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Abstract: Metabolic dysfunction-associated fatty liver disease (MAFLD) has now affected nearly
one-third of the global population and has become the number one cause of chronic liver disease in
the world because of the obesity pandemic. Chronic hepatitis resulting from hepatitis B virus (HBV)
and hepatitis C virus (HCV) remain significant challenges to liver health even in the 21st century. The
co-existence of MAFLD and chronic viral hepatitis can markedly alter the disease course of individual
diseases and can complicate the management of each of these disorders. A thorough understanding
of the pathobiological interactions between MAFLD and these two chronic viral infections is crucial
for appropriately managing these patients. In this comprehensive clinical review, we discuss the
various mechanisms of chronic viral hepatitis-mediated metabolic dysfunction and the impact of
MAFLD on the progression of liver disease.

Keywords: metabolic dysfunction-associated fatty liver disease (MAFLD); chronic viral hepatitis;
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1. Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the most
common cause of chronic liver disease in recent years, affecting nearly one-third of the
global population because of the obesity pandemic [1]. Although a good proportion of
MAFLD cases can remain clinically nonprogressive, some cases can develop severe forms of
the disease, such as hepatic fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several
factors, including environmental, epigenetic, genetic, metabolic, and infective causes, can
influence the progression of MAFLD to advanced stages of liver disease [2]. The previous
terminology, nonalcoholic fatty liver disease (NAFLD), was changed in 2020 to MAFLD by
an international consensus panel to reflect these associations of the disease [3]. With the
new nomenclature, several uncertainties concerning the pathobiology and consequences of
the disease have been resolved [4]. Unlike NAFLD, patients with chronic viral hepatitis,
alcohol excess, drug-induced steatosis, or other chronic liver diseases can have a diagnosis
of MAFLD.

Chronic viral hepatitis resulting from hepatitis B virus (HBV) and hepatitis C virus
(HCV) remains an important cause of advanced liver disease in several regions of the
world. Hepatic steatosis is a common feature of both chronic HBV [5] and HCV [6]
infections. When patients with MAFLD acquire these chronic viral infections or vice versa,
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the pathobiological characteristics of either disease can be markedly altered, and the risk of
progression to advanced liver disease, including fibrosis, can be perpetuated. Diagnosing
MAFLD in these patients would facilitate the early initiation of lifestyle interventions
and multidisciplinary management to improve the prognosis of these patients. Moreover,
managing individual disorders can be more complex when they co-exist. Therefore, it is
important to understand the pathophysiological interlink between these infections and
MAFLD when they co-exist to plan appropriate management, which is the aim of this
clinical update review.

2. MAFLD and Chronic HBV Infection
Epidemiology

According to a World Health Organization (WHO) report, in 2015, more than 250 million
people globally were suffering from chronic hepatitis B (CHB) infection [7]. Additionally,
887,000 people died from complications related to CHB, including cirrhosis and liver
cancer, in the same year. These data underscores the immense burden that CHB places on
global public health. There is no direct evidence that CHB is associated with an increased
risk of hepatic steatosis. Several meta-analyses have examined this phenomenon. In
a meta-analysis of 17 studies, which included 4100 HBV-infected patients and 8 of which
also included 945 HCV-infected patients, it was reported that approximately 29.6% of
patients with HBV developed fatty liver, like in the general population [8]. The same study
observed that 60% of the patients with HCV developed fatty liver. Moreover, the study
observed a statistically significant positive association with the male sex (OR 1.74, 95% CI
[1.28–2.38], p < 0.001) and body mass index (SMD 2.17, 95% CI [1.23, 3.11], p < 0.001); and
a negative association with HBV-DNA (SMD −74.12, 95% CI [−82.93, −65.31], p < 0.001).
This strong negative association between HBV-DNA and steatosis may indicate a protective
effect of HBV infection on steatosis. Another meta-analysis of 54 studies, involving
28,648 CHB patients, found a pooled prevalence of hepatic steatosis of up to 32.8% [9].
A more recent meta-analysis, which included 98 studies and 48,472 patients, demonstrated
an even higher global prevalence of hepatic steatosis among CHB patients, reaching
34.93% [10].

3. Effect of MAFLD on CHB Infection and Chronic Liver Disease Progression

MAFLD is associated with increased Th17 cell-related gene expression, increased IL-21
levels, activation of T and B cells, production of inflammatory cytokines, elimination of
HBV proliferation with resultant immune clearance of HBV DNA, and HbeAg [11]. The
NASH stage of MAFLD is associated with increased expression of toll-like receptors (TLRs)
in hepatocytes, Kupffer cells (KCs), hepatic stellate cells (HSCs), sinusoidal endothelial
cells, and hepatic dendritic cells (DCs) [12]. Lipopolysaccharide (LPA) induces activation of
the TLR4 and myeloid differentiation factor 88 (MyD88)-mediated pathways in obese indi-
viduals [13]. Activation of the TLR4/Myd88 pathway contributes to the activation of HSCs
and the production of chemokines, which recruits further KCs [14]. TLR4 activation in
KCs induces the secretion of pro-inflammatory cytokines (IL-1, IL-6, IL-8, TNF-α, and
chemokines) and profibrogenic factors (TGF-β) to activate the inflammation–fibrosis–
carcinoma sequence [14]. TLR4/MyD88 signaling also induces the production of IFN-β,
IL-6, and TNF-α to inhibit HBV replication [13]. Thus, activation of innate immunity
through TLR signaling is associated with the inhibition of HBV replication and the retardation
of the progression of MAFLD to NASH, fibrosis, and HCC [15].

MAFLD-associated metabolic stress could reduce peroxisome proliferator-activated
receptor–gamma coactivator 1 alpha (PGC-1α), which in turn could inhibit HBV replication
and induce Fas-mediated apoptosis of HBV-infected cells, resulting in HBV-clearance and
reduction of HBV-related liver disease progression [16]. CHB is associated with a decreased
risk of hyperlipidemia [17,18] and raised serum adiponectin levels [19], which could
contribute to a lower risk of hepatic steatosis.
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On the other hand, the production of saturated fatty acid–palmitic acid as a metabolic
component of MAFLD could be associated with impaired function of hepatic DCs and
impaired HBsAg processing/presentation, leading to inadequate immune response/HBV-
clearance and subsequent development of severe HBV-related liver disease progression [20].
Neutrophil-derived reactive oxygen species (ROS) induced by MAFLD could result in the
activation of p38 mitogen-activated protein kinase (MAPK), which in turn could augment
HBV replication and result in the progression of MAFLD to NASH [21].

4. Effects of CHB Infection on the MAFLD and Chronic Liver Disease Progression

Some of the transcription factors (including CEBP [22], CREB [23], HNF3 [24], HNF4 [25],
FXR [26], RXR [27], and PPAR [28]) involved in the transcription of HBV DNA are
involved in hepatic glucose, lipid, bile acid, and xenobiotic metabolism [28] may either
inhibit or induce regeneration, inflammation, fibrosis, and malignant transformation of
hepatic cells. Differential expressions of IL-13, G-CSF, CCL11, IL-6, and IL-4 are thought
to play a role in developing steatosis and fibrosis in patients with CHB infection. IL-13
facilitates hepatic steatosis and fibrosis, the latter through mechanisms including the
stimulation of TGF-β1 gene expression [29] and through activation of the JAK-STAT-6
pathway, in turn results in the production of CCL11, an eosinophil chemotactic protein [30].
CCL11-mediated hepatic eosinophilic infiltration and activation results in hepatic steatosis
and fibrosis [31]. G-CSF ameliorates hepatic steatosis by reducing the expression of
SREBP-1c [32]. IL-4 and IL-6 protect against hepatic fibrosis [33], IL-4 through secretion
of matrix metalloproteinase-12 (MMP-12) [34], and IL-6 through the promotion of
proliferation/survival of HSCs [35].

In patients with CHB infection, hepatitis B protein X (HBx)—a 17 kDa soluble protein
coded by the HBV DNA induces expression of various genes related to lipid accumulation
including PPAR [36], SREBP [36], FABP1 [37], LXR [38], and FATP2 [39], thereby promoting
lipogenesis. HBx also stimulates various transcription factors, including STAT3, NF-κβ,
PI3K/AKT, and Src [40], which promote hepatocyte proliferation [40], inhibit apoptosis [40],
and stimulate inflammation [41], thus leading to the development of HCC. Moreover,
the pre-S1 domain of the HBV envelope binds to sodium taurocholate cotransporting
polypeptide (NCTP), limiting the function of NCTP, thus promoting compensatory bile
acid synthesis, cholesterol provision, and hepatic steatosis [42]. Steatosis associated with
MAFLD, and the resultant oxidative stress might generate an intra-hepatic pro-fibrotic
and pro-cancerous environment [43]. Additionally, CHB-associated deficiency of PML
(promyelocytic leukemia protein) results in altered lipid metabolism and steatosis-associated
carcinogenesis [44]. Reduced levels of global DNA methylation in patients with concurrent
MAFLD and CHB lead to chromosomal abnormality, instability, fragility, and HCC
development [45].

Hepatic steatosis was observed in nearly 18% of patients with biopsy-proven CHB
infection [46]. Steatosis had an independent association with body mass index and fasting
blood glucose levels, and it does not correlate with the degree of hepatic fibrosis [46]. There
is a possible genetic susceptibility to develop steatosis in CHB infection, with the rs1010023
polymorphism in the PNPLA3 gene and rs58542926 polymorphism in the TM6SF2 gene
increasing the tendency to develop MAFLD among patients with CHB infection [43]. HBx
could play an important role in increasing the risk of HBV-induced steatosis. On the
other hand, the reduced risk of hyperlipidemia and the increased adiponectin levels could
reduce the risk of HBV-induced steatosis. Although MAFLD is associated with lower
HBV viral load and with an increased rate of HBsAg clearance, both CHB and MAFLD
could act synergistically to promote the progression of liver disease, causing hepatocyte
injury, inflammation, fibrosis, and HCC. Figure 1 shows the pathobiological interlink
between chronic HBV infection and metabolic dysfunction and the impact of MAFLD on
HBV replication.
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Figure 1. Pathobiological interlink between CHB and metabolic dysfunction and the impact of MAFLD
on HBV replication. CHB—chronic hepatitis B, HCC—hepatocellular carcinoma, HBx—hepatitis B
protein X, STAT3—signal transducer and activator of transcription 3, NF-kβ—nuclear factor kappa B
subunit, PI3K/AKT—phosphoinositide 3-kinase/protein kinase B, PPAR—peroxisome proliferator-
activated receptor gene, SREBP—sterol regulatory element-binding protein gene, FABP1—fatty
acid-binding protein 1 gene, LXR—liver X receptor gene, FATP2—fatty acid transport protein
2 gene, IL13—interleukin 13, TGF-β1—transforming growth factor beta 1, JAK-STAT-6—Janus
kinase-signal transducer and activator of transcription 6, CCL11—C-C motif ligand 11 (eosinophil
chemotactic protein or eotaxin-1), IL4—interleukin 4, IL6—interleukin 6, G-CSF—granulocyte
colony-stimulating factor, NCTP—sodium taurocholate cotransporting polypeptide, Th17—T helper
17 cell, IL21—interleukin 21, TLR4/Myd88—Toll-like receptor-myeloid differentiation factor 88,
IFN-β—interferon beta, KCs—Kupffer cells, HSCs—hepatic stellate cells, IL8—interleukin 8, TNF-
α—tumor necrosis factor alpha, Fas or FasR—Fas receptor (apoptosis antigen 1), DCs—dendritic
cells, HbsAg—hepatitis B surface antigen, ROS—reactive oxygen species, p38-MAPK—p38-mitogen-
activated protein kinase, NASH—nonalcoholic steatohepatitis.

A retrospective study involving 1076 CHB patients with a median follow-up period
of 9.8 years evaluated the importance of MAFLD in patients with CHB [47]. The study
observed that MAFLD is associated with reduced event-free (aHR 2.00, 95% CI 1.26–3.19),
HCC-free (aHR 1.93, 95% CI 1.17–3.21), and transplant-free survival (aHR 1.80, 95% CI
0.98–3.29), implying higher risk for liver-related events and death. A prospective study of
10,546 CHB patients observed that after a median follow-up period of 5.1 years, MAFLD
is associated with a 58% reduced risk of HCC (adjusted hazard ratio or aHR 0.42, 95% CI
0.25–0.68, p < 0.001) [48]. The steatosis and metabolic dysfunction had distinctive effects on
the risk for HCC. While steatosis was protective against HCC (aHR 0.45, 95% CI 0.30–0.67,
p < 0.001), a greater burden of metabolic dysfunction increased the HCC risk (aHR 1.40 per
dysfunction increase, 95% CI 1.19–1.66, p < 0.001) [48]. MAFLD can have both metabolic
and non-metabolic complications in patients with co-existing CHB as given in Table 1.
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Table 1. Metabolic and non-metabolic complications of co-existing MAFLD and CHB [49–54].

Metabolic complications

Insulin Resistance

Dyslipidemia—elevated triglyceride and LDL cholesterol levels

Obesity

Hypertension

Cardiovascular disease

Non-Metabolic Complications

Hepatic fibrosis

Hepatocellular Carcinoma (HCC)

Chronic liver disease-related complications—ascites, encephalopathy, and variceal bleeding

Increased risk of infection

Impaired quality of life—fatigue, discomfort, and the need for ongoing medical care

Management

The management of MAFLD in patients with CHB involves a multifaceted approach.
Traditional liver biopsy, considered the gold standard for diagnosis of hepatic steatosis, is
associated with a high risk of internal bleeding [55], making non–invasive methods a more
appropriate approach. One such method is the controlled attenuation parameter (CAP)
via fibro-scan [56,57], which measures attenuation during ultrasonography to estimate the
degree of steatosis. CAP has a relatively low cost and is suitable for most first-line clinical
settings [58]. In CHB, patients’ CAP demonstrated a high degree of accuracy for steatosis
assessment compared to other noninvasive methods [59,60]. It has been used in predicting
the presence and severity of MAFLD in CHB patients [61].

CHB management requires antiviral treatments such as nucleotide analogs like tenofovir
alafenamide or entecavir to suppress viral replication [62], although a cure is often difficult.
Patients with concurrent MAFLD may experience variations in viral activity and liver
enzymes due to the presence of NASH [63]. Conflicting evidence exists in the response
to treatment in patients with co-existent MAFLD and CHB. While some studies indicate
lower treatment response in CHB patients with hepatic steatosis, others show comparable
responses. Monitoring serum ALT and HBV DNA levels and timely intervention for poor
responders are crucial for managing CHB in the presence of MAFLD [64,65].

Acute intervention for concurrent MAFLD is crucial, given its adverse impact on
overall health. Lifestyle modifications, including strict diet control aiming at weight loss
and adherence to certain dietary practices, such as a hypocaloric diet and avoidance
of food high in saturated fats or ultra-processed foods, coupled with regular exercise,
form the cornerstones of therapy [66,67]. Several pharmacological treatment options
for steatohepatitis are currently being developed, such as semaglutide [68], lanifibranor
(pan-peroxisome proliferator-activated receptor agonist) [69], resmetirom (selective thyroid
hormone receptor-β agonist) [70,71] and obeticholic acid (selective farnesoid X receptor
agonist) [72,73], with some promising results, but their routine use in CHB patients with
concurrent MAFLD requires further evaluation.

Improvement of hepatic steatosis may affect HBV replication, necessitating careful
monitoring during metabolic correction. Factors like diabetes mellitus, obesity, and
dyslipidemia contribute to the progression of both MAFLD and CHB infection [74], making
the aggressive management of both conditions essential. These metabolic risk factors are
independently associated with liver disease progression, hepatocarcinogenesis, and overall
mortality in CHB patients [75,76]. Therefore, addressing metabolic dysfunction is the key
to improving co-existent CHB in patients with MAFLD.
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5. MAFLD and Chronic HCV Infection
5.1. Epidemiology

According to global estimates, approximately 71.1 million people have chronic hepatitis
C virus infection, with a global prevalence of 1% in 2015 [77]. Globally, the most common
HCV genotype is genotype 1 (nearly 50% of all adults with HCV infection), followed by
genotypes 3, 2, 4, 6, and 5 respectively [78]. HCV infection, especially genotype 3, is well
known to be associated with hepatic steatosis. Genotype 3 is highly steatogenic [79], and
it exhibits a steatosis prevalence of up to 86% while other phenotypes possess a steatosis
prevalence of around 50% [80]. The mean prevalence of steatosis in chronic HCV is around
55% across all HCV genotypes [80]. HCV genotype 3 is reported to exert a direct cytopathic
effect on the liver in direct proportion to the viral load, even in the absence of other
metabolic risk factors like visceral obesity and/or diabetes mellitus [7]. The term ‘viral
steatosis’ is used for this entity [80].

With the change in nomenclature from NAFLD to MAFLD, those patients with HCV
infection who also meet the criteria for the diagnosis of MAFLD are classified as hepatitis
C with MAFLD. Thus, there are now two types of HCV: hepatitis C with MAFLD and
hepatitis C without MAFLD. The term ‘metabolic steatosis’ is used for the entity seen in
patients with hepatitis C and MAFLD [80]. Contrary to metabolic steatosis, ‘viral steatosis’
is associated with reduced LDL cholesterol and triglyceride levels [81]. Genotypes 1, 2,
and 4 essentially promote insulin resistance associated with host metabolic risk factors,
including visceral obesity [79]. MAFLD patients with hepatitis C have a higher risk for
advanced hepatic fibrosis but with a similar atherosclerotic CVD risk in comparison to
those with MAFLD alone without CHC infection (CHC) [82].

A recent Australian study [83] observed a 43.1% prevalence of MAFLD in patients
with CHC infection in contrast to the global prevalence of MAFLD of 25% in the general
population [84]. This dual etiology group is associated with an increased risk for hepatic
injury, inflammation, and fibrosis (all p < 0.001). This study observed that those with CHC
and lean MAFLD had a similar rate of advanced fibrosis (31.6%) in comparison to those
who had obesity and/or diabetes mellitus (31.8% and 46.2%, respectively, with p = 0.325).
However, those with dual etiology are at a greater risk of developing advanced fibrosis and
HCC even after HCV clearance, implying that managing MAFLD is equally as important
as HCV clearance to prevent the progression of hepatic disease and death from HCC or
cardiovascular disease [84].

5.2. Disease Characteristics

Table 2 shows the differences between HCV genotype 3 and other genotypes of HCV
in their pathobiological characteristics, response to treatment, and disease outcomes on
long-term follow-up.

Table 2. Comparison of disease characteristics between various genotypes of hepatitis C with regard
to the cause of hepatic steatosis and responsiveness to the antiviral therapy [85].

Genotype 3 HCV Non-Genotype 3 HCV

Mechanism of steatosis Viral steatosis Metabolic steatosis

Location Periportal zone (acinar 1) Centrilobular (acinar 3)

HCV RNA viral load Corelation with
MAFLD severity No relation to MAFLD severity

Response to antiviral MAFLD reversible with SVR Reduced response to therapy

Consequence
High rate of steatosis, more

rapid progression to advanced
fibrosis, and increased HCC risk

Lower rates of steatosis, slower
progression to advanced

fibrosis, and lower HCC risk
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6. Effect of MAFLD on CHC Infection and Chronic Liver Disease Progression

Lipid droplets are involved in the replication and virion assembly of HCV, and stimulation
of de novo lipogenesis (DNL) via MAFLD (and CHC) facilitates the entry of the virus
into the hepatocytes [86]. Moreover, upon release from hepatocytes, the mature HCVs in
circulation are complexed with lipoproteins [87]. A complex metabolic network exists in the
fatty liver to regulate HCV replication. While saturated and monounsaturated fatty acids
are required for replication, polyunsaturated fatty acids inhibit HCV RNA replication [88].
Lipid peroxidation, a feature of NASH, inhibits HCV replication [89]. HCV-infected cells
have phosphatidylcholines and triglycerides with longer fatty acyl chains [90]. Knocking
down fatty acid elongases [90], fatty acid desaturases [90], or phosphatidyl ethanolamine
transferase [91] (PEMT) can inhibit HCV RNA replication.

7. Effect of CHC Infection on the MAFLD and Chronic Liver Disease Progression

Development of MAFLD in patients with CHC depends on the host’s genetic background,
including the rs738409 polymorphism in the PNPLA3 gene and the rs58542926 polymorphism
in TM6SF2 gene [92]. CHC infection appears to downregulate the intrahepatic expression
of PPAR-α, and its target known as carnitine palmitoyl acyl-CoA transferase 1A (CPT1A),
thereby reducing fatty acid β-oxidation [93]. The presence of HCV core protein results
in mitochondrial dysfunction, oxidative stress, and disruption of fatty acid metabolism,
leading to steatosis [94]. MAFLD from genotypes 1 and 4 are associated with insulin
resistance mediated by reduced expression of insulin receptor substrates (IRS1 and IRS2),
thereby reducing signaling through phosphoinositide 3-kinase (PI3K) and Akt [95]. Insulin
resistance is also mediated by an increased hepatic expression of fatty acid transporter
(CD36), which is involved in increasing fatty acid uptake [96].

MAFLD from genotype 3 is associated with the inhibition of microsomal triglyceride
transfer protein (MTTP), resulting in the impaired assembly of ApoB and lipids to form
VLDL, thereby impairing triglyceride secretion and thus intracellular triglyceride accumulation
in hepatocytes [97]. Another pathophysiological mechanism for MAFLD from genotype
3 is that HCV-3a core protein induces the PI3K-Akt pathway, increases sterol regulatory
element-binding protein-1c (SREBP-1c) activity, which in turn increases the expression of
the fatty acid synthase (FAS) [98]. HCV-3a core protein results in the downregulation of
phosphatase and tensin (PTEN) homologs inside the hepatocytes triggering the formation of
large lipid droplets [99]. HCV-3a core protein acts as an inhibitor of PPAR-α activity, resulting
in lowered triglyceride breakdown and intrahepatic accumulation of fatty acids [100].

The inhibition of PPAR-α activity that accompanies CHC infection increases nuclear
factor kappa B (NF-κB) and activator protein 1 (AP-1) levels, leading to the progression
of MAFLD to NASH [101]. Similarly, the increased levels of soluble TNF-α receptors that
develop in CHC infection also can cause progression to NASH [102]. Kupffer cells exposed
to HCV secrete CCL5, which in turn triggers NF-κB and ERK signaling in hepatic stellate
cells. The resultant pro-inflammatory (NLRP3, IL1B, IL-6, and CCL5) and pro-fibrotic
(TGF-β1, COL4A1, MMP2, and α-SMA) products promote the progression of MAFLD to
fibrosis in patients with CHC infection [103].

7.1. Complications

CHC patients could develop insulin resistance, hyperinsulinemia, and diabetes mellitus.
This could occur independently from obesity but is associated with a higher HCV replication
rate and an enhanced risk of progression to fibrosis. Host factors including obesity,
obesity-mediated insulin resistance, and co-existent MAFLD in patients with CHC are
associated with a higher degree of hepatic fibrosis, increased risk of HCC, reduced response
to interferon alpha-based therapy, and accelerated atherosclerosis in comparison to CHC
without MAFLD [104–107]. However, results from the German hepatitis C registry do
not show a significant fibrotic progression in patients with co-existent MAFLD and CHC
infection [108]. A recent study observed that single nucleotide polymorphism (rs12979860)
in interferon-λ4 (IFNL4) has an independent strong association with inflammation and
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fibrosis, especially in young women with CHC genotype 3 [109]. Figure 2 shows the
pathobiological interlink between chronic HCV infection and metabolic dysfunction and
the impact of MAFLD on HCV replication.

Pathogens 2024, 13, x FOR PEER REVIEW 8 of 18 
 

 

7.1. Complications 
CHC patients could develop insulin resistance, hyperinsulinemia, and diabetes 

mellitus. This could occur independently from obesity but is associated with a higher 
HCV replication rate and an enhanced risk of progression to fibrosis. Host factors includ-
ing obesity, obesity-mediated insulin resistance, and co-existent MAFLD in patients with 
CHC are associated with a higher degree of hepatic fibrosis, increased risk of HCC, re-
duced response to interferon alpha-based therapy, and accelerated atherosclerosis in com-
parison to CHC without MAFLD [104–107]. However, results from the German hepatitis 
C registry do not show a significant fibrotic progression in patients with co-existent 
MAFLD and CHC infection [108]. A recent study observed that single nucleotide poly-
morphism (rs12979860) in interferon-λ4 (IFNL4) has an independent strong association 
with inflammation and fibrosis, especially in young women with CHC genotype 3 [109]. 
Figure 2 shows the pathobiological interlink between chronic HCV infection and meta-
bolic dysfunction and the impact of MAFLD on HCV replication. 

 
Figure 2. Pathobiological interlink between CHC and metabolic dysfunction and the impact of 
MAFLD on HCV replication. KCs—Kupffer cells, CCL5—C-C motif ligand 5, HSCs—hepatic stel-
late cells, TNF-α—tumor necrosis factor alpha, NASH—nonalcoholic steatohepatitis, ERK/NF-kβ—
extracellular signal-regulated kinase/nuclear factor kappa B subunit, HCC—hepatocellular carci-
noma, CHC—chronic hepatitis C, SERBP1—Serpine1 mRNA-binding protein 1, FAS—fatty acid 
synthase, MTTP—microsomal triglyceride transfer protein, VLDL—very low-density lipoprotein, 
TG—triglyceride, PPAR—peroxisome proliferator-activated receptor, CPT1A—carnitine palmitoyl 
acyl-CoA transferase 1A, ROS—reactive oxygen species, PTEN—phosphatase and tensin gene, 
IRS1/2—insulin receptor substrates 1 and 2, PI3K/AKT—phosphoinositide 3-kinase/protein kinase 
B, STAT3—signal transducer and activator of transcription 3, CD36—cluster of differentiation 36 
(fatty acid translocase), AP1—activator protein 1, SFA—saturated fatty acid, MUFA—monounsatu-
rated fatty acid. 

7.2. Management 
Obesity is well known to trigger the development of MAFLD and the progression of 

CHC infection. Though in the interferon era of CHC treatment, obesity was a hindrance 
to achieving SVR [106], in the era of direct-acting antiviral (DAA) therapy, this is no longer 
the case [110]. In a prospective study comprising 11,469 patients with CHC infection, up 
to 78% of patients were either overweight or obese at the treatment initiation [111]. At a 

Figure 2. Pathobiological interlink between CHC and metabolic dysfunction and the impact of
MAFLD on HCV replication. KCs—Kupffer cells, CCL5—C-C motif ligand 5, HSCs—hepatic
stellate cells, TNF-α—tumor necrosis factor alpha, NASH—nonalcoholic steatohepatitis, ERK/
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TG—triglyceride, PPAR—peroxisome proliferator-activated receptor, CPT1A—carnitine palmitoyl
acyl-CoA transferase 1A, ROS—reactive oxygen species, PTEN—phosphatase and tensin gene,
IRS1/2—insulin receptor substrates 1 and 2, PI3K/AKT—phosphoinositide 3-kinase/protein kinase B,
STAT3—signal transducer and activator of transcription 3, CD36—cluster of differentiation 36 (fatty acid
translocase), AP1—activator protein 1, SFA—saturated fatty acid, MUFA—monounsaturated fatty acid.

7.2. Management

Obesity is well known to trigger the development of MAFLD and the progression of
CHC infection. Though in the interferon era of CHC treatment, obesity was a hindrance to
achieving SVR [106], in the era of direct-acting antiviral (DAA) therapy, this is no longer
the case [110]. In a prospective study comprising 11,469 patients with CHC infection, up
to 78% of patients were either overweight or obese at the treatment initiation [111]. At
a follow-up of 2 years, patients who managed to achieve SVR had gained 0.56 ± 12.8 lbs
compared to 3.43 ± 14.6 lbs of weight loss in those who failed to achieve SVR (p < 0.0001).
Moreover, 22% of CHC patients with BMI ≤ 25 at DAA therapy onset became overweight
during the follow-up period [111].

In 1991, the FDA approved IFN-α as the first antiviral medication for HCV, and seven
years later, ribavirin was introduced [112]. A few years later, three different combinations of
DAAs, namely NS3 protease inhibitors, NS5B polymerase inhibitors, and NS5A inhibitors,
were approved [113]. The combination of IFN-α and ribavirin decreased SVR in patients
with CHC infection [114]. Adding rosuvastatin to this combination could improve the SVR
rates along with a reduction in steatosis and fibrosis [115]. Though statins are a viable
option, further randomized controlled trials are needed. A combination of IFN-α and
vitamin E could achieve a significant reduction in the viral load [116]. In CHC patients who
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are refractory to IFN-α therapy, the addition of an antioxidant d-α-tocopherol reduced the
rate of progression of fibrosis through inhibition of stellate cell activation [117].

DAAs (which are currently the first-line agents, with improved tolerability and su-
perior efficacy for HCV clearance) achieved a median decrease of liver stiffness measure-
ment (LSM) by 0.9 (−0.6–3.2) kPa, p < 0.001, but with a median increase of CAP values by
25 (−12.5–61.5) dB/m, p < 0.001, indicating that DAAs could increase hepatic steatosis [118].
Though DAAs could achieve HCV clearance, the co-existing MAFLD can persist, particularly
in patients with obesity, thereby increasing the risk of progression of hepatic disease. Hence,
co-existing MAFLD should be treated with therapeutic lifestyle changes. However, DAAs have
added beneficial effects on cardiovascular risk factors—with an increase in the triglyceride-
to-cholesterol ratio in the VLDL molecules [119], improvement in glycemic control [120], and
significant reduction in the risk of cardiovascular events [121]. Due to potential drug–drug
interactions, DAAs should be carefully selected with statins or antihypertensive drugs [122].

8. Areas of Uncertainty/Emerging Concepts

Co-existing CHB infection and MAFLD are becoming increasingly common, and it is
important to identify the etiology when hepatitis develops. A novel noninvasive diagnostic
model has been developed using various parameters including CAP, LSM, HBV DNA,
and AST in predicting HBV-related inflammation in CHB with concurrent MAFLD to
identify patients who need anti-HBV therapy [123]. Uncertainty and challenges exist in
the management of patients with co-existing CHB and MAFLD in the absence of long-term
follow-up data. Though there are inconsistent results on the impact of hepatic steatosis
on the efficacy of antiviral therapy for CHB (with some showing reduced and others
showing comparable therapy response), and there are insufficient data to confirm a direct
link between nucleoside analogues and hepatic steatosis, the onset/progression of MAFLD
should be monitored as a potential adverse effect [124]. Antiviral drugs may have effects on
the metabolism. For example, tenofovir disoproxil fumarate could significantly reduce the
lipoprotein levels in patients with CHB [125]. Statins could retard the decompensation of
HBV-associated cirrhosis [126] and HCC [127]. As PPAR-α could promote HBV replication [128],
patients should be cautioned when CHB co-exists with MAFLD. Figure 3 summarizes the
impact of CHB and CHC on various stages of MAFLD progression.
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Figure 3. Impact of CHB and CHC on various stages of MAFLD progression. HCV—hepatitis
C virus, HBV—hepatitis B virus, MAFLD—metabolic dysfunction-associated fatty liver disease,
NASH—nonalcoholic steatohepatitis, HCC—hepatocellular carcinoma, NCTP—sodium taurocholate
cotransporting polypeptide.



Pathogens 2024, 13, 68 10 of 16

Let us try to answer a few important questions on this topic.

Does CHB or CHC occur in a patient who already has a confirmed diagnosis of MAFLD?

CHB in patients with MAFLD is associated with reduced HBV replication, whereas
CHC in patients with MAFLD is associated with increased HCV replication. In patients
with CHB or CHC, the co-existence of MAFLD is associated with progression to CHB/
CHC-related fibrosis and HCC.

Does CHB or CHC in their natural evolution determine the development of MAFLD?

Despite several associated steatogenic mechanisms, CHB has a negative association
with the risk of developing MAFLD [8,129]. On the other hand, CHC has a positive
association with the risk of developing MAFLD [130], with the various genotypes
increasing the risk by distinctive mechanisms. However, some believe that MAFLD
in patients with chronic viral hepatitis either existed before the infection (or at least the
risk factors for MAFLD already existed) and was not diagnosed, or MAFLD developed
simultaneously with chronic viral hepatitis due to the development of other conditions
that determine MAFLD.

Does the treatment given for CHB or CHC lead to the development of MAFLD?

There are insufficient data to confirm a direct link between CHB/CHC therapy
and MAFLD.

Does the treatment given for MAFLD lead to an increase in viral replication in CHB?

Better clinical and mechanistic evidence is needed to reach any definite conclusions.
The following table (Table 3) summarizes some of the answered and unanswered

topics related to co-existent chronic viral hepatitis and MAFLD.

Table 3. Summary of the interactions between chronic viral hepatitis and MAFLD [131].

HBV HCV

CHB/CHC promoting fatty liver No Yes

CHB/CHC predisposing patients to diabetes Unknown Yes

CHB/CHC worsening lipid profile No No

MAFLD promoting CHB/CHC-related fibrosis Yes Yes

MAFLD promoting CHB/CHC-related HCC Yes Yes

MAFLD promoting viral replication No Yes

MAFLD reducing the antiviral response Unknown IFN-α: Yes
DAAs: unknown

Drugs for diabetes, hypertension, and
dyslipidemia reducing antiviral response Unknown IFN-α: unknown

Some DAAs: Yes

9. Conclusions

MAFLD and chronic viral hepatitis from HBV and HCV remain significant challenges
to liver health across the globe. Disease progression occurs when MAFLD co-exists with
HBV or HCV in the same individual, resulting in higher complication rates, and the
management of either disease becomes more complex. Timely clinical suspicion and
appropriate therapeutic interventions might modify the disease outcomes concerning this
dangerous co-existence. More research is needed to improve our understanding regarding
the pathobiology and interactions between these diseases when they co-exist and the
therapeutic strategies to improve clinical outcomes.
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