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Abstract

Objective: Molecular diagnostic medicine holds much promise to change point

of care treatment. An area where additional diagnostic tools are needed is in

acute stroke care, to assist in diagnosis and prognosis. Previous studies using

microarray-based gene expression analysis of peripheral blood following stroke

suggests this approach may be effective. Next-generation sequencing (NGS)

approaches have expanded genomic analysis and are not limited to previously

identified genes on a microarray chip. Here, we report on a pilot NGS study to

identify gene expression and exon expression patterns for the prediction of

stroke diagnosis and prognosis. Methods: We recruited 28 stroke patients and

28 age- and sex-matched hypertensive controls. RNA was extracted from 3 mL

blood samples, and RNA-Seq libraries were assembled and sequenced. Results:

Bioinformatical analysis of the aligned RNA data reveal exonic (30%), intronic

(36%), and novel RNA components (not currently annotated: 33%). We

focused our study on patients with confirmed middle cerebral artery occlusion

ischemic stroke (n = 17). On the basis of our observation of differential splicing

of gene transcripts, we used all exonic RNA expression rather than gene expres-

sion (combined exons) to build prediction models using support vector

machine algorithms. Based on model building, these models have a high pre-

dicted accuracy rate >90% (spec. 88% sen. 92%). We further stratified outcome

based on the improvement in NIHss scores at discharge; based on model build-

ing we observe a predicted 100% accuracy rate. Interpretation: NGS-based

exon expression analysis approaches have a high potential for patient diagnosis

and outcome prediction, with clear utility to aid in clinical patient care.

Introduction

Stroke diagnosis and assessment is essential prior to the

administration of thrombolytic therapy (recombinant

tissue plasminogen activator: rt-PA).1 While imaging is a

prerequisite for determination of hemorrhage and infarc-

tion volume, the utility of imaging as a prognostic mar-

ker is more limited.2 In part, since many stroke patients

do not have access to specialist imaging and neurology

services, rt-PA administration rates are frequently found

to be low (~5%).3 Studies of potential biomarkers for

stroke diagnosis and prognosis have identified a number

of candidates for brain injury,4 however, few single

protein studies show specificity for stroke subtype. As an

alternative, microarray-based gene expression analysis

offers a novel approach to identify stroke subtype, based

on the transcriptome response in circulating blood

immune cells.5 This approach enables the subtyping of

acute stroke (ischemic vs. hemorrhagic) as well as the

prediction of ischemic stroke subtype (atherosclerotic vs.

cardioembolic).6,7 The power of this approach is exempli-

fied by the observation that a prediction of cause of cryp-

togenic stroke is possible.8 However, microarray

technology is being superseded by high throughput

sequencing technologies, such as RNA sequencing (RNA-

Seq).9,10 To date the power of RNA-Seq for identifying
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gene panels for stroke diagnosis and prognosis is not

established.

It is well documented that African American popula-

tions suffer from a higher burden of stroke compared to

Caucasians (294 vs. 174/100,000).3 Traditional risk factors

for stroke, such as obesity, hypertension (uncontrolled),

and lifestyle only partially account for the higher risk.11

Furthermore, race-associated differences in response to

rt-PA have been recently described.12,13 Gene expression

studies of vascular disease reveal a difference in the tran-

scriptome of African Americans versus Caucasians.14

However, an assessment of gene expression in blood fol-

lowing stroke did not report African Americans, or had

insufficient power for separate racial analysis.6 Therefore,

in this pilot study, we used next-generation RNA-Seq

approaches to determine whether gene expression profiles

in blood have diagnostic as well as prognostic potential,

with a focus on an African American patient cohort.

Subjects/Materials and Methods

Participant recruitment

We recruited 28 African American stroke patients

(Fig. 1). Matched healthy controls (28) with similar

hypertensive profiles, but without history of stroke were

recruited from an outpatient clinic. Admission stroke

assessment included NIH stroke scale (NIHss0). A second

measure of stroke assessment was performed on discharge

(NIHss1), and the change was calculated as follows:

(100% 9((NIHss0 � NIHss1)/NIHss0)). Final stroke diag-

nosis was determined after reviewing the medical records

by the neurologist panel (Dr’s Simon, Hall, and Frankel).

While all 28 patient samples were subjected to sequenc-

ing, only patients with a confirmed stroke in the territory

of the middle cerebral artery (MCA) were subjected to

further analysis (17 in total, of which 11 received rt-PA).

Blood was drawn into PAXgeneTM vacutainer tubes

from stroke patients the first morning following admis-

sion to Grady Memorial Hospital. The 24-h time point

was validated in previous studies reporting the blood

transcriptome to be stable between 4 and 24 h following

a brain injury event.15 The average time between stroke

and study blood draw was 22.9 � 4.5 (mean � SE) hour.

RNA library assembly

RNA was extracted from whole blood collected in PAXgen-

eTM tubes using PreAnalytiXTM RNA isolation procedures

(Qiagen, Valencia, CA, USA) (see Fig. S1 and details for

more information). The RNA concentration was deter-

mined spectrometrically (A260). RNA libraries, assembled

blind to the clinical diagnosis, were created using the Total

RNA workflow (Life Technologies, Foster City, CA, USA).

RNA (800 ng) was fragmented using RNase III and frag-

mented RNA (200 ng) was hybridized to adapters, sub-

jected to reverse transcription, and amplified using

polymerase chain reaction (PCR) (AmpliTaq) with bar-

coded primers. Libraries were assessed using a Bioanalyzer

DNA High Sensitivity chip (Agilent, Santa Clara, CA, USA)

and quantified with qPCR using a known standard. The

library (1.2 pmol/L from 8 9 0.15 pmol/L of each library

in the seeding reaction) was cloned onto sequencing beads

(E80 reaction) and deposited on three lanes of a sequencing

Figure 1. Confirmed MCA patients (n = 17) and control data

(n = 28) for preliminary studies. (A) Age Matching of stroke patients

(n = 17) with controls (n = 28) data are not statistically significantly

different (Student’s t-test). (B) Stroke severity was rated using the NIH

stroke scale at admittance (NIHss0) and discharge (NIHss1). Patients

receiving rt-PA are grouped separately (blue; n = 11) compared to

those who did not receive rt-PA (red; n = 6). Overall, we observe a

statistically significant decrease in NIHss rating from admission to

discharge for all patients (P < 0.01 Wilcoxon signed matched test).

Data shown are mean � SEM. Note one deceased patient who

received rt-PA is denoted by the filled black circle and assigned an

arbitrary NIHss1 of 42. MCA, middle cerebral artery; rt-PA,

recombinant tissue plasminogen activator.
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flowchip. The libraries were sequenced on a SOLiD 5500XL

sequencer using an F50 kit (50 base single end reads).

Resulting xsq data files were transferred to a Penguin Clus-

ter and aligned to the Hg19 human reference genome using

LifeScope Software with Whole Transcriptome Analysis

default settings (Life Technologies). Transcripts were anno-

tated using the RefSeq Hg19 annotation (version 09/2013,

UCSC). In addition, a novel annotation guide was created

following alignment of Bam file reads to the hg19 Refseq

annotation guide using Cuffmerge (part of the Cufflinks

suite).16,17 The resultant .gtf annotation file merges the

Hg19 Refseq database with the novel, un-annotated RNAs

we discovered using whole transcriptome analysis (see

Fig. 2D). This annotation guide is available upon request.

Technical replicates are typically not required for next-

generation sequencing (NGS) experiments.18 To control for

potential technical issues, we prepared samples in batches

of eight enabling color balancing of the barcoded primers

and sequencing at ~50–100 million reads/sample. Direct

comparison of multiple libraries created from the same

Figure 2. Assessment of RNA-Seq library preparation from controls and recruited patients. (A) Alignment of RNA-Seq libraries to hg19 reference

genome, following removal (filtering) of ribosomal RNA reads. Data shown are number of reads from each sample, one library of 56 samples failed

library building (one patient sample not analyzed further). (B) Assessment of reproducibility of RNA-Seq library preparation. Two sets of eight

libraries (four controls and four patients) were constructed 6 months apart and then sequenced. Note the close overlap of blue and red samples (01

and 02 denote run). (C) Individual regression analysis of two libraries yields a fit of r2 = 0.999 (09 – female middle cerebral artery sample, and 10 –

female control). (D and E), Mapping summary of all 56 samples reveals a large proportion of RNA reads that align to intronic and intergenic regions.
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RNA reveal a correlation r2 of 0.999. In addition, Partek

analysis to identify batch effects showed no significant effect

of library batch numbers. Therefore, we did not transform

the data to remove batch effects, as has been performed on

other transcriptome studies using microarrays.19

Statistics

BAM (binary alignment map) output files were analyzed

using Partek Genomics Studio Software v 6.6 (Partek Inc.,

St Louis, MO, USA). Gene expression and exon expres-

sion data were indicated as reads per kilobase per million

aligned reads (RPKM).20 Expression values were filtered

to remove low expression genes (<10 reads/gene) and low

occurrence (present in <50% of samples) quartile normal-

ized, Log2 (+1 offset) transformed and subjected to analy-

sis of variance (ANOVA) with diagnosis (control or MCA

as the discriminating factor). Resultant data were used for

hierarchical clustering and other representations. Addi-

tional analysis used stratification of NIHss scores (0–5
minor, 6–15 moderate and >15 severe).

Gene and exon expression data were subjected to model-

ing in order to identify a panel of genes that best fits/dis-

criminates between stroke (MCA occlusion) patients and

controls, as well as the NIHSS outcome data of the MCA

patients. Genes and exons identified as significantly differ-

ent with ANOVA were used to create a model for predic-

tion analysis. We used the data to train an algorithm to

predict the diagnosis of patients based on exon expression

values. Data were modeled using support vector machine

(SVM) models, with shrinking centroids variable selection

method and different cross-validation strategies (one-level

cross-validation – full leave one out, two-level cross valida-

tion (inner partition – full leave one out, outer partition 10

partitions), and Bootstrap cross validation). Models were

deemed “best” based on their normalized correct rate, sen-

sitivity and specificity in training, and the lowest number

of variables used to discriminate the samples.

Study approval

All procedures were approved by the Morehouse School

of Medicine and Grady Memorial Hospital Institutional

Review Boards. Written informed consent was received

from all participants prior to their inclusion in the study.

Patient blood samples were deidentified and assigned ran-

dom number identifiers prior to analysis.

Results

In order to determine the utility of transcriptome analysis

for the diagnosis of stroke, we recruited and consented

patients admitted to the ER at Grady Memorial Hospital

based upon their presentation of stroke symptoms: Acute

hemiparesis. In total 28 patients gave consent for the

study, and we obtained a blood sample from 28 age and

sex-matched hypertensive controls (Fig. 1 and Table 1).

The RNA was extracted from 3 mL blood samples and

RNA-Seq libraries were assembled by researchers blinded

to the condition. The yields of extracted RNA from the

blood of controls and stroke patients were 5.3 � 0.4 and

3.4 � 0.4 lg, respectively (P < 0.01). Following sequenc-

ing, and filtering for ribosomal RNA we obtained between

4 and 9 million RNA sequences (reads) aligned to the

human genome (hg19) (Fig. 2A). There was no significant

difference between numbers of reads obtained from the

control and stroke patient cohorts (5.16 � 0.3 million

reads vs. 6.0 � 0.5 million aligned reads, n = 56,

P = 0.14; unpaired Student’s t-test). Reproducibility test-

ing of the transcriptomes generated from the same RNA

Table 1. Baseline characteristics of patients.

Stroke

(n = 17)

Control

(n = 28)

Age, y, mean � SD 57 � 13 59 � 13

Women, n (%) 7 (41) 9 (32)

Risk factors, n (%)

Prior stroke or TIA 0

Hypertension 9 (53) 28 (100)

Coronary artery disease 3 (18) 0

Congestive heart failure 4 (24) 0

Diabetes mellitus 4 (24) 1 (4)

Atrial fibrillation 1 (6) 0

Other 10 (43)1 0

Vascular territory involved, n (%)

MCA 17 (100) –

ACA 2 (12) –

PCA 1 (6) –

Stroke subtype2, n (%)

Atherogenic 12 (71) –

Cardioembolic 5 (29) –

Thrombolytic therapy, n (%) 11 (65) –

NIHSS on admission,

median, IQR

12 (6–18) –

NIHSS on hospital

discharge, median, IQR

2 (0–9.5)3 –

Baseline characteristics of confirmed MCA territory stroke patients

and hypertensive controls. All samples were obtained from self-deter-

mined African Americans. Severity of stroke is determined by National

Institutes of Health Stroke Scale (NIHss). MCA, middle cerebral artery;

ACA, anterior cerebral artery; PCA, posterior cerebral artery; IQR,

interquartile range; TIA, transient ischemic attack.
1Other risk factors in stroke group (Asthma 1, lupus 2, malignancy 2,

normal pressure hydrocephalus 1, polysubstance abuse, cocaine and

alcohol 3, syphilis history 1).
2Stroke subtypes lacunar and cryptogenic are not included given focus

on large vessel, cortical-type ischemic strokes.
3One patient deceased.
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in two independent library builds show the pipeline for

library building has high accuracy and reproducibility.

Reproducibility is shown by principle component analyses

of the libraries, and representative individual library

expression correlations of samples collected from our two

recruitment sites (09 and 10) (r2 > 0.999) (Fig. 2B and C).

We first investigated from where in the human gen-

ome the RNA is transcribed. The RNA-Seq reads were

aligned using the hg19 reference genome and the Ref-

Seq annotation guide (09-2013) (see Fig. S1 for a dia-

gram of the workflow). Of the known RNA transcripts

in the human genome annotation guide, 62% were

Figure 3. Analysis of Gene Expression in blood following MCA stroke using RNA seq. Gene expression was quantified in RNA-Seq libraries and

differences between MCA patients (17) and controls (28) were analyzed. (A) Volcano plot representing changes in expression of genes and P

values. Of note most absolute changes are small <2.0-fold change. (B). Hierarchical clustering of genes whose expression change (1.2-fold,

unadjusted P < 0.001). (C) Principle component analysis of 115 genes which change between control and MCA patients. (D) Results matrix from

support vector machine model to predict diagnosis based on gene expression values (Best model – 35 variables, SVM, Shrinking centroids, cost

701, nu 0.5, tol 0.01, kern, rbf deg 3, gamma 1e -05, coeff 0). MCA, middle cerebral artery; SVM, Support Vector Machine.
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detected in the whole blood RNA libraries. Approxi-

mately 30% of the reads aligned with known gene

encoding exons. In contrast, 36% aligned with intronic

regions of annotated genes, whereas 33% aligned with

novel nongene encoding regions (intergenic) (Fig. 2D

and E). These data show the discovery potential of

RNA-Seq. In order to quantify the expression of these

novel RNAs, not present in the Ref-Seq annotation

guide, we created a new annotation guide using Cuff-

merge (part of the Cufflinks suites of RNA-Seq tools;

available on request from the authors).

The goal of our study was to identify panels of genes

from which we had the ability to discriminate between

control and stroke patients. Because we had a clinically

homogeneous cohort of hemi-paretic patients, we further

focused our analysis on stroke patients with a confirmed

MCA territory infarct. Analysis of gene expression was

performed on read data (normalized to RPKM val-

ues18,20). We define a gene as consisting of multiple

exons that define differential splicing and isoforms of

the gene. For this analysis multiple exon expression val-

ues are aggregated to yield a single gene expression

value. Common in blood transcriptomic profiling,15

most gene expression changes were small, <2-fold
(Fig. 3A). Accordingly, we relaxed our P-value to an

unadjusted P < 0.001, yielding 115 differentially

expressed genes, of which 36 were “novel RNAs”. The

gene list was subjected to hierarchical cluster analysis

and principle component analysis (PCA) (Fig. 3B and

C). The stroke (yellow) and control (blue) data show

clear separation in both analyses (note the ellipse), indi-

cating a distinct pattern of gene expression in blood fol-

lowing ischemic stroke that might have diagnostic

potential. To test whether a panel of gene expression

profiles has the ability to discriminate between stroke

and control patients, we trained our dataset using a

SVM mathematical model. Modeling suggested that 35

gene expression values could yield a normalized accuracy

rate of 92%, with a potential sensitivity of 88% and

specificity of 96% (Fig. 3D). This result supports the

conclusion that gene expression analysis in blood, as

determined by RNA-Seq, has the potential to identify

patients who have suffered a stroke.

In order to improve the performance of our test, we

investigated whether exon-specific expression values

would improve the accuracy of the model. This concept

was based on the observation that statistically significant

changes in the differential splicing of 17 genes were

observed following stroke (�1.2-fold change, post hoc

false detection rate (FDR) of 0.1). For example, SIGMAR1

does not show significant increase in gene expression fol-

lowing stroke, but significant changes in differential tran-

script expression were observed; following stroke, the

alignment of reads to isoform NM_001282205 versus

other isoforms increased (Fig. 4A). These changes in tran-

script isoforms may be detected by differential levels of

exon expression. The expression of reads aligning to indi-

vidual exons, which make up genes, and the novel RNAs

identified with our novel annotation guide were assem-

bled. Exon expression data were filtered and subjected to

ANOVA to identify candidate modeling genes; 345 poten-

tial exons were identified (unadjusted P < 0.001), of

which 53 were “novel RNA”. SVM modeling was again

employed to identify the smallest set of genes capable of

discriminating between the control and MCA stroke data-

sets. The best model identified utilized 90 exons and had

an estimated normalized accuracy of 94% (88% sensitivity

and 100% specificity). As such this model only had two

false negatives (patients who had suffered a stroke being

called control), and it is of note that these patients had

received rt-PA and showed an improvement in NIHSS

scores upon discharge from hospital. Further testing of

this model using two-level and bootstrap cross validation

suggest that the achievable accuracy was 96% (see Sup-

porting Information).

We investigated the exon RNA-Seq profiles from the 17

patients who suffered a confirmed MCA stroke. We used

the following criteria to stratify the severity of stroke defi-

cits based on the entry NIH Stroke scale rating of neuro-

logical deficits: 0–5 – Minor, 6–15 – moderate >

15 severe. MCA data were subjected to ANOVA (categori-

cal stroke severity as the discriminating factor). When we

perform this, we observe six genes which pass the FDR

test. However, since all other datasets are reported as

those genes with an unadjusted P value difference of

0.001, we will consider this larger dataset of 174 exon

fragments (For gene exon lists see Tables S1–S8). Both

hierarchical cluster and PCA analysis on the regulated

exon data show a clear discrimination between the stoke

patients NIHss0 score (Fig. 4E and F). Together these data

show that RNA-Seq analysis of whole blood transcrip-

tomes has diagnostic potential, with respect to determin-

ing the severity of neurological deficit.

Of the 17 MCA patients, 11 were treated with the clot

dissolving agent, rt-PA. We plotted the improvement in

NIH stroke severity rating from entry (NIHss0) to dis-

charge (NIHss1), and the percent improvement (Fig. 5A

and B). When considered as a whole there was a signifi-

cant overall reduction in NIHss scores from admission to

discharge (Wilcoxon ranked sign test, P < 0.01), however,

analysis of the rt-PA treated versus non-RT-PA treated

groups did not yield a significant difference (Fig. 1B).

Since two patients with a strong improvement in NIHss

rating clustered with controls, we asked whether the gene

expression datasets had prognostic ability to predict those

patients who would have good versus poor outcomes. We
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Figure 4. Prediction of stroke diagnosis using analysis of exon expression in blood. Exon expression was quantified in RNA-Seq libraries and

differences between MCA patients (17) and controls (28) were analyzed. (A) Genome viewer image of alternative transcript splicing of SIGMAR1

in controls (blue) and MCA patients (yellow). Note the increase in nm_001282205 isoform following MCA. (B) Hierarchical clustering of 345

exons whose expression change (1.2-fold, unadjusted P < 0.001). (C) Principle component analysis of 345 exons which change between control

and MCA patients. (D) Results matrix from support vector machine model to predict diagnosis based on exon expression values (Best model- 90

variables, SVM, Shrinking centroids, cost 201, nu 0.5, tol 0.001, kern, rbf deg 3, gamma 0.0001, coeff 0). (E) Hierarchical clustering of 174 exons

showing a significant change (unadj. P < 0.001) with respect to the severity of their stroke based on admission NIHss0 score in 17 confirmed

MCA patients (stratified as 0–4 – minor [blue], 5–15 – moderate [gray] 15 < severe [red]). (F) Principle component analysis of 174 exons with

respect to severity of admission NIHss0 score (stratified as 0–4 – minor [blue], 5–15 – moderate [gray] 15 < severe [red]). MCA, middle cerebral

artery; SVM, Support Vector Machine.
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stratified the MCA stroke dataset based on the mean

improvement in NIHss score from admission to discharge

(60 � 11.05%) (Fig. 5A): a prognosis of good was attrib-

uted to a mean improvement of ≥60% in NIHss. The

exon expression data were filtered and subjected to

ANOVA to identify candidate exons for modeling, reveal-

ing 144 exons differentially expressed (unadjusted

P < 0.001). Hierarchical cluster and PCA analysis revealed

strong clustering of the datasets (Fig. 5B and C). Prelimi-

nary SVM modeling (one-level cross validation based on

17 partitions [full leave one out]) revealed a model

whereby a set of 15, 20, 25, and 30 exon expression pat-

terns had the estimated normalized correct rate of 100%

(sensitivity and specificity of 100%) (Fig. 5D). We per-

formed a two-level cross-validation test of the model that

also had a 100% normalized accuracy rate for 15–30 vari-

ables (inner cross-validation partition – 10 random parti-

tions) Subsequent bootstrap cross-validation suggest a

normalized correct rate of 99%, 97%, 95%, and 100%,

respectively, therefore a model of 30 exon expression vari-

ables would appear to be our best model to predict prog-

nosis (sup data contains the exon list).

In addition, we subjected the MCA data to ANOVA

using the stratification of the discharge NIH stroke scale

ratings as above (NIHss1). We observe 31 genes that pass

the FDR test (P < 0.05). However, since all other datasets

are reported as those genes with an unadjusted P value

difference of 0.001, we will considered the larger dataset

of 359 exon fragments (For gene exon lists see Tables S1–
S8). Both hierarchical cluster and PCA analysis on the

regulated exon data show a clear discrimination between

the severity of the patients discharge stoke NIHss1 score

(Fig. 5E and F). We annotated the patients who received

rt-PA on the hierarchical cluster to show there was no

clear clustering effect of rt-PA in this analysis (Fig. 5F).

Together these data strongly support the further investiga-

tion of gene and exon expression analysis to identify dis-

criminant panels for stroke diagnosis and prognosis.

Discussion

In this study, we investigate gene expression and exon

expression data from peripheral blood, and use these data

to build models with discriminant power to identify

stroke patients from controls without stroke, and to cate-

gorize stroke prognosis. Attempts at biomarker identifica-

tion for neurocritical care have generated many

approaches. The majority of these have focused on single

protein biomarkers in a biofluid (usually blood or c.s.f.).

For example, efficacy (surrogate) biomarkers, such as beta

amyloid have been investigated for Alzheimer’s disease

therapies, and the release of intracellular proteins from

neurons has been a focus as a biomarker for brain

injury.21 While proteomic approaches to identify panels

of proteins are becoming more common,22 few single

protein biomarkers have the sophistication to subtype

neurological injuries. As such the application of gene

expression analysis, using unbiased application of mathe-

matical cluster analysis to identify stroke subtypes offers

promise. Studies of microarrays and NGS show the diag-

nostic potential of such an approach.5–8,10,23–25 Using

molecular technology, preliminary diagnostic discrimina-

tion following stroke is over 90% accurate, with similar

high sensitivity and specificity. Our data show a clear

cluster stratification to enable the prediction of admission

NIHss severity ratings. The novel application of exon

expression and utilization of the dataset for prognostic

stratification (both discharge NIHss and improvement in

NIHss) show the clear utility of this approach to aid in

clinical patient care.

Here, we report the feasibility of NGS to identify panels

of genes for stroke discrimination. We focused on a

homogeneous subset of ischemic hemiparesis patients due

to MCA occlusion. We recruited 28 stroke patients, and

focused on 17 confirmed MCA territory stroke for this

study. In this study, we chose to collect blood during the

morning blood draw, to reduce circadian effects.26 As

such this generated a series of samples with a variety of

durations since stroke onset. However, we did not observe

a significant effect of this factor in our data (also see5).

The goal of this study was to identify optimum method-

ology for obtaining candidate gene sets for mathematical

modeling rather than a biological interpretation. We note

that gene ontology analysis identified candidate biological

signaling pathways associated with nuclear events and

inflammatory processes to be regulated following MCA

(Tables S1–S8); however, these were not investigated fur-

ther in this study. Preliminary modeling studies suggest

that the data are sufficiently heterogeneous to enable a

discriminant model to be identified and built. Our pre-

liminary data based on gene expression levels suggest an

accuracy of 92% (88% sensitivity and >90% specificity).

These values are similar to the accuracy obtained by pre-

vious microarray studies.6,8,23 Using a unique approach of

evaluating exon-specific expression patterns (due to alter-

native transcript splicing) we obtained a higher normal-

ized accuracy rate of 93%, with 100% specificity. Notable

is the observation of novel-regulated RNA discovered by

the whole transcriptome analysis approach. Only 30% of

the identified RNA transcripts align with known protein

coding exons, 36% align with annotated introns, and 33%

align to novel, not previously reported genomic regions

(per RefSeq reference: Fig. 2A). The sensitivity of gene

isoform and gene exon expression to ischemia and other

cardiovascular diseases has recently been reported.10,19 We

further stratified the data based on the average improve-
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Figure 5. Prediction of stroke prognosis following mathematical modeling of RNA-Seq data. (A). The improvement of NIHSS rating from

admission to discharge of 17 MCA patients subjected to sequencing. From this data, a mean improvement was the level for our stratification of

good versus poor. (B) Hierarchical clustering of 144 exons whose expression change (1.2-fold, unadjusted P < 0.001) between MCA patients with

good or poor outcome (defined as mean NIHss improvement or better). (C) Principle component analysis of 144 exons which change between

MCA with better than mean improvement of NIHss. (D) Results matrix from support vector machine model to predict prognosis based on exon

expression values (Best model – 30 variables, SVM, Shrinking centroids, cost 1, nu 0.5, tol 0.001, kern, rbf deg 3, gamma 0.01, coeff0 0). (E)

Hierarchical clustering of 359 exons showing a significant change (unadj. P < 0.001) with respect to the severity of their stroke based on

discharge NIHss1 score in 17 confirmed MCA patients (stratified as 0–5 – minor [blue], 6–15 – moderate [gray] > 15 severe [red]; asterisk (*)-

denotes deceased patient). (F) Principle component analysis of 359 exons with respect to severity of admission NIHss1 score (stratified as

0–5 – minor [blue], 6–15 – moderate [gray] 15 < severe [red]). Patients treated with rt-PA denoted by T. NIHSS, NIH stroke scale; MCA, middle

cerebral artery; SVM, Support Vector Machine; rt-PA, recombinant tissue plasminogen activator.
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ment in NIHss score and found that a set of 15 genes

identified in admission blood samples, have the power to

discriminate between the outcome subgroups at discharge

with 100% sensitivity and specificity.

Clearly this study would not have utility for clinical

diagnosis, due to the significant time it takes to build,

and sequencer RNA-Seq libraries. However, the current

approach may yield panels of genes that could be utilized

for more rapid technological platforms, such as qPCR.

Faster electrode-based sequencing systems are on the

horizon27 and show much promise for the speeding up of

the transcriptome analysis process, which may make this

approach suitable for point of care use in the future. An

alternative will be the development of a rapid PCR-based

multiplex assay, which can be performed and analyzed

rapidly (>1 h). Clearly this is an area where technological

advances may have a dramatic impact on point of care

diagnostics in critical acute situations.

The higher risk of stroke in the African American popu-

lation has been well documented, and accordingly our area

for investigation.11 While not part of this study, the expan-

sion of these data to include Caucasians, may reveal addi-

tional gene expression profiles which are unique for racial

susceptibility to stroke. It is of note that the previous RNA-

Seq study of blood transcriptomics was performed on sam-

ples obtained from Caucasian patients.10 The identification

of such candidate gene expression profiles may also open

the opportunity of targeting drugs to such population dif-

ferences. In addition to African American populations hav-

ing a higher stroke risk,12 a recent retrospective analysis of

rt-PA studies suggested that African American women

show no significant benefit from rt-PA.13 Analysis of our

transcriptome data show a clear transcriptome difference

by sex following rt-PA administration (unpubl. obs. Robert

Meller RM), which agrees with reports of gene expression

differences following stroke between males and females.28,29

These preliminary data show the clear need for further

studies to better understand both racial and sex-associated

differences in response to stroke.

The possibility of a blood biomarker test to diagnose

and subtype stroke appears highly feasible. Previous stud-

ies using microarrays have set the stage for this technolog-

ical approach to clinical diagnosis of neurological

disorder.5,6,8,15,23 More recently, the same group published

a preliminary RNA-Seq study.10 In this study, they were

able to show differential gene splicing in association with

various subtypes of stroke (intracerebral hemorrhagic

stroke vs. ischemic stroke). While different protocols were

used between our study and the Dykstra-Aiello study,

together they have similar findings. First, that RNA-Seq

studies of whole blood have diagnostic potential, with

respect to subtyping10 or severity assessment (Fig. 4). Sec-

ond that prognosis is feasible based on RNA-Seq data

from whole blood (Fig. 5), which may have more accu-

racy than predictions based on entry NIHss ratings.

Although the two studies investigated different racial pro-

files of patients, cellular immune signaling pathways were

commonly regulated following stroke (Tables S1–S8).
Both studies show the clear potential of RNA-Seq studies

on stroke patients, and support the larger scale investiga-

tion of this approach for clinical use. Clearly clinical

adoption will require the application of faster techniques

than current RNA-Seq platforms to identify key genes

whose expression predict stroke diagnosis and prognosis.

Limitations of the study

The following limitations of our study are noted; first we

had a limited sample size, which may have reduced our

ability to observe many expression changes that passed a

false detection rate post hoc test. The low sample size also

impacted our use of unadjusted P values in our cluster

models. The purpose of the study was to determine the

utility of the methodology and process. However, our

preliminary analysis suggests that further samples will

reveal more genes that are statistically significantly regu-

lated, and some of the expression differences pass FDR

post hoc analysis (e.g., NIHss1).

We tested the ability of our data to model the diagnosis

based on gene expression using SVM models. These were

initially run with one-level cross validation (full leave one

out). Further tests using both bootstrap and two-level cross

validation (sets of 10) suggest robust models. Unfortu-

nately, because of our sample size we were unable to test

these models on additional datasets, as previous studies

have. This is a clear goal for the future, to refine the models

to identify the minimal gene exon expression dataset that

can accurately identify the clinical diagnosis of stroke.

Because of our small sample size we did not perform a sub-

typing analysis, therefore it is not yet clear whether this

panel of genes will identify other stroke subtypes, or are

unique of those to MCA stroke. When we have further

samples, we will perform an analysis of stroke subtyping,

similar to that shown using microarray. However, we were

able to show distinct exon expression patterns associated

with the severity of the neurological deficits of the patients,

as determined using the NIH Stroke scale (Fig. 4).

The omission of a ribosomal depletion step (to simplify

the experimental pipeline and because pull-down proto-

cols yielded variable results [not shown]) resulted in loss

of 80% of usable reads. Future experiments will include

an rRNA pull down step, which will increase coverage of

the transcriptome.30 The depth of sequencing was

between 5 and 10 million aligned reads. While lower than

ENCODE standards, this level is compatible with recent

studies suggesting that a read depth of 10 million aligned
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fragments is sufficient for most studies.31,32 We chose not

to perform Globin mRNA depletion for similar reasons.

In addition, we find that each depletion step may change

the expression of nontarget mRNAs (J. H. unpubl. obs.).

Summary

In summary, our proof-of-principal study demonstrates

the ability of NGS transcriptome profiling to identify

diagnostic gene expression patterns following stroke, and

prognostic patterns as well. Our analysis highlights the

potential of clinical diagnostic and prognostic information

generated by such studies. In addition, these observations

suggest that further investigations into the large noncod-

ing RNA signature in blood following stroke will reveal

valuable prognostic and diagnostic information. This pilot

study strongly suggests that the RNA-Seq analysis of the

blood transcriptome will yield novel and instrumental

data for utilization in the development of diagnostic bio-

marker panels to aid in the identification and subtyping

of stroke. In addition, identification of prognostic

biomarkers may assist with clinical care decisions, and

identify novel targets for hypothesis driven therapy.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Overview of RNA Seq pipeline. This figure

details the procedures employed for the collection of

blood, extraction of RNA, Whole transcriptome library

assembly, sequencing and bioinformatic analysis. Extrac-

tion library assembly and sequencing was performed in

batches of eight samples (four controls and four patients).

The library creation took ~5 lab days, and the sequencing

run was 5–6 day duration.

Table S1. Genelist_Gene_MCA versus Cont. List of genes

with unadjusted P < 0.001 between MCA and control

groups. Gene ID are from RefSeq, and XLOC refers to

novel RNAs identified in study. These data were used to

create Figure 3C and D.

Table S2. GO_Gene_MCA versus control. Gene ontology

analysis of gene IDs from Table S1.

Table S3. Genelist EXON MCA versus control. List of

exon fragments significantly different between control and

MCA groups (Unadjusted P < 0.001). Column ID are

chromosomal coordinates and GeneID from RefSeq, and

XLOC refers to novel RNAs identified in study. These

data were used to create Figure 4C and D.

Table S4. Genelist EXON NIHss0. List of exon fragments

significantly different between different NIHSss0 groups

(Unadjusted P < 0.001). Column ID are chromosomal

coordinates and GeneID from RefSeq, and XLOC refers

to novel RNAs identified in study. These data were used

to create Figure 4E and F.

Table S5. Genelist EXON prognosis. List of exon frag-

ments significantly different between patients with above

average (Good) or below average (Poor) improvement in

NIHss score between admission and discharge (Unad-

justed P < 0.001). Column ID are chromosomal coordi-

nates and GeneID from RefSeq, and XLOC refers to novel

RNAs identified in study. These data were used to create

Figure 5C and D.

Table S6. Genelist EXON NIHss1. List of exon fragments

significantly different between different NIHSss1 groups

(Unadjusted P < 0.001). Column ID are chromosomal

coordinates and GeneID from RefSeq, and XLOC refers

to novel RNAs identified in study. These data were used

to create Figure 5E and F.

Table S7. Model for Prognosis. List of 30 exon fragments

with best model for prediction based on Support vector

machine modeling and Bootstrap cross validation on

groups of 10.

Table S8. Model for diagnosis. List of 90 exon fragments

with best model for prediction of diagnosis based on Sup-

port vector machine modeling and Bootstrap cross valida-

tion on groups of 10.
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