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Panels of single nucleotide polymorphisms (SNPs) stratify risk for breast cancer in women from the general population, but

studies are needed assess their use in a fully comprehensive model including classical risk factors, mammographic density

and more than 100 SNPs associated with breast cancer. A case–control study was designed (1,668 controls, 405 cases) in

women aged 47–73 years attending routine screening in Manchester UK, and enrolled in a wider study to assess methods for

risk assessment. Risk from classical questionnaire risk factors was assessed using the Tyrer–Cuzick model; mean percentage

visual mammographic density was scored by two independent readers. DNA extracted from saliva was genotyped at selected

SNPs using the OncoArray. A predefined polygenic risk score based on 143 SNPs was calculated (SNP143). The odds ratio
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(OR, and 95% confidence interval, CI) per interquartile range (IQ-OR) of SNP143 was estimated unadjusted and adjusted for

Tyrer–Cuzick and breast density. Secondary analysis assessed risk by oestrogen receptor (ER) status. The primary polygenic

risk score was well calibrated (O/E OR 1.10, 95% CI 0.86–1.34) and accuracy was retained after adjustment for Tyrer–Cuzick

risk and mammographic density (IQ-OR unadjusted 2.12, 95% CI% 1.75–2.42; adjusted 2.06, 95% CI 1.75–2.42). SNP143 was

a risk factor for ER+ and ER− breast cancer (adjusted IQ-OR, ER+ 2.11, 95% CI 1.78–2.51; ER− 1.81, 95% CI 1.16–2.84). In

conclusion, polygenic risk scores based on a large number of SNPs improve risk stratification in combination with classical risk

factors and mammographic density, and SNP143 was similarly predictive for ER-positive and ER-negative disease.

What’s new?
Panels of single nucleotide polymorphisms (SNPs) stratify risk for breast cancer in women from the general population, but

studies are needed to assess their use in a fully-comprehensive model including classical questionnaire risk factors,

mammographic density, and more than 100 SNPs associated with breast cancer. In this study, the predictive ability of a

predefined panel of 143 SNPs was assessed after adjustment for questionnaire risk factors and mammography density using

women from a U.K. cohort. The panel showed substantial improvement in risk stratification in combination with classical risk

factors and mammographic density, for both oestrogen receptor-positive and negative breast cancer.

Introduction
Over the past few decades, there has been increasing interest
in individual risk assessment for breast cancer.1–5 Motivations
for this include the identification of individuals at extremely
high risk who would be potential candidates for risk-reducing
surgery or preventive therapy;6 delineation of populations at
moderately enhanced risk who might benefit from enhanced
screening;7 and more recently, identification of populations at
sufficiently low risk as to require minimal, if any, screening.8

Breast cancer has a well-established link with hormone expo-
sure, in addition to a growing body of knowledge on genetic
risk factors.9–11 While existing risk models have shown a
degree of accuracy in prediction it is clear that there is sub-
stantial room for improvement, particularly for hormone-
receptor-negative disease.12–14

It has been shown that panels of the earliest single nucleotide
polymorphism (SNP) markers to be identified aid breast cancer
risk stratification in Caucasian women, which is maintained
after accounting for classic risk factors and mammographic den-
sity.15,16 Progress on their use in risk assessment has largely
arisen from a collaborative project (Breast Cancer Association
Consortium [BCAC]), whose recent results have now confirmed
the genome-wide significance of more than 150 SNPs for all
breast cancer, and identified several of these as being associated
with oestrogen receptor (ER)-negative disease.17

Relatively little work has been done to assess the ability of
SNP panels to stratify risk in combination with classical risk fac-
tors and mammographic density, and has involved panels of up
to 77 SNPs.15,16 The aim of this case–control study was to assess
the ability of a more comprehensive panel of SNPs in order to
stratify risk beyond that achieved from classical risk factors and
mammographic density in a sample of women attending routine
screening in the UK. Our focus was on a panel that has each
reached individual genome-wide significance for association

with risk of breast cancer.17 A secondary aim was to assess the
ability of the polygenic risk score (PRS) to predict risk by ER
status.

Materials and Methods
Patients
A study was run within the Greater Manchester National
Health Service Breast Screening Program to identify suitable
models to assess breast cancer risk in population settings
(predicting risk of cancer at screening [PROCAS]).18 Women
aged 47–73 years were invited once and recruited between
October 2009 and June 2015 at the time of attendance for
mammographic screening. Breast cancer risk factors were self-
reported by the women via completion of a two-page paper
questionnaire. Women were excluded from PROCAS if they
had been diagnosed with breast cancer before completing the
questionnaire; cancers detected as a result of the screening test
were included. In total, 57,902 women were enrolled in the
PROCAS study.18 Unaffected women in the cohort who lived
within the smaller defined Withington area (South Manches-
ter) were subsequently invited to participate in an additional
risk assessment study using DNA extracted from a saliva sam-
ple; all women with breast cancer diagnosed after completion
of the questionnaire were invited to provide saliva samples
and participate as cases and saliva samples were obtained
from 9,956 women.16

Breast cancer diagnosis (invasive or ductal carcinoma in
situ [DCIS]) was at the entry screen (10/2009–06/2015) or
subsequently before January 5, 2017, and was ascertained
through monthly updates from (National Health Service)
Breast Screening Systems. DCIS was included because it is a
precursor to invasive breast cancer that is detected through
screening programs, and it is clinically relevant because
women are offered treatment.
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Saliva samples were collected between 10/2009 and
12/2013, close to but after the time of the woman’s screening
visit (median 1.1 years after, interquartile range [IQR]
0.2–1.1 years).

Mammographic density at entry to the cohort was esti-
mated independently by two readers using a visual analogue
scale (VAS) for breast density, where each mammographic
view was scored on a linear scale ranging from 0% to 100%.
The primary measure of mammographic density was the
mean percentage from two readers and four mammogram
views. Only the contralateral breast was used in analysis for
women with breast cancer. The derived mean percent density
was adjusted for BMI and age and reported as a “density
residual”, being the observed minus expected density based on
BMI and age.19 Women with bilateral cancer on the prevalent
study screen, or with breast implants, or with no assessable
VAS score were excluded from the analysis. The Tyrer–Cuzick
10-year risk (v6) was based on classical risk factors from the
questionnaire self-reported at entry.3

The study was approved by the North Manchester
Research Ethics Committee (ref. 09/H1008/81) and written
informed consent was obtained from each participant.

Study design
In total, 2,191 women were selected for this case–control
study from 9,956 women who provided saliva samples. These
included all cases without a previous diagnosis of breast can-
cer at entry to PROCAS and a sample of unaffected controls
who were matched on age (�12 months) and date (within
1 month) and type of first mammogram (analogue/digital).
Approximately four unaffected individuals were included per
case. Of the 2,191 women available for this case–control study,
58 were excluded (49 controls, 9 cases) because they failed
quality control based on the full assay (see “Assay methods”
section), and a further 41 (25 controls and 16 cases) because
their SNP call rate for the 143 SNPs in the PRS (see
section “Statistical analysis methods”) was <95%. In addition,
19 were excluded (8 controls, 11 cases) because mammo-
graphic density measurements were unavailable. Therefore,
complete data from 1,668 controls and 405 cases were avail-
able for analysis.

Assay methods
Saliva samples were collected using Oragene saliva lysate tubes
(DNA Genotek Inc., Ottawa, Ontario, Canada) and DNA extrac-
tion was performed using Gen-Probe extraction. SNP genotyping
was undertaken using a custom Illumina genotyping platform
which was specifically designed for the Collaborative Oncological
Gene–Environment Study (COGS) consortium (OncoArray:
http://epi.grants.cancer.gov/oncoarray). Samples were assayed in
two batches and included 31 internal controls. Genotyping and
quality control were performed as previously described17 but
without exclusions due to ancestry.

Statistical analysis methods
The primary PRS was derived beginning with the 172 SNPs
listed in Supporting Information Tables17 previously linked
with breast cancer risk. Twenty-three SNPs were not included
in the analysis because they were not present on the OncoArray
and there was no SNP in tight linkage disquilibrium (R2 > 0.9
from the LDLink tool20) leaving 149 SNPs. Two of these SNPs
failed for all samples and were replaced by proxies (rs62355902
replaced by kgp3323585; rs6122906 replaced by rs746427). Five
SNPs were excluded because their call rate in the sample was
less than 98%, leaving 144 SNPs (Supporting Information
Table S7). One further SNP was excluded due to high correla-
tion with another included SNP (rs2981578 removed correlated
with rs2912779 at 0.77; the SNP with the smaller p-value from
the prior meta-analysis was selected). Assay quality was
supported by testing Hardy–Weinberg equilibrium for each
SNP in cases and controls, by comparing the observed number
of homozygotes against expected using a binomial distribution
(Supporting Information Table S8).

Per allele risks were taken for each SNP based on a com-
bined meta-analysis estimate (the GWAS, iCOGS and
OncoArray study estimate from Ref. 17), leading to overall
breast cancer risk based on 143 SNPs. The PRS was formed
by multiplying the per-allele odds ratio (OR) for each SNP,
normalised by the average risk expected in the populations
based on the assumed allele frequency, as earlier.16,21,22 Two
ER-specific risk scores were formed using a subset of the
143 SNPs that achieved genome-wide significance (p < 10−8)
for the ER-specific subtype. There were 81 SNPs at genome-
wide significance for ER+ breast cancer risk, and 20 SNPs for
ER− disease. For comparison with an earlier PRS, we used
SNPs at the 18 loci previously reported to form another risk
score (SNP18).16,22 Sensitivity analysis included consideration
of a less stringent criteria for the ER-specific risks (p < 10−5),
with 118 ER+ SNPs and 36 ER− SNPs.

Predictive ability was assessed using 95% Wald confidence
intervals of the OR for a unit change in the IQR of the PRS in
controls, adjusted for (1) age, or (2) age, the natural logarithm
of 10-year risk from the Tyrer–Cuzick model and mammo-
graphic density. Calibration of the observed (O) to the
expected (E) PRS OR was estimated using the log score
regression coefficient so that O/E = 1 would indicate perfect
calibration, and further inspected by decile, with confidence
intervals following Wilson’s method for the binomial parame-
ter. The change in likelihood ratio χ2 statistics when adding
the PRS was used to measure statistical information. Adjusted
concordance indices (aAUC) were obtained by regressing
the PRS on the adjustment factors in controls, and using the
residuals from this model to compute an area under the
receiver operating curve, with empirical bootstrap confidence
intervals.23 Subgroup analysis assessed the predictive ability of
SNP scores using groups of 20 SNPs, ordered by their p-value
from Ref. 17. A post hoc subgroup analysis also assessed the
difference between invasive breast cancer and DCIS.
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Results were considered in the context of the ability of
models to stratify breast cancer risk assuming independence
between the Tyrer–Cuzick model, mammographic density and
PRSs as justified by an earlier analysis in a wider cohort.16

The main focus was on a high-risk group (>8% 10-year pro-
jected risk, clinically relevant in the UK24), and a low-risk
group (<1.4% 10-year risk; slightly less than the average risk
for a woman aged 40 years).

All analysis was undertaken in the statistical software R
version 3.4.1.25

Data availability statement
The data that support the findings of our study are available
from the corresponding author upon reasonable request.

Results
The majority of women were older than 59 years and were over-
weight (Table 1). Age was well matched in cases and controls
following the study design (Table 1). There were also only small
differences between cases and controls for several of the classical
risk factors, including family history (Table 1). This was partly
because controls who donated saliva were more likely to have a
family history than the wider cohort (Supporting Information
Tables S1 and S2). A low level of missing data in the question-
naire fields was broadly consistent with the wider cohort
(Supporting Information Tables S1 and S2).

There was very little association between the PRSs and
other risk factors. The primary PRS had a very weak correla-
tion with 10 years risk from the Tyrer–Cuzick model
(Spearman 0.034, p = 0.169) and the mammographic density
residual (0.047, p = 0.058).

Calibration of the primary PRS appeared adequate (O/E OR
1.10 (95% CI 0.86–1.34), median log score controls −0.14 (IQR
−0.50 to 0.18), Table 2). Calibration is visualised by inspecting the
observed to expected ORs (O/E OR) shown in Figure 1. Predictive
ability decreased by only a small amount after adjustment for the

classical risk factors in the Tyrer–Cuzick model and mammo-
graphic density (interquartile range OR [IQ-OR] 2.12, 95% CI
1.81–2.49 vs. adjusted 2.06, 95% CI 1.75–2.42). The primary PRS
predicted similarly well for ER+ and ER− breast cancer (adjusted
IQ-OR, ER+ 2.11 (95% CI 1.78–2.51), ER− 1.81 (1.16–2.84)). The
ER-subtype PRSs performed similarly to the main polygenic score
(adjusted IQ-OR SNP-ER+, ER+ cancer, 1.96 [95% CI 1.67–2.30];
SNP-ER−, ER− cancer, 2.23 [1.53–3.26]), although there was
some evidence that the ER− PRS underestimated relative risks
(adjusted calibration coefficient 1.94, 95% CI 1.02–2.86), that is, it
was more predictive than expected.

Most predictive information was contained in the 20 SNPs
with the smallest meta-analysis p values (Supporting Informa-
tion Tables S5 and S8). The a priori top 20 SNPs contributed
a LR-χ2 of 55.4 compared to 90.2 for all 143 SNPs (i.e. 61% of
the information). There was little trend apparent in calibra-
tion by order of the a priori significance in Figure 2. The top
20 SNPs contributed a similar degree of information to an
earlier risk score based on 18 SNPs (adjusted IQ-OR, top 20:
1.71 [95% CI 1.47–1.99], SNP18: 1.68 [1.44–1.96]; Supporting
Information Tables S5 and S8);16 13/18 loci from SNP18 were
included in the top 20.

Incorporating the PRS with the Tyrer–Cuzick model and
mammographic density had a substantial impact on the number
of women categorised into high- and low-risk groups (Table 3,
Supporting Information Table S6). The number of controls in
the lowest risk (<1.4% 10-year risk) and highest risk (≥8%)
groups increased from respectively (low: 20 [1.2%], high:
37 [2.2%]) using only the Tyrer–Cuzick model based on classical
risk factors to (372 [22.3%], 123 [7.4%]) when mammographic
density and the PRS were added; the number of cases increased
from (low: 5 [1.2%], high: 17 [4.2%]) to (38 [9.4%], 59 [14.6%]).

Sensitivity analysis did not reveal a substantial gain in pre-
dictive ability from including SNPs at less than genome-wide
significance for ER-specific scores (adjusted ΔLR-χ2: ER+ 76.8
(SNPs included with p < 10−5) vs. 70.9 (SNPs included with

Table 1. Summary of breast cancer risk factor statistics for cases and controls

Risk factor Control Case p

(a) Continuous risk factors (median, IQR)

Age (years) 60 (54–65) 60 (53–65) 0.48

Age first child (parous, years) 24 (19–27) 24 (19–28) 0.8

BMI (kg/m2) 25.9 (23.1–29.8) 26.5 (23.9–30.3) 0.005

Density (%) 26.0 (14.5–38.7) 29.5 (18.8–42.0) <0.001

Density residual 0.01 (−0.65–0.66) 0.35 (−0.33–1.02) <0.001

Tyrer–Cuzick model 10 years risk (%) 2.87 (2.26–3.70) 3.03 (2.35–4.22) 0.006

(b) Binary (n, %)

First-degree relative (yes, %) 225 (13.5%) 65 (16.0%) 0.21

Parous (yes, %) 1,401 (84.0%) 338 (83.5%) 0.8

White (yes, %) 1,541 (96.3%) 375 (95.9%) 0.8

p univariate comparison between cases and controls: continuous risk factor by Wilcoxon test; binary by chi-square test (with continuity correction); miss-
ing data excluded (see Supporting Information).
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p < 10−8); ER−, respectively 13.1 vs. 16.6; Table 2, Supporting
Information Table S4). There was very little difference in pre-
dictive ability for invasive breast cancer (n = 323) or DCIS
(n = 82), where both had fully adjusted aAUC measures
approximately 0.64 (see Supporting Information Tables S9
and 10).

Discussion
Our study showed the ability of a panel of 143 SNPs to fur-
ther stratify risk of breast cancer when combined with data
about classical risk factors and mammographic density. The
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Figure 2. Calibration (95% CI) of the primary polygenic risk score
(unadjusted) split into subscores of 20 SNPs ordered by the
overview p-value for each SNP (1 = top 20 [SNP1–20] predictive
SNPs, 2 = next 20 [SNP21–40], similarly 3–6 and 7 = least
predictive SNPs [SNP121–143]).
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Figure 1. Calibration of the primary polygenic risk score
(unadjusted). Points are observed and expected odds ratios by
decile, the fit from a logistic regression (—) is also shown (see
Supporting Information Table S3). O/E OR: a calibration coefficient
for the observed (O) divided by expected (E) odds ratio (OR), or
fitted slope of the line (—).
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polygenic score relative risk was well calibrated after adjustment
for classical factors and mammographic density and added useful
information on risk, as in our earlier study using a panel of
18 SNPs.16 Our data also confirm that PRSs are predictive for
the risk of both ER-positive and ER-negative disease.

Stratifying risk by ER status has several uses in clinical
practice. Identifying women at high risk of ER-positive disease
is important because these women can be considered for pre-
ventive therapy with selective ER modulators such as tamoxi-
fen when premenopausal, or raloxifene or aromatase
inhibitors such as anastrozole and exemestane when postmen-
opausal.26,27 There has also been some consideration of risk-
adapted screening, where women at the lowest risk of poor
prognosis breast cancer subtypes are recommended less fre-
quent screening or starting screening at a later age than those
at average population risk.28 In contrast, higher risk women
could receive more frequent screening or the use of more sen-
sitive modalities such as breast magnetic resonance imaging.

The adjusted OR per IQR associated with the panel of
143 SNPs was approximately 2.0. For comparison, we
reassessed a SNP score based on 18 loci used previously, and
the adjusted OR per IQR was approximately 1.7. We observed
diminishing predictive value for the more recently identified
SNPs. The most informative 20 SNPs using the overview
p-value contributed 61% of the information from all 143 SNPs.
In theory, further improvements from additional risk-
associated variants exist but are unlikely to improve predic-
tions substantially and it may be very difficult to achieve
much higher relative risks using PRSs than the doubling of
risk across the IQR observed here.

This article focused on the ability of PRSs to add to the
Tyrer–Cuzick model and mammographic density. The ability
of the latter has been assessed in several studies, including
PROCAS.10,11,13,19,29–31 An informative way to compare pre-
dictive ability of the domains is to consider the proportion of
women who are (accurately) determined to be in high-risk
groups, where more intensive surveillance or prevention mea-
sures might be cost-effective. Table 3 shows that in this sample
the number of high-risk women (controls) is approximately

doubled by including mammographic density, and approxi-
mately tripled by including SNPs, as earlier predicted.32 Thus,
each domain can be thought of as providing an equal contribu-
tion to risk stratification in general screening population settings.

An important finding of our study is that the PRSs predicted
ER− cases as well as ER+. This complements the ability of mam-
mographic density to assess ER-negative breast cancer,33 as well
as some of the risk factors in the Tyrer–Cuzick model.34 In par-
ticular, age, family history of breast cancer35 and (premenopause)
obesity36 have been seen to be associated with ER-negative breast
cancer. On the other hand, certain reproductive and hormonal
factors included in the model, such as age at first child, younger
age at menarche, hormone replacement therapy as well as prolif-
erative benign disease, have been found to be more associated
with hormone-receptor-positive disease.14,37

Our study has a number of limitations. First, not all the
cases were identified after saliva donation, and they might not
be fully representative of cases that would arise in prospective
cohorts. Second, while the sample was from a population-based
cohort, those included had to consent to join the wider study,
and also to subsequently volunteer to provide a saliva sample.
There was some evidence that the women who joined the saliva
substudy were more likely to have a family history of the dis-
ease. However, this is unlikely to lead to meaningful bias
because the study included many women at low risk from clas-
sical factors, and the main analysis was conditional upon risk
assessment based on the Tyrer–Cuzick model and mammo-
graphic density. Third, although we considered some different
risk scores based on different thresholds on which SNPs to
include, we lacked power to assess small changes to risk score,
such in our ER-subtype risk scores that included SNPs in a
PRS with p < 10−5. This has recently been investigated in a
much larger study of women with European ancestry.38 Predic-
tive performance of their larger panel of 313 SNPs was similar
to here but drew on using wholly imputed SNPs that has
important barriers for clinical use. Fourth, the measure of
mammographic density assessed has only been used in research
settings. Fifth, the conclusions relate to Caucasian women
attending routine screening and may not necessarily apply to

Table 3. Percentage of cases and controls in 10-year breast cancer risk groups defined using classical factors (Tyrer–Cuzick (TC) model),
mammographic density (D) and SNP143

Ten-year risk group (%)

Risk algorithm Sample <1.4% 1.4–3.5% 3.5–5% 5–8% 8%+

TC Control 20 (1.2%) 1,153 (69.1%) 285 (17.1%) 173 (10.4%) 37 (2.2%)

TC × D Control 141 (8.5%) 977 (58.6%) 281 (16.8%) 186 (11.2%) 83 (5.0%)

TC × SNP143 Control 293 (17.6%) 862 (51.7%) 247 (14.8%) 182 (10.9%) 84 (5.0%)

TC × SNP143 × D Control 372 (22.3%) 804 (48.2%) 194 (11.6%) 175 (10.5%) 123 (7.4%)

TC Case 5 (1.2%) 261 (64.4%) 68 (16.8%) 54 (13.3%) 17 (4.2%)

TC × D Case 19 (4.7%) 194 (47.9%) 98 (24.2%) 60 (14.8%) 34 (8.4%)

TC × SNP143 Case 25 (6.2%) 171 (42.2%) 84 (20.7%) 79 (19.5%) 46 (11.4%)

TC × SNP143 × D Case 38 (9.4%) 134 (33.1%) 79 (19.5%) 95 (23.5%) 59 (14.6%)
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high-risk groups21 or women from different ethnic back-
grounds. Finally, the majority of breast cancer cases in our
study were identified within 6 years of the entry questionnaire
and may not apply to longer-term risk, where classical risk fac-
tors and mammographic density have been validated.39 None-
theless, this is an independent validation of SNPs in a PRS, and
none of the cases or controls were used in the discovery analy-
sis used to identify the breast cancer associated SNPs.

In conclusion, PRSs based on the most recent genome-
wide significant SNPs increase predictive ability over the pre-
vious SNP score assessed in this cohort. They help to stratify
risk by ER status, with implications for risk-adapted screening
and prevention. In combination with classical risk factors and
mammographic density, a much greater degree of risk stratifi-
cation is possible which increases potential benefits from new
risk-adapted screening and prevention strategies.
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