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Abstract
γδ T cells are a subset of T cells with attributes of both the innate and
adaptive arms of the immune system. These cells have long been an
enigmatic and poorly understood component of the immune system and
many have viewed them as having limited importance in host defense. This
perspective persisted for some time both because of critical gaps in
knowledge regarding how the development of γδ T cells is regulated and
because of the lack of effective and sophisticated approaches through
which the function of γδ T cells can be manipulated. Here, we discuss the
recent advances in both of these areas, which have brought the importance
of γδ T cells in both productive and pathologic immune function more
sharply into focus.
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Introduction and context
The cloning of the T-cell receptor (TCR) γ chain in 1984 led to 
the discovery of the second major T-cell lineage, γδ T cells1–4.  
γδ T cells use the γδ TCR complex to recognize antigen and dif-
fer from αβ T cells in numerous ways, including their pheno-
type, anatomic location, and contribution to host immunity5,6. 
Since the discovery of the γδ lineage, immunologists have 
sought to decipher how it is specified during development and 
gain a comprehensive understanding of how this enigmatic 
T-cell subset contributes to host defense. These efforts have led 
to substantial progress over the past 15 years. Indeed, γδ line-
age T cells have been shown to arise from the same progenitor 
pool as αβ lineage T cells7, and TCR signal strength has been 
shown to be a key determiner of lineage identity8,9. Moreover, 
unlike αβ lineage T cells that exit the thymus as naïve T cells,  
many γδ lineage T cells have been shown to acquire effector 
function in the thymus10–14, and the generation of interleukin-17 
(IL-17)-producing γδ cells has been shown to occur primarily 
during fetal life15. Finally, numerous γδ TCR ligands have 
been identified, revealing that γδ TCR ligands do not generally 
require processing or presentation by major histocompatibility 
complex (MHC) antigens16, and γδ TCR recognition of ligand is 
more reminiscent of ligand binding by antibody than by the αβ 
TCR17,18. However, an exception to this general rule was recently 
reported, indicating that human γδ T cells are capable of recog-
nizing melanoma-associated antigenic peptides in an MHC- 
restricted manner19. γδ TCR ligands include a diverse array 
of unprocessed molecules, such as non-classic MHC class Ib 
molecules, H2-T10 and H2-T22, lipids presented via CD1 
family members, MHC-related protein 1 (MR1), which presents 
vitamin B derivatives, and annexin A2, a molecule expressed 
on the cell surface in response to oxidative stress20–23. Both the 
capacity of γδ T cells to recognize ligands associated with infec-
tion, tissue stress, and transformation and their abundance at epi-
thelial surfaces have direct implications for function, allowing 
γδ T cells to contribute to host defense through recognizing 
stress- and tumor-associated molecules expressed by epithelial 
or tumor cells and promote a rapid stress surveillance 
response6,24. Despite the impressive progress noted above, many 
important and contentious questions remain to be addressed. 
These include the role of ligand and TCR signaling in controlling 
γδ T-cell development, the influence of TCR-independent pre-
programming on effector fate, and the ultimate contribution 
of γδ T cells to host defense. Here, we examine recent efforts 
to address these gaps in understanding.

Major recent advances
γδ TCR ligands and their effect on γδ T-cell development 
and function
One of the primary impediments to a deeper understanding of 
how γδ T-cell development and function are controlled is the 
paucity of known γδ TCR ligands, particularly those impli-
cated in development. In recent years, efforts to identify γδ TCR  
ligands have been increasingly successful, revealing that γδ 
TCR ligands generally do not require the processing events nec-
essary to generate αβ TCR ligands25. The identity of many of  
these molecules, such as the non-classic MHC-I molecules  

H-2T22, as specific ligands has been validated by measures 
of direct interaction, such as x-ray crystallography or surface 
plasmon resonance26,27. However, the legitimacy of another set 
of putative ligands, the B7-like members of the butyrophilin 
(BTN) or butyrophilin-like (BTNL) family, was long questioned 
because of the absence of demonstrable physical interaction 
with the γδ TCR10,28. Indeed, murine BTNL family member, 
Skint-1, is critical for thymic selection of the Vγ5Vδ1+ subset of 
dendritic epidermal T cells (DETCs) and their homing to the 
skin29,30. Likewise, human family member BTN3A1 is criti-
cal for phospho-antigen (p-Ag)-mediated activation of human 
Vγ9+Vδ2+ T cells31. Nevertheless, unequivocal evidence for 
direct binding of these putative ligands to the γδ TCR was 
lacking25.

Recent efforts have addressed this issue and provided unequivo-
cal evidence supporting the legitimacy of BTNL proteins as γδ 
TCR ligands and this represents a significant advance in the 
understanding of how γδ T cells are able to contribute to immu-
nity using both adaptive and innate-like modes of action. Indeed, 
the Hayday32 and Willcox33 labs determined that the γδ TCR  
employs two modes of ligand binding: (1) a traditional, clon-
ally restricted mode of binding involving CDR3 sequences that 
are generated somatically by V(D)J recombination and (2) a 
CDR3-independent mode of recognition linked to germline- 
encoded sequences in the V region of the TCRγ chain 
(Figure 1). Melandri et al. employed a TCR downmodulation 
assay to demonstrate reactivity of the Vγ7 subunits of murine  
γδ intraepithelial lymphocytes (IELs) with Btnl1-Btnl6 het-
erodimers and the reactivity of human Vγ4-containing γδ TCR 
complexes with BTNL3-BTNL8 heterodimers and to show that 
this reactivity was dependent on germline-encoded sequences 
in framework region 3, also known as hypervariable region 4  
(HV4)32. Moreover, this mode of ligand recognition, resem-
bling that of superantigen binding by αβ TCR complexes, 
did not preclude CDR3-mediated clonotypic reactivity with  
cognate ligand, indicating that individual γδ TCR complexes 
are capable of both modes of ligand recognition32. Willcox et al.  
reported similar findings and were also able to provide  
unequivocal evidence for the direct physical interaction between 
human Vγ4 and BTNL333. Importantly, the ability of the human 
Vγ9Vδ2 γδ TCR to mount BTN3A1-dependent responses to 
the p-Ag products of the mevalonate pathway was also depend-
ent on the HV4 of Vγ933. An additional germline-encoded rec-
ognition structure in the Vγ9 subunit also appears to contribute 
to binding, since a recent report by Rigau et al. indicated that 
Vγ9Vδ2 recognition of p-Ags is also dependent on BTN2A1,  
which interacts with Vγ9 more through the ABED β-sheet of 
Vγ9 than through HV434. The basis by which p-Ag exposure 
triggers binding of BTN3A1 to the human Vγ9+Vδ2+ TCR has 
long been a controversial issue; however, recent studies have 
suggested that the role of BTN3A1 as sensor of p-Ag concen-
tration is mediated through its intracellular B30.2 domain35.  
In support of this, Yang et al. reported crystal structures of  
the intracellular domain of BTN3A1 protein in complex with 
the potent microbial p-Ag, (E)-4-hydroxy-3-methyl-but-2-enyl  
pyrophosphate (HMBPP), revealing that dimerized intracellular 
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domains cooperate in sensing HMBPP and providing insight 
into the “inside out” triggering of Vγ9Vδ2 T-cell activation36.

The role of ligand in regulating γδ T-cell development remains 
a contentious issue. The finding that γδ TCR complexes can 
recognize ligand in both a clonotypic, CDR3-dependent and 
a Vγ-restricted, HV4-dependent manner at once provides  
clarification and raises additional questions about the role 
of ligand in γδ T-cell development. The recognition of Btnl  
family members, Skint1 and Btnl1-Btnl6, clearly plays an 
important role in selection of the Vγ5+ DETC and Vγ7+ IEL 
γδ subsets, respectively29,30,37. However, the contribution of  
clonotypic, CDR3-mediated recognition of ligand to γδ T-cell 
development and the shaping of the repertoire, was more 
controversial14. Data from TCR transgenic models have pro-
vided clear support for the role of CDR3-mediated ligand recog-
nition in the development of murine Vγ4+ γδ T-cell progenitors  
reactive with the MHC class 1b ligand, H-2T229. Moreover, a 
recent study indicated that the repertoire of CDR3 sequences 
(WEGYEL) of polyclonal T-22 reactive γδ T cells that devel-
oped in the absence of T22 was markedly altered, suggesting 
that the CDR3-mediated clonotypic mode of ligand recognition  
played a positive role in shaping the repertoire of this subset 
of γδ T cells21. Importantly, whereas this study did not reveal 
evidence of negative selection induced by CDR3-mediated  
ligand recognition, previous analysis using transgenic models 
has suggested that it may occur38,39. Finally, the γδ T-cell rep-
ertoire also appears to continue to be shaped post-thymically 
since the relatively diverse TCRδ CDR3 repertoire of γδ T cells 
in human cord blood becomes markedly restricted in adults after  
viral infection or following reconstitution after hematopoi-
etic stem cell transplantation40,41. Despite these recent insights 
into the role of ligand in γδ T-cell development, it remains 
unclear how extensively CDR3-mediated selection occurs, how  
CDR3-dependent versus CDR3-independent signals might dif-
fer, and the role that these two modes of ligand binding play 
in determining whether γδ T cells act in an adaptive or more 
innate-like mode of action in presence of the selective ligand. 

Addressing the relative contributions of CDR3-dependent  
and -independent modes of ligand binding to γδ T-cell develop-
ment and repertoire diversity must await the identification of 
other CDR3-mediated selection ligands and a determination  
of whether all Vγ subunits have cognate BTNL family ligands.

Role of γδ TCR signaling in specification of γδ T-cell 
effector fate
In addition to commitment to the γδ T-cell lineage, the effec-
tor fate of most γδ T cells is determined in the thymus; how-
ever, the respective contributions of cellular context and TCR 
signaling to the specification of effector fate have long been 
debated. This is a particularly important issue, as γδ T cells can  
contribute to either host defense or immune-mediated pathol-
ogy, depending on their effector fate. Indeed, although  
IL-17–producing γδ T cells are critical for combating infec-
tions, aberrant regulation of these cells can contribute to 
autoimmunity (multiple sclerosis, type 1 diabetes, and psoria-
sis) and promote tumor progression42–46. Likewise, interferon  
gamma (IFNγ)-producing γδ T cells play critical roles in host 
defense but can also contribute to pathology, such as in cerebral 
malaria47–49.

There is clear evidence that TCR signals regulate effector 
fate. Numerous reports indicate that strong TCR signals, in 
some cases induced by ligand-engagement of the γδ TCR,  
promote adoption of the IFNγ-producing effector fate but that 
the IL-17–producing effector fate depends on weaker γδ TCR  
signals14,21,47,50. The signals of differing intensity that lead 
to adoption of these effector fates have been linked to tran-
scription factors (TFs) that are required for effector function. 
Indeed, IFNγ producers depend on Egr2, Egr3, Id3, and T-bet 
function whereas IL-17 producers depend on the action of  
RORγt, SOX13, and c-MAF10,12,47,51,52. Nevertheless, accumulating  
evidence suggests that the paradigm of strong and weak TCR 
signals promoting the IFNγ and IL-17–producing effector 
fates, respectively, may be too simplistic. Specifically, the  
Hayday laboratory reported that, unlike the IL-17 producers that 

Figure 1. Distinct models of ligand recognition by the γδ T-cell receptor (TCR). Relatively few γδ TCR ligands have been identified. 
One of the major classes of ligands is the butyrophilin (BTN) or butryophilin-like (BTNL) family. This class of ligands interacts with the γδ 
TCR in a distinct, CDR3-independent manner that is dependent on framework residues encoded in the germline sequence of TCR-Vγ 
chains. Consequently, unlike CDR3-mediated ligand recognition that activates only a particular clonotype of γδ T cells, BTN or BTNL 
ligands are capable of a more innate mode of functioning as they are able to activate all γδ T cells expressing the cognate Vγ 
chain, irrespective of its TCRγ junctional sequences or its TCRδ subunit. Depicted is the human Vγ4 subunit that binds BTNL3.
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develop in response to weak signals in the absence of ligand,  
some IL-17–producing γδ T cells are dependent on strong 
TCR signals, as evidenced by the impairment of their develop-
ment by attenuation of TCR signaling11. Although this report 
is seemingly at odds with several other studies indicating that 
the IL-17 fate is incompatible with strong TCR signals14,21,47,50,  
two recent reports provide a potential explanation for this appar-
ent discrepancy46,52. The Ciofani laboratory determined that the 
TF, c-Maf, is required for development of IL-17–producing 
γδ T cells and determined that c-Maf induction was inversely 
associated with γδ TCR signal strength, as defined by CD5  
induction52; however, c-Maf is also robustly induced by ectopic 
expression of activated mutants of the signaling molecules,  
protein kinase C (PKC) and Ras52. Ectopic expression of these 
activated signaling molecules could not reasonably be described 
as generating weak signals but might rather be regarded as pro-
ducing distinct signals compatible with c-Maf induction. Another 
study, from the Anderson laboratory, suggests that there are 
two distinct developmental pathways for IL-17–producing 
γδ T cells and these pathways are distinguished by CD73  
expression46. CD73 expression, which is induced by γδ TCR-
ligand engagement and strong TCR signals, marks commit-
ment of most γδ precursors to the γδ lineage46,53; however, some 
IL-17–producing γδ T cells do not pass through a CD73+ stage, 
consistent with their adoption of the IL-17–producing effector  
fate in response to weaker or distinct TCR signals46. Taken 
together, these data clearly indicate that γδ TCR signals play an 
important role in specification of γδ T-cell effector fate but that  
role remains to be clarified for each effector subset.

There is also evidence in support of cellular context influenc-
ing effector fate potential in a TCR-independent manner15. It 

has been previously proposed that the IL-17–producing effec-
tor fate is pre-determined, independent of any influence by 
TCR signals. Consistent with this perspective, IL-17–producing  
γδ T cell development is restricted primarily to fetal life15. 
Moreover, the progenitors of IL-17 producing γδ T cells 
express the regulatory network of TFs (Sox4, Sox13, Tcf1, 
and Lef1) that typify IL-17–producing cells at developmental 
stages that appear to be prior to receipt of TCR signals12,54. The 
key experiment necessary to provide insight into the relative  
contributions of TCR signaling and cellular context to IL-17  
effector fate specification was to perform lineage-tracing  
analysis with an IL-17 fate-defining reporter. Spidale et al. 
employed a Sox13 reporter to identify an early CD4−8− double- 
negative thymic subset (DN1d) that had not yet expressed 
γδ TCR, yet exhibited an expression signature linked to the 
IL-17–producing fate and was enriched in IL-17 progenitor  
activity55. It should be noted that while the DN1e subpopu-
lation was not marked by the Sox13 reporter, it possessed 
equivalent progenitor activity for IL-17–producing γδ T cells55. 
Importantly, development of IL-17–producing γδ T cells from 
those marked progenitors required TCR signaling, indicating 
that although the potential to adopt the IL-17–producing effec-
tor fate could be established independent of γδ TCR signaling, 
realization of that potential was dependent on γδ TCR 
ignaling (Figure 2)15,55.

Assessing the functions of γδ T cells
γδ lineage T cells are less abundant in peripheral blood and 
lymphoid organs than αβ lineage T cells, but γδ T cells are 
increasingly understood to play a critical role in tissue home-
ostasis and host defense56–58. Moreover, localization of γδ 
T cells at epithelial barriers and their capacity to be rapidly  

Figure 2. Contribution of cell context and TCR signaling to γδ T-cell effector fate. The relative contribution of TCR signaling and TCR-
independent pre-commitment processes to γδ T-cell effector fate has long been debated, particularly regarding the origins of interleukin-
17 (IL-17)-producing γδ T cells. Recent lineage tracing studies using a Sox13 reporter revealed that, even before TCR is expressed, 
cells marked by the Sox13 reporter (stage DN1d) exhibit enriched progenitor activity for IL-17 production. However, that fate potential 
requires γδ TCR signaling to be manifested and appears to be influenced by the nature of the TCR signal received, with IL-17 production 
associated with weak TCR signals, the interferon gamma (IFNγ)-producing effector fate being specified by stronger TCR signals, and 
the strongest TCR signals being required for development of PLZF expressing natural killer (NK) γδ T cells. It should be noted some 
IL-17–producing subsets can also be induced by strong TCR signals.
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activated make them particularly well suited to be the first 
line of defense against infections57,59. γδ T cells can produce 
large amounts of IFNγ, TNF-α, IL-17, and granzymes and can  
display pleiotropic immune effector functions60. For instance, the 
DETC subset of γδ T cells, which produce IFNγ and express high  
levels of granzymes, can also influence B cells through pro-
duction of IL-13, regulate stromal cells through production of 
IGF1, and recruit other leukocytes to the skin by producing 
chemokines6. γδ T cells have also been shown to be essential  
to prevent parasitic recurrence in malaria infections61. Surpris-
ingly, γδ T cells producing IL-17 in adipose tissue influence 
age-dependent regulatory T cell expansion and control core 
body temperature in response to environmental fluctuations62,  
whereas those in the meninges of neonatal mice play an essen-
tial role in synaptic plasticity and the development of short-
term memory63. γδ T cells have emerged as important players 
in antitumor immunity, showing that many solid tumors and  
leukemia/lymphoma cells are susceptible to lysis by γδ T  
cells64. Finally, γδ T cells are able to contribute to immune- 
mediated pathology, as IL-17–producing γδ T cells have been 
implicated in the pathogenesis of both psoriasis and multi-
ple sclerosis51,65,66. Likewise, IFNγ-producing T cells have been 
implicated in the pathogenesis of cerebral malaria in mice47,48  
and humans49,67. Despite this large body of evidence suggest-
ing that γδ T cells contribute extensively to the health of the 
host, their role in immune responses and host defense remains 
poorly defined, at least in part because of the lack of effective,  
consistent strategies with which to acutely eliminate γδ T cells or to 
selectively modulate their function.

Until recently, efforts to determine whether γδ T cells play 
an important role in normal or pathologic immune proc-
esses have entailed either chronic elimination of γδ T cells 
using TCRδ-deficiency (Tcrd−/−) or acute elimination by  
antibody-mediated depletion. In some cases, these approaches 
have led to contradictory findings because of their inherent  
limitations68–70. TCRδ-deficiency effectively eliminates all γδ  
T-cell subsets but suffers from the limitation that long-term 
γδ T-cell depletion enables other cell types to fill the vacated 
niches and to compensate for γδ T-cell loss, thus leading 
to the failure to identify key functions. Efforts to acutely  
deplete γδ T cells suffer from the problem that anti-γδ TCR 
antibodies do not actually deplete γδ T cells but only down-
regulate their TCR complexes and make them invisible71. The 
limitations of both approaches have been circumvented through 
the development of an effective model of acute depletion  
of γδ T cells, which involves transgenic expression of diph-
theria toxin receptor (DTR) in γδ T cells72. Using this model, 
the Prinz lab revealed that acute, diphtheria toxin-mediated  
depletion of IL-17–producing γδ T cells attenuated the  
development of skin inflammation in a mouse model of  
psoriasis72. Importantly, the requirement for γδ T cells in 
pathogenesis in this model was not evident if the mice were  
allowed to recover for 6 weeks after γδ T-cell depletion; this 
is because the niches depleted of γδ T cells were repopulated 
by innate lymphoid cells (ILCs) and IL-17–producing αβ line-
age T cells, which were capable of compensating for the loss 
of γδ T cells and promoting skin inflammation72. The more  
general use of the DTR transgene to deplete γδ T cells should 

contribute to advancing our understanding of the role of 
γδ T cells in normal and pathologic immune responses.

Another limitation that slows progress in understanding 
γδ T-cell development and function is the paucity of approaches 
through which γδ T-cell subsets or their functions can be selec-
tively altered. Conditional ablation of key molecular effectors 
using Cre-recombinase is a standard approach to investigate 
the function of a particular gene in a cell lineage. For T-cell  
development, Cre expressed under the control of the proximal 
Lck promoter-driven Cre (pLckCre) has commonly been used 
to generate T cell–specific conditional knockout mice; how-
ever, Fiala et al.73 determined that pLckCre does not reliably 
ablate gene targets in all γδ T-cell subsets at all stages of  
gestation74. In contrast, Ptcra-Cre has been found to reliably 
ablate gene targets in γδ T cells75. An alternative, which enables 
temporal control of conditional ablation of target alleles in  
γδ T cells, is the Tcrd-CreER that is expressed in γδ T-cell pro-
genitors and inducible by tamoxifen treatment76. The use of 
these newly developed tools, and others in progress, to selec-
tively eliminate particular γδ T-cell subsets or alter their effector  
fates will markedly accelerate progress toward a more  
comprehensive and unified view of the role of γδ T cells 
in host health and immunopathology.

Potential for γδ T cells in human cancer
γδ T cells exhibit many attributes that make them perfectly 
suited to be anti-cancer effectors60. They are able to infiltrate 
human tumors and recognize tumor antigens, secrete cyto-
toxic molecules such as granzyme and perforin, mount rapid 
cytokine responses without undergoing clonal expansion, and 
activate adaptive immune responses, all of which make them  
promising candidates for the development of γδ T cell–based 
immunotherapies for cancer77,78. For example, murine γδ  
T cells have been reported to be effective against cutaneous  
malignancies79. A recent report revealed that the ability of γδ  
T cells to resist carcinogenesis in a chemically induced skin 
cancer model involved regulating the IgE response by B lym-
phoid cells80. This mode of action may have human relevance 
since the expression level of the Fc receptor for IgE was linked 
to outcomes in patients with human squamous cell carcinoma80.  
Human γδ T cells are able to recognize and kill a broad range 
of tumor cells, including prostate cancer, melanoma, meta-
static renal carcinoma, breast and ovarian cancer, colon carci-
noma, hepatocellular carcinoma, lung cancer, and myeloma81,82.  
It is likely that particular γδ T-cell subsets exhibit specificity 
for distinct tumor types. In support of this, the Vδ1 γδ T-cell 
subset exhibits cytotoxicity against hematopoietic malignan-
cies, melanoma, neuroblastoma, and some other epithelial 
tumor cells81. The anti-cancer potential of γδ T cells has  
prompted analysis of their prognostic value in human  
cancers. Indeed, informatic deconvolution of transcriptomic sig-
natures from a large number (~18,000) of patients with solid 
tumors revealed that, among immune infiltrates, a γδ T-cell  
infiltrate is the most favorable prognostic indicator83. More 
recently, it was reported that the abundance of Vδ1+ γδ T 
cells, but not total γδ T cells, was associated with remis-
sion in patients with triple-negative breast cancer (TNBC)84. 
These infiltrating Vδ1+ cells were enriched for cytotoxic and 
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IFNγ-producing ability and appeared to be functioning in 
an innate manner, since they were responsive to the NKG2D 
ligand MICA as well as cytokines IL-12 and IL-1884.

Despite these encouraging findings that γδ T cells are linked 
to favorable outcomes in cancer, there are also examples of 
γδ T cells promoting tumor progression68. In human pancre-
atic ductal adenocarcinoma (PDAC), in which long-term sur-
vival is rare, γδ T cells represent the dominant T-cell population 
infiltrating the pre-neoplastic pancreas, comprising up to 75%  
of all T lymphocytes85. γδ T cells appear to promote PDAC  
progression by inhibiting αβ T-cell activation via expression 
of immune checkpoint ligand PD-L185. γδ T cells have also 
been shown to promote cancer progression through production  
of IL-17. IL-17–producing γδ T cells were shown to promote 
metastasis in a murine breast cancer model by expanding and 
polarizing neutrophils in the tumor microenvironment42. The acti-
vation of IL-17–producing γδ T cells may result from the accu-
mulation of IL-17–polarizing cytokines (IL-1β, IL-6, IL-23, 
and transforming growth factor-β) in the tumor microenviron-
ment of certain cancers24,42. Alternatively, the microbiota may 
also contribute to the capacity of γδ T cells to produce IL-17  
and promote tumor progression and metastasis86. In lung, local 
commensal bacteria have been shown to stimulate the pro-
duction of IL-1β and IL-23, which induced proliferation and 
activation of lung-resident Vγ6Vδ1 γδ T cells that produce 
IL-17 and generate the inflammation associated with lung  
adenocarcinoma87. These findings highlight the need for a better 
and more comprehensive understanding of how γδ T cells 
adopt a specific effector fate, so that anti-tumor function can 
be favored and the full potential of γδ T cells as anti-tumor  
effectors can be realized.

Conclusions
Because of their under-representation relative to αβ lineage  
T cells in blood and lymphoid organs, γδ T cells were long 
neglected and thought to play a minor role in host defense. 
Nevertheless, compelling evidence now suggests that γδ 
T cells are integral to tissue homeostasis, particularly at epi-
thelial barriers, and are essential to the resistance to infections 
resulting from barrier breaches. Moreover, they appear to have  
great potential in cancer both as prognostic indicators and as 
anti-cancer effectors. Our capacity to exploit the potential of  

γδ T cells as key contributors to immune responses in gen-
eral, and in cancer therapy in particular, has lagged behind that 
of αβ T cells in part because of the lack of appropriate tools to 
interrogate γδ T-cell function, because of the mistaken impres-
sion that γδ T cells are somehow less functionally diverse than  
αβ lineage cells, and because of a bias that analysis of γδ T 
cells in mice will not inform their roles in humans. Discoveries 
described here leave little doubt about the functional diversity 
of γδ T cells. Moreover, it should be noted that while the  
particular TCR complexes employed by mouse and human γδ T 
cells differ substantially, their functional capabilities are quite 
similar. Indeed, recent evidence strongly supports the exist-
ence of human equivalents of the major functional γδ T-cell 
subsets in mouse (for example, PLZF+ innate γδ T cells, IFNγ  
producers, and IL-17 producers)61,88,89. Accordingly, future efforts 
to gain a more comprehensive and unified understanding of the 
role of γδ T cells in human health and disease ultimately will 
depend on the development of strategies in model organisms  
to selectively and acutely eliminate particular γδ T-cell subsets 
to gain insight into their roles. This must be linked to investiga-
tion of the molecular processes that control γδ T-cell effector 
fate so that beneficial and detrimental effector functions can be  
enhanced and minimized, respectively.
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