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Abstract: Non-small cell lung cancer (NSCLC) that presents with multiple lung tumors 
(MLTs) poses a challenge to accurate staging and prognosis. MLTs that arise as clonally 
related secondary metastases from a common primary are higher stage and often require 
adjuvant chemotherapy or may in fact be incurable stage IV lesions. Conversely, MLTs that 
represent distinct primaries have a better prognosis and may be overtreated if inappropriately 
classified as related secondaries. Historically, pathologic and radiographic criteria were used 
to distinguish between primary and secondary MLTs; however, the advent of genomic 
profiling has demonstrated limitations to these historic classification systems. In this review, 
we discuss the use of molecular profiling to distinguish between primary and secondary lung 
cancers, with a focus on the insights gleaned from whole exome sequencing (WES) analyses. 
While WES is not yet feasible in routine clinical practice, WES studies have helped elucidate 
the clonal relationship between primary and secondary lung cancers and provide important 
context for the application of targeted sequencing panel-based analyses. 
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Introduction
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths 
both globally and in the United States. In 2021, there were an estimated 235,760 
new cases and 131,880 deaths from NSCLC in the U.S., accounting for 25% of all 
cancer deaths.1 Mortality is highly related to stage, with historic five-year survival 
rates of 10% or less for stage IV disease, compared to 70% or higher for stage 
I disease.2 The management of NSCLC is guided by initial staging; whereas stage 
IV NSCLC is treated palliatively with systemic therapy, early-stage NSCLCs are 
treated with definitive local therapy. Adjuvant systemic therapy after surgery plays 
an important role in improving disease-free and overall survival in patients with 
stage II or III tumors, and the roster of approved adjuvant therapies has recently 
expanded from platinum-based chemotherapies3–6 to include adjuvant Osimertinib 
in EGFR mutated patients7 and atezolizumab in patients with PD-L1 > 1%.8 While 
adjuvant systemic therapy is considered the standard of care for resected stage II 
and III NSCLC, systemic therapy does not play a role for earlier stage NSCLC due 
to historic evidence demonstrating no benefit and in fact a trend toward harm in 
stage IA patients treated with chemotherapy.6 Accurately determining cancer sta-
ging is therefore crucial for the appropriate management of NSCLC.
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One challenge to the accurate staging and management 
of NSCLC is the occurrence of multiple lung tumors 
(MLTs) in the same patient. MLTs may arise from local 
or hematogenous spread of a single primary cancer, or as 
multiple individual primary cancers. While historically 
rare, the incidence of MLTs has been rising due to 
increased use of chest CT scans and longer overall survival 
in lung cancer patients.9 MLTs may present at the same 
time (termed synchronous) or may develop sequentially, 
with new tumors occurring after prior definitive therapy 
(termed metachronous). While the exact rates vary, studies 
estimate that 15–20% of lung cancer patients present with 
multiple nodules,10 though the number can be as high as 
50%,11–13 and the risk of developing a second primary 
lung cancer is 1–2% per year.14,15

Determining whether a secondary nodule represents 
a distinct primary or an intrapulmonary metastasis (IPM) 
therefore has important staging and prognostic implica-
tions. The 8th American Joint Committee on Cancer 
(AJCC) staging edition classifies synchronous nodules 
related to the primary as T3 (at least stage II) or T4 
(stage IIIA) if the tumor is in the same or a different 
ipsilateral lobe, respectively, and stage M1a (Stage IVa) 
if the nodule is in a contralateral lobe.16 Conversely, the 
AJCC recommends staging multiple primaries individually 
and managing with definitive therapy as permitted by 
anatomy and comorbidities. Consistent with these staging 
guidelines, the prognostic implications of multiple lung 
nodules depend on whether they are determined to be 
related or distinct entities. The presence of 
a histologically presumed intrapulmonary metastasis car-
ries a 10–15% decrease in 5-year survival,17–21 whereas 
multiple primaries are not necessarily associated with 
worse outcomes.21,22 Similarly, as discussed, the appropri-
ate classification of MLTs as distinct primaries or 
IPMs carries important management implications. 
Misclassification of distinct early-stage lung primaries as 
T3 or T4 IPMs can lead to exposure to the toxicities of 
adjuvant platinum-based chemotherapy with no clinical 
benefit and potential harm;10 upstaging contralateral 
nodules as IPMs can also prevent patients from receiving 
appropriate definitive local therapies.

Historically, pathologic criteria have been used to dis-
tinguish between distinct primaries vs IPMs. However, 
recent studies with molecular data have demonstrated sig-
nificant limitations in these criteria, and there is increasing 
interest in using advanced sequencing to characterize 
MLTs as distinct primaries vs evolutionarily related 

secondary malignancies. In this review, we discuss the 
use of sequencing to distinguish between primary and 
secondary lung cancers and its implications for clinical 
practice.

Pathologic Criteria for 
Distinguishing Between Primary 
and Secondary Malignancies
Until recently, clinicopathologic criteria were the standard 
in distinguishing between primary and secondary lung 
cancers. Martini and Melamed published the most widely 
applied diagnostic standard in 1975, which specified that 
synchronous tumors were considered distinct primaries if 
they were physically separated and had different histology; 
or, if the same histology, originated from carcinoma 
in situ; had no lymphatic spread; and occurred without 
extrapulmonary metastases at the time of diagnosis. 
Similar rules were applied to temporally distinct tumors 
(metachronous tumors), with the stipulation that histologi-
cally identical metachronous tumors had to be separated 
by two years.23

Over the years, several revisions to these criteria have 
been proposed, including the incorporation of DNA 
ploidy24 and the extension of the disease-free interval to 4 
years.25 The 2007 edition of the American College of Chest 
Physicians guidelines attempted to clarify the definitions by 
classifying synchronous lesions into 1) satellite nodules 
(same lobe); 2) multiple primaries (different lobes, no N2- 
N3 lymph nodes or metastases), or 3) hematogenously 
spread pulmonary metastases (lesion present in different 
lobes with N2-N3 nodal involvement).26 However, studies 
incorporating molecular features including chromosomal 
abnormalities and mutation data demonstrated that patho-
logical criteria have limited sensitivity and specificity. The 
most rigorous histomorphological criteria, put forth in 2009 
by Girard et al, were shown to have higher accuracy (91% 
concordance with molecular assessment compared to 32% 
using Martini and Melamed criteria), but require skilled 
pathologic assessment of features including grade, cytol-
ogy, stromal features, and variant histologic subtypes, mak-
ing it subject to inter-user variability.27,28

Limitations of Pathologic 
Approaches and Incorporation of 
Molecular Analyses
The advent of sequencing methodologies led to interest in 
studying whether molecular assessment of MLTs could 
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prove more accurate in distinguishing relatedness than 
pathologic criteria. Even before the advent of high- 
throughput next-generation sequencing (NGS) of multiple 
genes, researchers demonstrated that more limited profil-
ing could determine whether spatially and/or temporally 
distinct cancers shared genetic similarities. One early strat-
egy focused on sequencing TP53, as this gene is frequently 
mutated in lung cancers, and mutations occur over a large 
genomic region, making it unlikely that two independent 
lung cancers will have identical mutations.29 These early 
studies demonstrated that, in patients with a TP53 muta-
tion in at least one sample, shared or distinct TP53 muta-
tions could identify intrapulmonary metastases or multiple 
primaries, respectively.29–35 Other orthogonal strategies, 
including loss of heterozygosity (LOH) analysis;36 LOH 
integrated with driver gene sequencing;34 oligo gene panel 
sequencing;37–41 array comparative genomic hybridization 
studies;10,42 and DNA rearrangement sequencing,43 all 
similarly demonstrated the utility of molecular profiling 
in establishing genetic relatedness. In one study, for exam-
ple, Girard et al performed comparative genomic hybridi-
zation, mutational profiling of select genes, and 
clinicopathologic review on 42 tumors from 20 patients 
(leading to 22 evaluable tumor-pair combinations).10 

While the majority of cases were concordant, classification 
based on genomic profiling contradicted clinicopathologic 
diagnosis in 4 (18%) comparisons (independent primaries 
in 1 case diagnosed as metastasis, metastases in 3 cases 
diagnosed as independent primaries).

Notably, one limitation of focused sequencing is that it 
is only helpful in patients in whom at least one abnorm-
ality is detected. TP53 sequencing, for example, was help-
ful in the 40–50% of patients with a TP53 alteration, but 
added no value in those patients whose tumors were all 
TP53 wild type.29,33,35 Integration of multiple technologies 
improved the likelihood that an important difference 
would be detected,10 but the advent of next-generation 
sequencing technologies proved even more useful by 
allowing for the incorporation of more comprehensive 
sequencing to profile a broader array of genes. In one 
early study, Murphy et al analyzed DNA rearrangements 
by NGS in 2014 and demonstrated that paired lung pri-
maries and distant metastases had shared rearrangements 
identified in all tumor pairs.43 When applied to synchro-
nous pairs, they confirmed that four cases predicted by 
pathology to be independent shared no somatic rearrange-
ments; concluded that two pathologically indeterminate 
tumors were not related; and changed the designation in 

1 out of 5 putative metastatic cases. Another more recent 
study using the large MSK-IMPACT panel compared 
tumors from 60 patients who had undergone sequencing 
of multiple tumors.44 In 76 tumor pairs, NGS classified 51 
into definite distinct primaries and 25 intrapulmonary 
metastases. Prospective histologic prediction was discor-
dant with NGS in 17 cases (22%); pathologic error in 
identifying IPMs was most commonly due to histologic 
progression (7/11 cases), whereas distinct primaries were 
missed pathologically due to overlap in architectural pat-
terns or cytologic architecture. Other studies using differ-
ent gene panels or clinical cohorts demonstrated similar 
utility to this approach,45–51 and confirmed worse out-
comes in patients with genomically similar tumors.21 

These analyses are summarized in Table 1.

Whole Exome Sequencing Studies
These studies demonstrated that molecular analyses can be 
used to determine whether pathologically similar lesions 
were related or genetically distinct. While not all analyses 
directly compared the performance of molecular profiling 
to pathologic classification, those that did demonstrated 
variable accuracy, with molecular characterization over-
turning the pathologic determination in 20–40% of 
cases.10,43,52–54 One challenge, however, in interpreting 
molecular studies is determining whether tumors may be 
different or similar genetically for reasons other than relat-
edness. Specifically, while we would expect most regions 
of the same tumor to be genomically similar, there may be 
differences due to subclonal evolution and intratumoral 
heterogeneity. Conversely, it is also known that certain 
driver alterations or copy number events are highly recur-
rent and may be present in two independent tumors by 
chance or due to germline/environmental predisposition. 
Whole exome sequencing (WES)-based studies have 
helped address this knowledge gap by more comprehen-
sively elucidating the clonal relationship between tumors, 
helping clarify the evolutionary processes that give rise to 
metastases vs distinct primaries.

The first relevant application of WES in this context 
were multi-region WES studies that helped delineate the 
scope of intratumoral heterogeneity within related NSCLC 
tumors. In one study from our group, Zhang et al per-
formed multi-region WES on 48 regions from 11 resected 
lung adenocarcinomas. They detected significant intratu-
moral heterogeneity, with an average shared mutation rate 
of 76% between all regions in one patient. Putative driver 
alterations were often clonal and ubiquitous.55 Similarly, 
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Table 1 Targeted Sequencing Analyses of Multiple Lung Cancers

Study Sample Set Sequencing Analysis Findings

Noguchi et al, 199330 Nine patients with MLTs TP53 protein expression 
TP53 mutations (PCR-SSCP)

Nine tumors from 4 cases had altered TP53 and 
were diagnosed genetically as distinct primaries

Sozzi et al, 199531 11 synchronous lesions from 5 
patients

Cytogenetics/LOH 
TP53 and KRAS sequencing 

Chromosome 3p deletion

Different genetic lesions observed in all cases 
regardless of physical proximity, suggestive of 

multiple primaries.

Mitsudomi et al, 199729 16 patients with a second, 

metachronous lung tumors

TP53 sequencing 9/16 patients had at least one TP53 mutation. 

TP53 mutational status was discordant in all 9 
cases, consistent with distinct tumors

Hiroshima et al, 199832 19 patients with synchronous 
MLTs and 11 with 

metachronous MLTs

TP53 protein overexpression 
using immunohistochemistry 

TP53 gene abnormalities

11/19 patients had altered TP53 activity. Different 
genetic changes were detected in 11/19 

synchronous (57.9%) and 5/11 metachronous 

(45.4%) MLTs

Matsuzoe et al, 199933 20 patients with MLTs TP53 mutational analysis Lesions in 7 patients showed TP53 gene 

abnormalities. One patient had the same 
mutational status in both tumors.

Shimizu et al, 200034 14 patients with distinct MLTs LOH 
TP53 mutational status

Genetics were concordant with clinical criteria in 
10 of 12 cases (83%), discordance in 2 (17%)

van Rens et al, 200235 64 tumors from 31 patients. TP53 mutational analysis 21 patients had different TP53 mutations, distinct 
primaries 

2 patients had identical TP53 mutations, indicating 

IPMs. 
8 patients were indeterminate.

Chang et al, 200737 58 patients with synchronous 
MLTs

TP53 and EGFR expression and 
mutational analysis

50/58 tumors were distinguishable based on 
TP53 and EGFR (22 cases related; 28 were 

distinct).

Takamochi et al, 201238 82 multifocal lung 

adenocarcinomas from 36 

patients, 31 synchronous and 
5 metachronous.

EGFR and KRAS sequencing EGFR mutations were identified in 36 tumors 

(44%), KRAS mutations in 19 (23%) 

Concordance of molecular studies with clinical 
criteria was observed in 21 (70%) of the 30 cases 

in which tumor clonality was determinable

Wu et al, 201448 97 metachronous MLTs TP53 and EGFR sequencing 75/97 tumors could be distinguished based on the 

presence of TP53 and/or EGFR. 

25/97 (33.3%) of cases had the same clonality, 50 
(67%) had different clonality. Distinct clonality 

occurred even in tumors of the same histologic 

type (37/61).

Murphy et al, 201443 22 tumors from 11 patients Mate-pair NGS sequencing to 

identify break points

Validated that histologically distinct tumors were 

genomically distinct without shared genomic 
rearrangements. Histologically similar tumors had 

shared rearrangements. 

7/11 pairs classified as multiple primaries, 4/11 as 
related. Largely concordant with histologic 

classification.

(Continued)
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Table 1 (Continued). 

Study Sample Set Sequencing Analysis Findings

Patel et al, 201745 8 primary-metastasis pairs and 

11 patients with distinct 

primaries

NGS using 50-gene AmpliSeq 

Cancer Hotspot Panel

7/8 primary-metastasis pairs had shared 

mutations; the last pair had no detectable 

mutations in either sample. Driver mutations 
(KRAS, EGFR, and BRAF) were always 

concordant. 

3/11 MLTs were concordant and predicted to be 
IPMs, 8/11 were discordant. 

Patients with predicted independent primaries 

had better survival (p=0.016).

Saab et al, 201746 52 lung adenocarcinomas 

from 18 patients.

NGS and ALK gene 

rearrangement testing

Genomic signatures were helpful in 72% of 

patients. 
Genomic and morphologic data together 

achieved a conclusive diagnosis in 94% of patients.

Roepman et al, 201847 111 tumors from 50 patients 

with MLT

TP53 mutation analysis, 50- 

gene panel NGS

Sequencing was conclusive in all but 2 pairs, and 

contradicted histopathologic assessment in 19 

(39%) of cases.

Takahashi et al, 201849 82 tumors from 37 patients 

with surgically resected MLTs

Targeted 20-gene panel NGS 20 (54%) of patients had matching mutations c/w 

IPMs. 
In 7 equivocal histopathologic cases, 6 (86%) 

confirmed as IPMs. 

Among 17 cases classified as multiple primaries 
by histology, mutational analysis was discordant in 

8 (47%) cases.

Mansuet-Lupo et al, 

201950

240 samples from 120 patients 

with multiple tumors

Targeted NGS sequencing (22 

genes)

109/120 (91%) of pairs had an identifiable 

mutation. 

Discordant cases (30/109) were reclassified using 
combined histomolecular algorithm.

Murphy et al, 201928 Tumor pairs from 17 patients Targeted NGS sequencing (8 
gene)

53% of tumors had no detected mutations; 4 
cases had mutations in one tumor and one had 

two different KRAS mutations. Two cases shared 

KRAS mutations despite independence on 
junction analysis.

Change et al, 201944 76 tumor pairs from 60 
patients

Targets NGS sequencing 
(MSK-IMPACT panel)

51/76 pairs classified as distinct primaries, 25/76 
into IPMs. 

11/76 cases were misclassified pathologically

Liu et al, 202081 40 tumors from 16 pts with 

multiple lung tumors

Targeted deep sequencing 

(2000x) using HaploX (464- 

gene) panel

12/14 patients with histological IPMs did not have 

shared mutations. Two patients with inferred 

metastases had shared mutations; two patients 
had shared driver alterations.

Goodwin et al, 202121 40 cases of pts treated 

curatively for two putative 

primaries with similar 
histopathology.

Targeted NGS panel (Ion 

Ampliseq Colon and Lung 

Cancer Panel V2 and RNA- 
fusion panel).

Mutational profiling was concordant with 

clinicopathologic diagnosis in 33/40 cases (82.5%). 

7 cases with mutational overlap suggestive of 
metastatic disease had reduced overall survival.

Abbreviations: IPM, intrapulmonary metastases; LOH, loss of heterozygosity; MLTs, multiple lung tumors; NGS, next-generation sequencing; PCR-SSCP, polymerase chain 
reaction-single-strand conformation polymorphism.
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de Bruin et al performed multi-region WES on 25 regions 
from 7 NSCLC patients and found that an average of 70% 
of mutations were shared across regions, with similar 
enrichment for driver events in the truncal mutations.56 

Subsequent analysis in a larger cohort confirmed that on 
average 70% of mutations are shared between related 
lesions, though there was a range of 7–99.5% overlap, 
demonstrating high variability. These studies corroborated 
previous findings from matched primary and metastatic 
tumors in 15 patients assessed by a 182 targeted NGS 
panel; in this study, likely driver alterations had 94% 
concordance, and likely passenger alterations had 63% 
concordance.57 Notably, de Bruin et al included two 
patients with synchronous contralateral lung lesions. In 
one pair, only an EGFR L858R mutation was shared, 
suggestive of separate primaries with an overlapping dri-
ver. In the other pair, 74% of mutations were shared, 
indicative of intrapulmonary metastasis.

The genomics of multiple primaries was subsequently 
interrogated more directly by a study by Futreal and 
colleagues.58 In this study, researchers performed whole 
genome sequencing (WGS) or WES with microarray- 
based comparative genomic hybridization on 16 tumors 
samples (15 lung tumors and one lymph node) from 
a cohort of six Asian patients with multiple synchronous 
lung cancers. By ACCP 2007 criteria, 5 patients were 
classified as having satellite nodules, and one as having 
IPM; therefore, clinically all were defined as having multi-
ple related tumors. When tumor genomics were compared, 
however, all appeared distinct. In three patients, there were 
no overlapping mutations between tumors. In patient 1, the 
tumor and lymph node sample shared 26% of mutations but 
did not overlap with the other lung sample. Finally, of the 
other two patients, one had an overlapping EGFR L858R 
mutation in all three samples but no other shared mutations. 
The last patient had an overlapping EGFR L858R in tumors 
1 and 2, and an overlapping ARHGAP35 E25K mutation 
shared by tumors 1 and 3, but no other overlap. To deter-
mine the likelihood that non-related tumors would share 
a point mutation, the researchers benchmarked the rate of 
shared mutations in The Cancer Genome Atlas (TCGA) 
dataset, and found that the likelihood of overlap in their 
cohort was no different from TCGA. This allowed the 
authors to conclude that all tumors in this cohort were 
distinct primaries, highlighting that single driver alterations 
(such as EGFR L858R) can recur in otherwise genetically 
distinct tumors in the same patient. Notably, while clinical 
staging was consistent with related primaries, more 

comprehensive pathologic assessment was more congruent 
with the genomics; 5 out of 6 cases were correctly classified 
by histologic assessment.59,60

In addition to the small sample size, this study was 
limited by its focus on Asian patients with minimal smoke 
exposure, as these features likely selected for a patient 
population with distinct tumor genomics compared to 
Caucasian or smoking patients. These findings were there-
fore corroborated in a follow-up study from our group that 
performed WES on 10 tumors from 4 Caucasian patients 
with multiple synchronous lung tumors.61 Focusing on 
putatively functional mutations, one patient had no shared 
mutations across three tumors specimens; the other three 
patients’ tumors shared a range of mutations between 19% 
and 91%. Benchmarking against the TCGA confirmed 
higher rates of shared mutations in this cohort than 
among unrelated TCGA specimens. In contrast to the 
previous study, in which unrelated tumors had the same 
driver alteration, tumors from one patient in this cohort 
had distinct TP53 mutations despite other overlapping 
mutations. These two studies, therefore, demonstrate that 
focused sequencing of single driver events is unreliable 
due to both convergent and divergent evolution.

Mutational signature analysis in both studies confirmed 
that gene-level mutational differences reflect different 
mutational processes. In the Liu et al cohort, which had 
largely distinct primaries, they observed distinct muta-
tional spectra between different tumors within the same 
patient. Apolipoprotein B mRNA editing enzyme 
(APOBEC)-mediated mutations, in particular, may be 
operative in later stage mutations, consistent with previous 
data demonstrating a higher proportion of APOBEC- 
associated changes in subclonal mutations.55,56 In 
the second study, despite overlapping mutational profiles 
in three of four patients’ tumors, only one patient had 
similar mutational signature profiles across all specimens, 
driven largely by APOBEC. The other three patients, 
including the two patients with IPMs, had distinct muta-
tional profiles, suggesting that different mutagenic pro-
cesses can contribute to subclonal evolution in distinct 
metastatic sites.

A final study by Ma et al analyzed WES on 16 tumor 
samples (from 11 independent lesions) in four patients.62 

Similar to Liu et al,58 they observed no overlapping var-
iant sets between any tumor pair; conversely, multi-region 
sequencing of two larger lesions revealed many shared 
somatic mutations, similar to prior heterogeneity 
studies.55,56 In this study, most patients had similar 
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mutational spectra across different tumors; however, one 
patient had notable discordance across three tumors. 
Notably, while the specific mutations within each tumor 
were heterogeneous, the authors observed convergence in 
pathway dysregulation within each patient. Patient 1 and 
patient 4, for example, had tumors with altered EGFR 
signaling, while patients 2 and 3 had tumors with dysre-
gulated MAPK pathway.

Whole Exome Sequencing to 
Distinguish Secondary Lung 
Cancers from Other Primaries
An additional application of WES is in distinguishing 
between secondary lung cancers that occur as metastases 
from other histologic primaries. Within lung cancers, 
whole exome sequencing demonstrates distinct mutational 
profiles between adenocarcinomas and squamous cell car-
cinomas. Vanni et al, for example, sequenced multiple 
lung primaries in a patient who developed two lung can-
cers (one adenocarcinoma, one squamous cell carcinoma), 
and a malignant peritoneal mesothelioma.63 They found 
distinct mutational profiles in each primary, and identified 
germline polymorphisms in DNA repair genes that may 
confer higher cancer susceptibility. Similarly, Bai et al 
performed WES of two lung nodules, one adenocarcinoma 
and one lung squamous cell carcinoma, and identified no 
overlapping alterations.64

Sequencing also confirms distinct genomic profiles in 
lung cancer vs other cancer types. Sequencing of one 
patient with a synchronous esophageal squamous cell car-
cinoma, lung adenocarcinoma, and hepatocellular carci-
noma demonstrated distinct somatic genomic profiles; the 
patient had two germline alterations in cancer susceptibil-
ity genes (SPINK1 and JAK3) that might have contributed 
to his risk.65 Xue et al analysed WES from 12 patients 
found to have squamous cell carcinomas of the esophagus 
and lung.66 Similar to WES from multiple lung cancers, 
the authors identified one set of tumor pairs with no over-
lapping mutations, consistent with distinct lung and eso-
phageal primaries, whereas a second group shared 12–70% 
of mutations, consistent with likely secondary metastases. 
These results conflicted with pathologic assessment in 
41.7% of cases (5/12 patients), all of whom were patholo-
gically diagnosed with local metastases but genomically 
consistent with distinct primaries. All these patients did 
well after surgical lung resection, validating the genomic 
rather than histologic designation. Another smaller study 

using more limited profiling demonstrated similar utility to 
sequencing in this context.67

Clinical Applications of Sequencing 
to Distinguish Between Primary and 
Secondary NSCLCs
Taken together, these studies help to systematically deline-
ate the relationship between multiple lung tumors in indi-
vidual patients. They highlight the diversity in how lung 
cancers behave over time and space, with highly variable 
rates of multiple primaries vs intrapulmonary metastases 
across studies; even in surgically resected cohorts, which 
definitionally include small tumors with some clinical 
probability of being distinct primaries, the rate of IPM 
can be as high as 33%–77%.41,44,52 These findings suggest 
that intrapulmonary metastases and synchronous primaries 
are both common and that clinical features alone are not 
sufficient to distinguish between these possibilities.

Conversely, comprehensive genomic profiling is highly 
useful in determining genetic relatedness, and related can-
cers almost always have genetic features in common. 
However, the percent overlap can vary dramatically; 
while focused analyses of primary/metastasis pairs suggest 
an average of 70% overlap, the WES studies cited above 
showed a range between 20% and 90%. Mutational signa-
ture analysis reveals that distinct primaries arise through 
distinct mutagenic processes, but even genetically related 
subclones may have different dominant signatures. Despite 
this heterogeneity, there appears to be convergence within 
and across patients into dysregulation of canonical onco-
genic pathways; consequently, highly recurrent driver 
events such as EGFR L858R or KRAS G12C alterations 
can occur in otherwise unrelated tumors. Conversely, 
genetically related tumors may have distinct alterations 
in the same oncogenic drivers or tumor suppressors due 
to convergent subclonal evolution.

These findings highlight the potential utility of WES in 
identifying genetically related tumors and the pitfalls that 
can arise from trying to use more limited sequencing 
panels for this task. These studies are limited primarily 
by their small sample size, and by their enrichment for 
patients with multiple surgically resected tumors, which is 
not always standard clinical practice. The genomics of 
tumors not resected surgically due to (small or large) size 
or due to higher inferred clinical stage may be different 
and are incompletely assessed by the above studies. 
Fundamentally, the studies above also demonstrate that 
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tumor evolution, whether from a primary to a metastasis or 
the evolution of multiple primaries, is an idiosyncratic 
process that will likely vary from person to person. 
Larger studies can help capture and describe different 
evolutionary routes and can form the basis for models 
that weight the probability of distinct primaries vs related 
secondaries on the basis of more widely characterized 
behavior.

Additionally, while WES provides the most compre-
hensive means of assessing genetic relatedness, at present 
it is not practical for routine clinical use. While this may 
change as sequencing turn-around times and costs con-
tinue to decrease, the current role of these WES studies 
is to provide important baseline metrics to help guide more 
clinically feasible approaches. One such approach involves 
utilization of targeted sequencing panels, where the ques-
tion then becomes how many genes must be sequenced to 
obtain high sensitivity and specificity. Single driver gene 
assessment or even assessment of only targetable onco-
genes is the cheapest but lacking in sensitivity and speci-
ficity; as the studies above demonstrate, many tumors will 
not have a detectable mutation, and even those that do can 
have variable rates of discordance (some reports range 
from 0% to 86% depending on the sequencing 
technique36,57,60,68–75). Conversely, otherwise genetically 
distinct tumors may have shared hotspot alterations; Liu 
et al58 and Chang et al,44 for example, both observed 
shared KRAS and EGFR mutations in tumors with other-
wise distinct genomic profiles, occurring in 1 out of 6 
patients assessed by WES,58 and in 5 out of 51 separate 
primaries assessed by the large MSK-IMPACT targeted 
panel.44 Indeed, given the high frequency of specific hot-
spot mutations such as EGFR L858R or KRAS G12C, the 
odds of co-occurrence by chance can be as high as 1 in 17, 
and Chang et al found that shared KRAS mutations were 
almost as likely to occur coincidentally in distinct pri-
maries as in IPMs.44

Different studies have attempted to model the accuracy 
of various gene panel sizes. Mansuet-Lupo et al used a 22- 
gene panel and found that 9% of patients were inconclu-
sive, compared to 28% percent who would have been 
inconclusive using a 5-gene panel.50 In another analysis, 
gene panels of 50 and 182 genes were noninformative in 
28% and 14% of cases, respectively.28 Chang et al were 
able to make a definitive assignation in 75 out of 76 tumor 
pairs using the MSK-IMPACT gene panel (341 or more 
genes), and, by down-sampling the MSK-IMPACT panel, 
determined that 4-gene driver panel (EGFR, KRAS, ALK 

and ROS1) would distinguish between primaries vs IPMs 
in 60% of cases, and a 50-gene panel in 72% of cases. In 
general, they found that distinct primaries could be identi-
fied with smaller panels, but it would be harder to defini-
tively confirm that tumors were clonally related with 
smaller compared to larger panels. Computational estima-
tion suggested that panels would need to contain at least 
100 frequently mutated genes to allow for confirmation of 
clonal relatedness in 95% of lung adenocarcinomas.

In contrast, Liu et al compared the accuracy of WES to 
more comprehensive histologic assessment,27,59,60 and 
found that 5 out of 6 cases could be accurately assessed 
histologically. However, this was a small study with sam-
ples that ended up all being distinct primaries; when 
Chang et al compared genomic sequencing to histologic 
prediction, they found that 78% of samples were accu-
rately classified by histologic criteria, and that the rate of 
discordance was significantly higher for IPMs (44%) than 
synchronous primaries (12%).44

The role of WES in characterizing the strengths and 
limitations of pathologic approaches is also an important 
contribution. While genetic sequencing provides a more 
direct assessment of clonal relatedness, one practical lim-
itation to sequencing-based approaches is tissue availabil-
ity. Many of the studies described above are based on 
surgically resected specimens, which typically have abun-
dant tissue for both histologic and sequencing analyses. In 
routine clinical practice, however, many synchronous 
nodules are too small for biopsy, and even larger nodules 
may produce tissue yields that are inadequate for 
sequencing.76–78 Historic studies have shown inadequate 
tissue for sequencing in 10–20% of samples,79 and the 
analysis of cytology specimens from fine needle aspirates 
or pleural fluid studies was found to be particularly pro-
blematic (inadequate specimens in 26% of biopsy speci-
mens and 35% of cytology specimens compared to 5% of 
surgical specimens).80 In such cases, histologic assessment 
may be more clinically feasible, and using genomics as 
above to benchmark and optimize pathology guidelines 
may help improve the accuracy of histology-based 
approaches.

Ultimately, pathologic assessment and genomic 
sequencing may prove complementary strategies, as patho-
logic assessment is performed routinely and at present is 
more cost-effective. However, as biomarker-directed 
therapies are increasingly becoming the standard-of-care 
even in early-stage NSCLC,7,8 genomic assessment of 
MLTs will also become more common. At present, the 
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IASLC guidelines include both clinical, histologic, and 
biomarker patterns in their criteria for identifying distinct 
primaries;60 further studies in larger cohorts using standar-
dized sequencing approaches will help further define how 
best to systematically incorporate clinical genomics into 
lung cancer staging.
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