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OBJECTIVES: Parkinson’s disease (PD) and the parkinsonian variant of multiple system atrophy (MSA-P) are
distinct neurodegenerative disorders that share similar clinical features of parkinsonism. The morphological
alterations of these diseases have yet to be understood. The purpose of this study was to evaluate gray matter
atrophy in PD and MSA-P using regions of interest (ROI)-based measurements and voxel-based morphometry
(VBM).

METHODS: We studied 41 patients with PD, 20 patients with MSA-P, and 39 controls matched for age, sex, and
handedness using an improved T1-weighted sequence that eased gray matter segmentation. The gray matter
volumes were measured using ROI and VBM.

RESULTS: ROI volumetric measurements showed significantly reduced bilateral putamen volumes in MSA-P
patients compared with those in PD patients and controls (po0.05), and the volumes of the bilateral caudate
nucleus were significantly reduced in both MSA-P and PD patients compared with those in the controls
(po0.05). VBM analysis revealed multifocal cortical and subcortical atrophy in both MSA-P and PD patients, and
the volumes of the cerebellum and temporal lobes were remarkably reduced in MSA-P patients compared with
the volumes in PD patients (po0.05).

CONCLUSIONS: Both PD and MSA-P are associated with gray matter atrophy, which mainly involves the bilateral
putamen, caudate nucleus, cerebellum, and temporal lobes. ROI and VBM can be used to identify these
morphological alterations, and VBM is more sensitive and repeatable and less time-consuming, which may have
potential diagnostic value.

KEYWORDS: Parkinson’s Disease; Multiple System Atrophy; Magnetic Resonance Imaging; Regions of Interest;
Voxel-Based Morphometry; Gray Matter Atrophy.

’ INTRODUCTION

Multiple system atrophy (MSA) is a sporadic, adult-onset
disease predominantly characterized by motor symptoms,
such as varying degrees of parkinsonism and cerebellar
ataxia. MSA has two subtypes: the parkinsonian variant

(MSA-P) and the cerebellar variant (MSA-C). Clinical differen-
tiation between Parkinson’s disease (PD) and MSA-P remains
a challenge for neurologists. According to the existing litera-
ture, some scholars have proposed that magnetic resonance
T2*-weighted gradient echo imaging and diffusion-weighted
imaging are of diagnostic value for differentiating MSA-P
from PD (1,2). To date, the morphological differences between
MSA-P and PD have yet to be fully understood. Recently,
magnetic resonance imaging (MRI) has been extensively used
in brain morphometry. Volumetric analytical methods include
manual measurement of the region of interest (ROI) and
voxel-based comparisons of anatomic data, especially voxel-
based morphometry (VBM) (3). However, brain morphologi-
cal studies designed to compare MSA with PD have not
yielded consistent results (4). Ghaemi et al. proposed that
MSA-P differed significantly from PD in terms of decreasedDOI: 10.6061/clinics/2020/e1505
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putaminal volume and postsynaptic D2 receptor density, and
neither MRI volumetry nor PET imaging of the midbrain
region contributed to differential diagnosis between PD and
MSA-P (5). Feng et al. found that signal alterations in the
putamen on T2-weighted MRI, including slit-like hyperin-
tense rim and putaminal hypointensity, are not specific signs
for differentiating MSA-P from PD. The specificity and sensi-
tivity of putaminal atrophy for distinguishing MSA-P from
PD were 92.3% and 44.4%, respectively (6). Barbagallo et al.
compared the nigro-striatal changes between PD and MSA-P
using multimodal MRI, and they noted that MSA-P was asso-
ciated with higher mean diffusivity values in the putamina
compared with PD. The putamina in patients with MSA-P
had higher T2* relaxation rates than those in patients with
PD. Combined evaluation of T2* relaxation rates and mean
diffusivity in the putamen allowed 96% accuracy in differ-
entiating PD from MSA-P (7). The aim of this study was to
evaluate gray matter atrophy in PD and MSA-P using ROI-
based morphometric measurement and VBM.

’ METHODS

Subjects
A total of 41 patients with PD (17 men and 24 women) and

29 patients with MSA-P (13 men and 16 women) were
enrolled between September 2009 and March 2013. Thirty-
nine age- and sex-matched healthy volunteers (20 men and
19 women) were recruited as normal controls; statisti-
cal analysis showed no significant difference in age or sex
between patients and controls. Whole-brain anatomical MRI
was performed with a 1.5-Tesla scanner (Siemens Medical
System, Erlangen, Germany). Nine patients with MSA-P
(three men and six women) were excluded due to poor
imaging quality. This study was approved by the Ethics
Committee of the First Affiliated Hospital of Dalian Medical
University. All procedures performed in the study invol-
ving human participants were in accordance with the ethics
standards of the institutional and national research commit-
tee and with the 1964 Helsinki Declaration and its later
amendments or comparable ethics standards. Written infor-
med consent was obtained from all individual participants
included in the study.

MRI acquisition
MRI data were acquired on a 1.5T GE HD Signa MR

scanner. A three-dimensional fast spoiled gradient-echo
sequence (3D-FSPGR) was used for the acquisition of 160-
190 continuous T1-weighted slices of 1.0 mm thickness
in the sagittal plane. Imaging parameters were as follows:
repetition time (TR)=9.6 ms; echo time (TE)=4.2 ms; flip
angle=15o; number of excitations (NEX)=1; field of view
(FOV)=256 mm; slice thickness=1 mm; slice interval=0 mm;
matrix size=256� 256; and voxel size=1.0� 1.0� 1.0 mm.

ROI-based morphometric measurements
The image processing system for qualitative and quanti-

tative volumetric ROI analysis has been previously described
(8). Briefly, all raw data were transferred to a Unix work-
station (Silicon Graphics, Mountain View, CA, USA), and the
image data was processed using the software package
Dr View 5.0 (Asahi Kasei Joho System, Tokyo, Japan). Prior
to the formal measurement, 15 subjects were randomly
selected for the evaluation of intergroup consistency, and
two evaluators performed ROI analysis independently in a

double-blind manner. Brain images were realigned in three
dimensions and reconstructed into continuous coronal slices
of 1 mm thickness perpendicular to the anterior commissure–
posterior commissure line. The whole cerebrum was
separated from the brainstem and cerebellum. The signal
intensity histogram distributions across the whole cerebrum
were used to segment the voxels semiautomatically into gray
matter, white matter, and cerebrospinal fluid (CSF). The
intracranial volume (ICV) was also measured. Manual
volumetric measurements were performed on the ROIs
(putamen, caudate nucleus, and pallidal globus) in bilateral
hemispheres using consecutive 1 mm coronal slices, with the
corresponding sagittal and axial planes presented simul-
taneously for the assurance of landmarks and the integrity of
the ROIs.

Putamen: The entire putamen was manually traced and
was bounded laterally and anteriorly by the external capsule
and separated from the rest of the striatum by a line exten-
ding inferiorly from the anterior limb of the internal capsule
and from the globus pallidus to the lateral medullary lamina.

Caudate: The head and body of the caudate were
manually traced. To separate the caudate from the nucleus
accumbens, a line was drawn from the most inferior point of
the lateral ventricle to the most inferior medial point of the
internal capsule.

Globus pallidus: The entire globus pallidus was bounded
superiorly and medially by the internal capsule and inferiorly
by the substantia innominata and anterior commissure.

Two trained raters (Cui and Zhou), who were blinded to
the subjects’ identities, measured the volumes of the ROIs
respectively. Inter- and intrarater intraclass correlation coeffi-
cients for 15 randomly selected brains were over 0.95 for the
ROIs.

Statistical analyses were performed using multivariate
analysis of covariance (MANCOVA) with repeated measures
via STATISTICA 6.0 software, and ICV and age were set as
covariates for each region (9). The intergroup variants inclu-
ded diagnosis (MSA-P, PD, or normal) and gender (male or
female), and the hemispheric side (right or left) was used as
the intragroup variant for comparing the specific ROI volumes.
Post hoc Tukey’s HSD tests were used for analyzing the
significant main effects or significant interaction effects yielded
by MANCOVA by which pairwise group differences (ROI-to-
ROI) were checked. Analysis of covariance (ANCOVA) was
used to compare the gray matter volumes with the ICVand age
as covariates. The age and education level in the three groups
were compared using one-way analysis of variance. The
distribution of gender was compared using the chi-square test.
The UPDRS part III scores and improved H-Y grading scores
were compared using the t test. Pearson’s partial correlation
was used to analyze the correlation between brain volume and
clinical symptoms. Statistical significance was defined as
po0.05 (two-tailed).

Image processing using VBM
VBM was performed in the SPM8 software package

(http://www.fil.ion.ucl.ac.uk/spm/). All T1-weighted images
were spatially normalized in the standardized space using the
template provided by the Montreal Neurological Institute (10).
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Then, all images were segmented into gray and white matter
as well as CSF. The images were subsequently modulated
with Jacobian determinants to compensate for volume
changes in nonlinear spatial normalization (11). Finally, the
images were smoothed with a Gaussian filter of 8� 8� 8 mm
full width at half maximum (FWHM). Using SPM8, ANOVA
was performed to compare the data in the three groups, and
the results were saved as a mask; then, independent-sample
t tests were performed for post hoc analyses in which
the previously generated mask was imported. During this
procedure, comparisons between groups were performed
between brain regions that showed significant differences in
the ANOVA. The age and sex of each subject were entered
into the design matrix as nuisance variables. The global
volumes in the voxel intensities were used as confounding
covariates, and anatomy-based templates were used for
subcortical regions of specific interest (putamen, caudate and
globus pallidus), which originated in the Automated Anato-
mical Labeling (AAL) map of MRicro (http://www.cabiatl.
com/mricro/mricro/index.html) (12).
Expected voxels per cluster generated in the SPM proces-

sing were documented. Statistical significance for cluster
selection in the striatum between MSA-P patients and con-
trols was set at po0.001 (uncorrected), with an extended
threshold of 114 voxels. The comparison of whole cerebral
gray matter between MSA-P patients and controls was per-
formed at a threshold of po0.05 (voxel level FWE), with an
extended threshold of 16 voxels. Significance was set at
po0.001 (uncorrected) for comparisons of MSA-P vs PD
groups and PD vs control groups in both the striatum
(extended threshold of voxel 40) and whole cerebral gray
matter (extended threshold of voxel 475). The anatomical
position of each cluster via T (or F) test images was perfor-
med using Xjview software (http://www.alivelearn.net/
xjview8/).

Clinical assessment and correlation analysis
The clinical severity for MSA-P and PD patients was

independently assessed according to parts III and V (modi-
fied Hoehn-Yahr staging scale) of the Unified Parkinson’s
Disease Rating Scale (UPDRS) by two neurologists (13). The
association between clinical severity and gray matter atrophy
was evaluated using partial correlations analysis.

’ RESULTS

Demographic and clinical features
The demographic data of the subjects are summarized in

Table 1. There were no significant differences in age (p=0.22),
sex (p=0.65), or educational time (p=0.73) between the patients

and controls. There was no significant difference in the
duration of disease between MSA-P and PD patients (p=0.32).
The patients with MSA-P had significantly higher UPDRS part
III scores (p=0.04) and part V scores (po0.01) than those of
patients with PD.

ROI results
The correlation coefficients for intergroup consistency in

the measurement of ICV, putamen volume, caudatum volume,
and pallidum volume were 0.99, 0.98, 0.99, and 0.95, respec-
tively. Comparisons of the striatum volume and whole
cerebral gray matter volume among the MSA-P patients, PD
patients, and healthy controls are shown in Figure 1.
The whole cerebral gray matter volume was significantly

smaller in the MSA-P patients compared with that of the
controls (main effect of group in ANCOVA; F=4.91, po0.01;
post hoc test, po0.01). The PD patients had significantly
smaller gray matter volumes compared with those of the
controls (po0.01).
The MANCOVA for ROIs revealed the bilateral putamen

(F=3.50, po0.01) and bilateral caudate nucleus (F=5.50,
po0.001) were the main effects associated with distinct
diagnoses. Post hoc tests showed that the bilateral putamen
volume was smaller in MSA-P patients than that in normal
controls (p=0.006) and that in PD patients (p=0.01). Post
hoc tests indicated that the bilateral caudate nucleus volume
was smaller in MSA-P patients compared with that in nor-
mal controls (p=0.002). The patients with PD had signifi-
cantly decreased volumes in the bilateral caudate nucleus
(po0.001) compared with those of the controls.

VBM results

Striatal regions: Compared with normal controls, the
gray matter volumes of the bilateral caudate nucleus and
bilateral putamen were significantly reduced in patients with
MSA-P (Figure 2A,B); however, only the volume of the
bilateral caudate nucleus was reduced in patients with PD
(Figure 2C). For the gray matter volume of striatal regions,
there was no significant difference between MSA-P and PD
patients.

Cortical and other subcortical regions: MSA-P patients
(vs controls) exhibited severe gray matter atrophy in the
temporal and frontal lobes, including the bilateral inferior
temporal gyrus, the bilateral superior temporal gyrus, and the
bilateral gyrus rectus. In addition, parts of the bilateral
thalamus, occipital lobes, and cerebellum were also involved
(Figure 3A). PD patients (vs controls) exhibited gray matter

Table 1 - Demographic characteristics of the patients with MSA-P and PD and the healthy controls.

Patients with MSA-P (n=20) Patients with PD (n=41) Healthy controls (n=39) Test statistics p value

Male/Female 10/10 17/24 20/19 X2=0.86 0.65a

Age (years) 66.25±8.82 65.22±8.82 62.82±6.23 F=1.54 0.22b

Education (years) 9.50±2.76 8.76±4.44 9.36±4.29 F=0.31 0.73c

Duration of disease (months) 41.4±22.6 33.71±30.39 - t=1.00 0.32d

UPDRS (Part III) 40.08±15.12 32.15±7.78 - t=2.21 0.04e

UPDRS (Part V) 2.98±0.91 2.23±0.54 - t=3.38 0.01f

Values represent the mean ± SD. ap40.05, chi-square test, the three groups were gender matched. bp40.05. cp40.05, analysis of variance (ANOVA), age
and education matched. dp40.05, t-test, the disease durations of MSA-P and PD were similar. efpo0.05, t-test, the patients with MSA-P had significantly
increased scale scores compared with the patients with PD. UPDRS=Unified Parkinson’s Disease Rating Scale.
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atrophy in the bilateral middle frontal gyrus, right orbit
frontal gyrus and left middle temporal gyrus. Moreover, parts
of the left thalamus and frontotemporal lobes were also
involved (Figure 3B). Compared with PD patients, the most
remarkable gray matter atrophy in the MSA-P patients was

identified in the cerebellum (the bilateral cerebellum posterior
lobe and the left cerebellar tonsil) and the temporal lobes (the
bilateral inferior temporal gyrus and the bilateral middle
temporal gyrus). Several additional mild atrophic regions
were identified in the occipital and frontal lobes (Figure 3C).

Clinical-radiological correlation
The results of correlation analysis between UPDRS part III

and V scores are summarized in Table 2.
In patients with MSA-P, the UPDRS part III scores were

negatively correlated with gray matter atrophy in the left
putamen (r=-0.592, p=0.01), and there was no correlation
between the UPDRS part III scores and atrophy in the right
putamen, bilateral caudate nucleus, globus pallidus, or
whole-brain gray matter (all p40.05). The UPDRS part V
(modified Hoehn-Yahr staging scale) scores were negatively
correlated with gray matter atrophy in the left putamen
(r=-0.532, p=0.023), and there was no correlation between the
UPDRS part V scores and atrophy in the right putamen,
bilateral caudate nucleus, globus pallidus, or whole-brain
gray matter (all p40.05). The disease durations were nega-
tively correlated with gray matter atrophy in the left puta-
men (r=-0.577, p=0.012) and in the right putamen (r=-0.722,
p=0.001). Additionally, the disease durations were positively

Figure 1 - Manual ROI measurements (A, coronal; B, axial; C,
sagittal) showing the putamen (red), caudate nucleus (blue) and
globus pallidus (green).

Figure 3 - (A) VBM analysis of the gray matter comparing MSA-P and controls. The yellow-white color represents the gray matter
volume (controls4MSA-P); the brown-dark color indicates the gray matter volume (MSA-P4controls). (B) VBM analysis of the gray
matter comparing PD and controls. The yellow-white color represents the gray matter volume (controls4PD); the brown-dark color
indicates the gray matter volume (PD4controls). (C) VBM analysis of the gray matter comparing MSA-P and PD. The yellow-white color
represents the gray matter volume (PD4MSA-P); alternatively, the brown-dark color marks the gray matter volume (MSA-P4PD).

Figure 2 - VBM analysis of the putamen, caudate nucleus and globus pallidus. In this figure, the red color represents the volumes of the
bilateral putamen in controls that are larger than MSA-P (A) and the volumes of the bilateral caudate nucleus in controls that are larger
than MSA-P (B); the yellow color represents the volumes of the bilateral caudate nucleus in controls that are larger than PD (C),
p (uncorrected) o0.001.
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correlated with the UPDRS part III scores (r=-0.597, p=0.009)
but not with the UPDRS part V scores (p40.05).
In patients with PD, the correlation of gray matter volume

with the UPDRS part III scores and modified H&Y scores
are shown in Table 2. There was no correlation between the
UPDRS part III or modified H&Y scores and the gray matter
volume (whole-brain gray matter volume, putamen volume,
caudatum volume or pallidum volume) (all p40.05). The
disease duration showed a tendency of negative correlation
with gray matter volume, although there was no significant
difference (p40.05). The disease duration had no correlation
with the UPDRS scores (p40.05).

’ DISCUSSION

Structural alterations and pathophysiology of
disease
To our knowledge, this is the first study to compare striatal

and whole brain gray matter volumes in MSA-P and PD
patients using a manual ROI-based volumetric analysis and
an automated VBM method. Previously, only one type of
volume measurement method has been used to evaluate
changes in brain structure, and the results varied from
previous pathological findings (14). In this study, both the
ROI and VBM results indicated a reduction in the bilateral
putamen volume in the MSA-P group compared with those
of the PD and healthy control groups. This finding is con-
sistent with previous studies (15). The decreased volume was
significantly correlated with movement disability in the
disease process (16), which was apparent from the PD and
healthy controls. The evidence indicated that the degenera-
tion of selective interneurons occurred in early MSA and
was associated with pathological damage and the formation
of inclusion bodies. However, little evidence suggests the
presence of neuronal degeneration and loss in PD. The
compensatory morphological changes in striatal interneur-
ons occurred only during PD progression, and the dopamine
replacement therapy effects were no longer ideal (17). The
occurrence of parkinsonian syndrome in MSA is directly rela-
ted to the degeneration and loss of neurons in the putamen.
The current study demonstrated that the caudate nucleus

mainly receives afferent information from regions related to
higher nervous and emotional activities, and the integration
of the afferent inputs may be related to the initiation of
voluntary movement. Limited evidence supports reduced
metabolism and relaxation time in the caudate nucleus of
MSA-P, which thereby promotes damage to the caudate
nucleus (18). Our study identified significant atrophy in the
caudate nucleus of the MSA-P group, which is consistent
with previous pathologic and VBM results (19). This finding
provides the morphological basis for the pathophysiology of
caudate nucleus damage. The caudate nucleus in PD also
decreased in this study, which is consistent with the MRI
results obtained by Lisanby et al. (20). Some studies have
confirmed that the caudate nucleus damage is related to the
cognitive behavior; however, other detailed investigations
regarding Parkinson’s disease with dementia (PDD) have
resulted in different conclusions (21). Cognitive assessments
were not performed in our research. Therefore, the relation-
ship between cognitive function and pathological changes in
the caudate nucleus has yet to be confirmed.
Fewer studies have measured the globus pallidus volume.

Atrophy was not present in the bilateral globus pallidus
of the three groups in our study, which is consistent withTa
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Hardman’s findings regarding PD and PSP (22). In general,
the globus pallidus is intact in PD; however, this finding is in
contrast to the results of O’Neill et al. (23), which indicated
that the globus pallidus was atrophied by 16% in PD patients
compared with normal age-matched controls (po0.05). Vari-
ations in research methodology and race, as well as the disease
periods of the included patients, may have influenced the
results. In MSA patients, neurodegeneration is associated
with disease development, which leads to the reduction of
dopamine receptors in the basal ganglia and ultimately the
development of levodopa-insensitive parkinsonian syndromes.
According to the new pathological grading standards for
MSA-P, which were formulated by Wenning et al. (24), the loss
of globus pallidus neurons only appears at striatonigral
degeneration (SND) level III, which is characterized by lateral
atrophy.
Gilman et al. noted cortical and subcortical cholinergic

deficits in patients with PD, MSA-P and PSP, suggesting
functional and structural alterations of cortices and sub-
cortices (25). In the current study, VBM analysis showed
cortical and thalamic atrophy in patients with PD and MSA-
P, which supports the above hypothesis.
The thalamus receives projections from the motor cortex.

Specifically, the ventral thalamus transmits executive infor-
mation to the anterior motor cortex with the participation
of the basal nucleus. The ventrolateral area of the anterior
thalamus transmits information to the primary motor area
under the control of the basal nucleus and cerebellum, and
the ventrolateral area of the posterior thalamus transmits
feedback from the primary motor area under the regula-
tion of the cerebellum. This cortical-striatal-thalamic-cortical
connection constitutes an integrated circuit controlling
movement. Our findings showed MSA-P is associated with
bilateral thalamic atrophy, which is consistent with previous
evidence (26). The longitudinal VBM study performed by
Brenneis et al. revealed that thalamic atrophy is related to the
course of MSA (27). These results support that the degene-
ration and loss of thalamic neurons may be involved in the
pathophysiological process of MSA-P. Additionally, some
scholars found that the norepinephrine level in the thalamus
was decreased (28). The ventrolateral nucleus of the thala-
mus is closely related to the symptoms of static tremor of PD;
the damage in the projection fibers from the substantia nigra
to the thalamus can lead to a decrease in dopamine uptake in
the ipsilateral striatum, resulting in static tremor symptoms
in unilateral limbs. According to our VBM results, there was
atrophy in the left thalamus, which may be associated with
the pathophysiological process of PD. The definitive patho-
logical changes in the thalamus and the correlation with
motor symptoms in PD still need further research.
Additionally, we noted remarkable atrophy of the cere-

bellum in patients with MSA-P, which was consistent with
previous reports (29). These findings indicate that degenera-
tion of the olivary pontine cerebellopontine system is invol-
ved in the pathological process of MSA-P (30). Furthermore,
we found that atrophy of the cerebellum and temporal
lobe in the MSA-P group was more marked than that in the
PD group, which may provide a new approach for diffe-
rential diagnosis of MSA-P and PD. MSA is a neurodegen-
erative disease characterized by motor symptoms, memory
deficits, emotional abnormalities and cognitive disorders.
Our findings indicate that multiple cerebral cortices and
circuits are involved in the pathophysiological process of
MSA.

Existing evidence shows that the volume of the primary
motor area and supplementary motor area was reduced in
MSA-P (19), suggesting that the motor symptoms may be
aggravated by the loss of neurons in these areas (4). Another
VBM study showed atrophy of the insular lobe, orbital
gyrus, and superior temporal gyrus in patients with MSA,
and the memory impairment was significantly correlated
with atrophy of the prefrontal lobe (12). These findings sug-
gest that cortical atrophy is involved in the progression of
MSA (27), which may lead to functional disorders and
predict deterioration of the disease (12).

As is well known, the decrease of dopamine uptake in the
substantia nigra striatum system is the major cause of PD. In
patients with PD, the dysfunction in the sensorimotor loop
may lead to compensative activation of the cortex-striatum-
thalamus-cortex loop (31). Some scholars found that advan-
ced function was damaged and phantoms appeared in
patients with progressive PD, which may be related to the
impaired function of the anterior cingulate gyrus (32). In
recent years, there have been many studies on PD-related
cognitive dysfunction (33), revealing that cognitive impair-
ment and even dementia occur in 75% of all patients with
PD. Cortical atrophy, decreased metabolism, white matter
changes, dopamine/cholinergic uptake imbalance, and
excessive deposition of amyloid substances may be possible
mechanisms. Moreover, a recent positron emission tomogra-
phy (PET) study in PD patients without cognitive impair-
ment and dementia showed that the frontal lobe, temporal
lobe, and cerebellum were associated with emotional and
cognitive regulation, which may lead to apathy in PD. We
also noted atrophy of the frontal lobe and temporal lobe in
PD patients by VBM analysis, while the relationship between
gray matter atrophy and cognitive/emotional impairment
requires further evidence.

Pohjalainen et al. observed the density and affinity of
dopamine (D2) receptors in normal striatum using PET,
revealing that the affinity of D2 receptors in the left striatum
in women was lower than that in men. These findings sug-
gested that there is a high concentration of dopamine in the
striatal system in women (34). A number of subsequent PET
studies supported this view that the density of dopamine
transporters and the ability to uptake dopamine in women
were higher than those in men (35). This provides a
pathophysiological basis for gender-related symptom differ-
ences and different responses to levodopa in patients with
PD. In recent years, PET studies on PD have shown that the
uptake of fluorodopa in the putamen and prefrontal lobe in
women is higher than that in men, which indicates that there
are also gender-related differences in dopamine function in
PD. In a large cohort study of 230 patients with MSA,
Watanabe et al. pointed out that gender was uncorrelated
with clinical symptoms and progression of PD (36). How-
ever, O’Sullivan et al. found that the prognosis of PSD and
MSAwas worse in women (37). The inconsistent conclusions
may be due to different races and variable evaluation methods.
To date, the correlation between gender and striatal volume
remains unclear. In the current study, we found there was no
significant correlation between gender and striatum volume,
suggesting the functional alterations may not be necessarily
accompanied by structural changes.

Most of the patients with PD had unilateral onset, which
has been confirmed by many PET and single photon
emission computed tomography (SPECT) studies (38). The
metabolism of the striatum was decreased in patients with
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PD and MSA, and the asymmetry of PD was more significant
than that of MSA. The functional asymmetry of the sub-
stantia nigra striatum may contribute to the clinical unilateral
symptoms of PD. However, a recent PET study on PD and
MSA showed inconsistent findings, and the authors specu-
lated that the previous conclusion may be confounded with
selective bias (39). In our study, there were no differences in
the left and right volumes of the putamen, caudate nucleus,
and pallidum. The functional and structural asymmetry in
PD and MSA may be related to the stage of disease pro-
gression, and further studies are warranted.

Correlation between structural changes and clinical
symptoms
UPDRS Part III and Part V (also known as modified H&Y

classification) have been widely used in the clinical evalua-
tion of PD. SPECT and PET studies on PD showed that the
dopamine function in the substantia nigra striatum system
was negatively correlated with UPDRS motor function and
H&Y scores. Subsequent SPM analysis showed that the
decrease of dopamine transporters was most remarkable in
the posterior putamen (40). Recent morphological studies
showed that UPDRS III has better reliability for predicting
brain atrophy in early PD patients. In the present study, we
demonstrated that the striatal nucleus volumes were not
correlated with the UPDRS scores or the clinical course
durations in PD patients. Therefore, we speculated that the
decrease of dopamine uptake in the substantia nigra striatum
system eventually leads to the occurrence of PD, whereas
there is no change in striatal volume in the early stage of PD.
Tir et al. performed a VBM study on the motor circuit of

MSA-P, which showed that H&Y scores were correlated with
the volume of gray matter, white matter and putamen, and
UPDRS III was correlated with the volume of putamen (4).
However, another VBM study failed to find a correlation
between UPDRS III and brain structure (27). Our study
showed that the scores of UPDRS-III and modified H&Y
scale were negatively correlated with the volume of the left
putamen but not with the volume of other brain structures.
These findings suggest that MSA is associated with the
structural alterations in the nigra striatum system. Addition-
ally, we speculate that the unilateral atrophy in the left
putamen may be related to right-handedness. The positive
correlation between the UPDRS-III score and the disease
course indicates that the symptoms of MSA gradually
become aggravated with disease progression. There was a
significant negative correlation between the disease course
and the volume of the bilateral putamen in patients with
MSA-P, which revealed that the putamen was the earliest
and most severely involved nucleus in MSA.

VBM and ROI-based measurements
VBM can test and compare the whole brain and can be

directly used in statistical analyses of original data without
presetting the ROI. The density differences in brain tissue
can be quantitatively identified. Furthermore, the method is
characterized by automaticity, comprehensiveness, objective-
ness, and repeatability. However, the application of VBM
remains controversial because partial volume effects asso-
ciated with tissue segmentation may be contaminated with
other results, which may lead to errors. Voxel-based statis-
tical analysis is premised on spatial normalization, and
inaccurate matching of local areas and templates can lead to

a system error. The T1 template of the MNI that is always
used for VBM was established with young subjects and can
lead to errors when used for older populations. Nevertheless,
with continuous improvement, more recent versions of SPM
(e.g., version 8) contain improved functional parameters to
match the needs of VBM. VBM cannot be applied to the
measurement of individual brain volume, which limits its
clinical application. The classical ROI is the golden standard
of structural measurements. However, the disadvantages of
ROI, including time-consumption and operator dependence,
have limited its range of applications in recent years. In this
study, the results of two striatal volume measurements were
consistent. Furthermore, we demonstrated that the bilateral
putamen volume was smaller in the MSA-P patients
compared with that in the PD patients using ROI; however,
the VBM analysis failed to identify this difference. This
finding indicates the superiority of the ROI measurement for
microscopic structures. When VBM is used to compare
striatal structures, we use AAL maps to optimize the volume
of each nucleus. The ROI method yields results with high
consistency.

’ CONCLUSIONS

PD and MSA-P are associated with gray matter atrophy,
which mainly involves the bilateral putamen, caudate
nucleus, cerebellum, and temporal lobes. ROI and VBM
can be used to identify these morphological alterations, and
VBM is more sensitive and repeatable and less time-
consuming, which may have potential diagnostic value.
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