/NAHDAP/studies/36389) which focus on determining the

atherosclerosis development in HIV positive adults with age 40 and over residing in the Hawaii

state, USA. The dataset has 248 features related to demographics and health indicators for a

sample size of 110. The final dataset has a sample size and feature size of 104 and 21,

respectively.

Table 6 provides a detailed summary of the five datasets. Each of the datasets is split into a

training dataset (ntr) and a test dataset (nte). A large effect size is considered for estimating B
for reduced computation time. Different methods are compared based on their prediction per-

formance in the test dataset repeated over 30 trials.

Tables 7 and 8 summarise the results of feature selection methods. Firstly, the HDSI meth-

ods have performed similar or better than the standard methods, which indicates that the

HDSI methods have the potential to compete with existing methods for feature selection task.

The RMSE of HDSI is less than or at par with the standard methods for all datasets. In terms of

R-squared metric, the performance of proposed and standard methods is similar. Secondly,

the HDSI methods have consistently identified the interaction terms. Among the standard

methods, group LASSO has also identified the interactions terms, but a high RMSE and many

interaction terms indicate overfitting. Thirdly, the performance of different techniques in

HDSI varied with the datasets. The similar variation in performance of standard methods

based on datasets is observed. HDSI gives a robust performance with different datasets while

accommodating the variable performance of specific techniques.

Conclusion and discussion

An innovative method, HDSI, is proposed to perform variable selection, including the interac-

tion terms in high dimensional settings. The method is inspired by the random forest method

provided by [16]. HDSI randomly samples both data and features, along with the incorpo-

ration of interaction terms. The method offers the flexibility of generating predictive models

using existing modeling techniques available in the literature. The pooling of predictive models

developed from different samples addresses the many limitations of shrinkage methods like

LASSO and subset selection methods like forward selection. Firstly, it reduces the sample size

restriction in feature selection. The current methodology segments the high dimensional fea-

ture space to low dimensional feature space to enable the application of classical statistical

approaches on the high dimension feature set. Hence, the individual model is restricted by the

number of main effects and interaction effects it can accommodate. However, HDSI as a

whole is not restricted, since it pools results from multiple restricted models. Secondly, it

enables more efficient selection and estimation of interaction terms from existing statistical

modeling techniques like LASSO and ordinary least square regression. HDSI does not change

the existing methods. Instead, it changes the ecosystem in which the standard methods

Table 6. Summary of the real datasets.

Dataset Marginal Features (p) Outcome feature Sample size

Total (n) Train (ntr) Test (nte)

Dataset I 55 Percentage of unhealthy days 1156 925 231

Dataset II 19 Height 1292 1034 258

Dataset III 32 Body Mass Index 1571 1257 314

Dataset IV 26 Height 1511 1209 302

Dataset V 21 Framingham Risk Score 104 84 20

https://doi.org/10.1371/journal.pone.0246159.t008
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operate, which enables them to operate on high dimensional data. Thirdly, it is less susceptible

to multicollinearity issue. The sampling of feature space separates multicollinear features into

different samples. Hence, multicollinear features could be more efficiently selected or removed

from the model.

Table 7. Feature selection performance of different methods on the real datasets.

Methods Dataset

I II III IV V
Marginal Features (μ (Range))

Standard LASSO 11 (5–30) 9 (8–11) 8 (7–10) 10 (7–18) 6 (3–10)

Adaptive LASSO 14 (6–31) 11 (10–13) 10 (8–12) 12 (8–17) 7 (4–11)

Group LASSO 53 (50–55) 19 (19–19) 7 (7–8) 26 (25–26) 20 (19–20)

Random LASSO 25 (19–31) 17 (14–19) 12 (8–14) 17 (14–21) 1 (0–2)

Regression 8 (6–13) 7 (6–10) 8 (7–9) 8 (6–11) 5 (3–6)

HDSI HDSI_L 9 (6–15) 2 (0–2) 7 (5–9) 11 (8–14) 1 (1–2)

HDSI_AL 8 (0–13) 1 (0–2) 6 (0–9) 10 (8–14) 1 (1–1)

HDSI_R 32 (24–38) 12 (9–14) 18 (12–24) 24 (19–26) 6 (2–12)

Interaction Features (μ (Range))
Standard LASSO 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Adaptive LASSO 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Group LASSO 255 (232–270) 89 (76–99) 7 (6–8) 156 (147–166) 58 (53–64)

Random LASSO 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Regression 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

HDSI HDSI_L 3 (1–7) 1 (0–1) 3 (1–6) 3 (1–4) 0 (0–0)

HDSI_AL 3 (0–6) 1 (0–1) 2 (0–5) 3 (2–5) 0 (0–0)

HDSI_R 31 (18–44) 14 (9–17) 17 (11–22) 48 (29–61) 4 (1–8)

https://doi.org/10.1371/journal.pone.0246159.t009

Table 8. RMSE performance of different methods on the real datasets for test data.

Methods Dataset

I II III IV V
RMSE (μ (95% CI))

Standard LASSO 0.92 (0.9–0.93) 3.85 (3.75–3.94) 0.51 (0.5–0.53) 3.57 (3.5–3.64) 0.06 (0.06–0.06)

Adaptive LASSO 0.91 (0.9–0.93) 3.83 (3.74–3.92) 0.51 (0.49–0.53) 3.57 (3.51–3.64) 0.06 (0.06–0.07)

Group LASSO 0.95 (0.93–0.96) 3.65 (3.56–3.74) 0.21 (0.2–0.22) 5.08 (3.85–6.31) 0.12 (0.09–0.14)

Random LASSO 0.98 (0.96–1.00) 3.93 (3.84–4.02) 1.08 (1.03–1.12) 3.89 (3.83–3.96) 0.07 (0.07–0.07)

Regression 0.91 (0.89–0.92) 3.74(3.65–3.83) 0.50 (0.48–0.52) 3.55(3.49–3.61) 0.06 (0.06–0.06)

HDSI HDSI_L 0.91 (0.89–0.92) 3.77 (3.67–3.87) 0.19 (0.15–0.24) 3.45 (3.38–3.51) 0.06 (0.06–0.07)

HDSI_AL 0.91 (0.90–0.93) 3.83 (3.73–3.92) 0.31 (0.23–0.40) 3.46 (3.4–3.53) 0.06 (0.06–0.07)

HDSI_R 0.90 (0.89–0.92) 3.6 (3.5–3.7) 0.12 (0.11–0.13) 6.77 (4.03–9.52) 0.07 (0.07–0.07)

R2 (μ (95% CI))
Standard LASSO 0.45 (0.44–0.47) 0.27 (0.25–0.29) 1 (0.99–1) 0.35 (0.34–0.37) 0.35 (0.31–0.4)

Adaptive LASSO 0.45 (0.44–0.47) 0.28 (0.26–0.29) 1 (0.99–1) 0.36 (0.34–0.37) 0.35 (0.31–0.4)

Group LASSO 0.44 (0.42–0.45) 0.34 (0.32–0.36) 1 (1–1) 0.3 (0.25–0.35) 0.18 (0.13–0.24)

Random LASSO 0.43 (0.42–0.45) 0.26 (0.25–0.28) 0.98 (0.98–0.98) 0.32 (0.31–0.34) 0.19 (0.15–0.24)

Regression 0.46 (0.44–0.48) 0.31 (0.29–0.32) 1 (1–1) 0.36 (0.34–0.37) 0.38 (0.33–0.43)

HDSI HDSI_L 0.46 (0.44–0.48) 0.29 (0.27–0.31) 1 (1–1) 0.39 (0.38–0.41) 0.13 (0.1–0.17)

HDSI_AL 0.46 (0.44–0.47) 0.27 (0.25–0.29) 1 (1–1) 0.39 (0.37–0.4) 0.16 (0.12–0.2)

HDSI_R 0.47 (0.45–0.49) 0.35 (0.34–0.37) 1 (1–1) 0.23 (0.18–0.28) 0.2 (0.14–0.25)

https://doi.org/10.1371/journal.pone.0246159.t010
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The simulation studies and real-world studies show that HDSI can outperform existing

methods in the feature selection and consequently, the prediction performance. Further, the

success of HDSI in real data settings demonstrates its practical relevance. Future research

could focus on addressing some of the limitations of the current study. The main objective of

the study is to explain and propose a method to handle interaction terms during feature selec-

tion in high dimensional settings. Hence, the current study has not extensively tested the

HDSI with different types of datasets like temporal datasets, categorical outcomes and time to

event outcomes and features like categorical features. Such evaluation of current method could

determine the robustness of HDSI in real-world scenarios.

Another limitation is that the study has not tried integrating other types of statistical learn-

ing methods like glasso, decision trees, support vector machines, artificial neural network in

HDSI framework. So, it could be an area of exploration to comprehensively determine the

capability of HDSI in enhancing the capability of other techniques.

The HDSI model allows the use of different statistical techniques to build models. However,

it may not be able to address all the limitations of any given technique. For instance, LASSO

results may not be consistent across the bootstraps [33]. Future research could try to develop

HDSI approaches which can deal with consistency limitations of techniques.
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