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1  |  INTRODUC TION

Lung cancer is a major cause of cancer- associated death worldwide,1 
and risk factors cover family history, age, smoking, and air pollution.2 

Two histological types of lung cancer are small- cell lung cancer 
(SCLC) and non- small- cell lung cancer (NSCLC).3,4 Lung adenocarci-
noma (LUAD) is the main type of NSCLC,5 and its incidence has been 
increasing steadily in the past few decades. Tumor, lymph node, and 
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Abstract
Background: The mechanism of cancer occurrence and development could be under-
stood with multi- omics data analysis. Discovering genetic markers is highly necessary 
for predicting clinical outcome of lung adenocarcinoma (LUAD).
Methods: Clinical follow- up information, copy number variation (CNV) data, single nu-
cleotide polymorphism (SNP), and RNA- Seq were acquired from The Cancer Genome 
Atlas (TCGA). To obtain robust biomarkers, prognostic- related genes, genes with SNP 
variation, and copy number differential genes in the training set were selected and 
further subjected to feature selection using random forests. Finally, a gene- based pre-
diction model for LUAD was validated in validation datasets.
Results: The study filtered 2071 prognostic- related genes and 230 genomic vari-
ants, 1878 copy deletions, and 438 significant mutations. 218 candidate genes were 
screened through integrating genomic variation genes and prognosis- related genes. 7 
characteristic genes (RHOV, CSMD3, FBN2, MAGEL2, SMIM4, BCKDHB, and GANC) 
were identified by random forest feature selection, and many genes were found to be 
tumor progression- related. A 7- gene signature constructed by Cox regression analysis 
was an independent prognostic factor for LUAD patients, and at the same time a risk 
factor in the test set, external validation set, and training set. Noticeably, the 5- year 
AUC	of	survival	in	the	validation	set	and	training	set	was	all	˃ 	0.67.	Similar	results	were	
obtained from multi- omics validation datasets.
Conclusions: The study builds a novel 7- gene signature as a prognostic marker for the 
survival prediction of patients with LUAD. The current findings provided a set of new 
prognostic and diagnostic biomarkers and therapeutic targets.
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metastasis (TNM) phase is currently the most widely used system to 
assess the clinical outcome of cases with LUAD.6 However, the prog-
nosis of LUAD patients with the same pathologic stage varies great-
ly.7– 10 Currently, an effective system for predicting the outcome of 
LUAD is needed to help clinicians evaluate treatment outcomes and 
promote personalized therapy.

A number of studies were conducted for finding biomarkers pre-
dictive of long- term LUAD survival. Biological markers are mainly 
categorized into several classes, firstly, single molecule as a sepa-
rated prognosis- related index, covering squamous cell antigen (SCC), 
CA125, or other new markers; secondly, many genetic markers as 
prognostic genes identified using gene expression profiles with high- 
throughput screening. There are several systematic biological meth-
ods for identifying gene biomarkers associated with LUAD prognosis 
and constructing genetic features. For instance, Wang et al estab-
lished a 4- gene signature based on gene expression profiling using 
least absolute shrinkage and selection operator (LASSO) selection 
operator Cox regression and weighted gene correlation network 
analysis11; Liu et al. used a GLYCOLYSIS- related genes to identify 
a 4- gene signature applying Cox proportional hazard regression12; 
Chen et al. built a 11- gene signature by meta- analysis of gene ex-
pressions13; Li et al. developed a 3- gene signature using network 
biology method analysis.14 Noticeably, these above gene signatures 
have been independently verified in external datasets, but have not 
been clinically applied. Thus, it is crucial to analyze the biological 
function more comprehensively to identify genes associated with 
LUAD prognosis.

To effectively build a reliable LUAD prognostic process- 
associated gene signature, this study developed a scientific 
pipeline for identifying LUAD- associated gene markers. Single 
nucleotide mutations, gene expression profiles, and copy num-
ber variation data for LUAD patients were acquired from GEO 
and TCGA databases. A 7- gene signature was established by in-
tegrating transcriptomics and genomics data to screen prognos-
tic markers. The ability of the signature to predict LUAD survival 
was validated in external validation and internal test sets. The 
results validated that the 7- gene signal participated in vital biol-
ogy courses and pathways in LUAD. Similarly, GSEA analysis also 
showed consistent outcomes. The current data indicated that the 
7- gene signature could efficiently estimate cancer prognostic of 
LUAD patients, providing a better understanding of the molecular 
mechanism of LUAD prognosis.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection and processing

A total of 516 samples containing SNP 6.0 chip copy number vari-
ation data, 576 FPKM samples containing RNA- Seq data, 738 sam-
ples containing clinical follow- up information were obtained from 
the UCSC Cancer Browser (https://xenab rowser.net/datap ages/). 
543 samples of mutation annotation information (MAF) were 

downloaded from GDC client. On May 25, 2019, the GSE3121015 
dataset containing a total of 246 samples with standardized ex-
pression characteristics and clinic- related data was downloaded 
from GEO. In the GSE31210, 226 samples with clinical follow- up 
information were acquired. From the TCGA RNA- Seq data, follow-
 up information of 513 LUAD samples was filtered and randomly 
divided into 2 groups, one group as a training set (N = 256) and 
another as a test set (N = 257). All these samples were surgical 
cases collected before the first treatment. Samples with follow- up 
information in the GSE31210 dataset served as external validation 
sets. Copy number variation (CNV) dataset, GSE36363 (https://
www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE36363), mu-
tation dataset, and LUSC- KR (https://dcc.icgc.org/proje cts/
LUSC- KR) were used as multi- omics validation datasets. For sam-
ple information of each group, see Table 1. The flow chart of this 
research is shown in Figure 1.

2.2  |  Univariate Cox proportional 
hazards regression

To identify genes closely related to OS from the train dataset, we 
performed univariate Cox proportional hazard regression study 
as previously described in Jin- Cheng et al.16 p < 0.05 was the 
threshold.

2.3  |  Data analysis on copy number variation

GISTIC detects both focal and broad (probably overlapping) reap-
pearing events. We used GISTIC 2.017 software to determine genes 
with significant amplification or deletion. The parameter thresholds 
for	fragments	with	amplification	or	deletion	lengths	were	˃	0.1	and	
p < 0.05.

2.4  |  Analysis of gene mutation

Significantly mutated genes in the MAF file of TCGA mutation data 
were screened by Mutsig 2.0 software. The threshold was set to 
p < 0.05.

2.5  |  Development of a prognostic immune 
gene signature

Genes significantly related to patient OS, amplification, dele-
tions, and mutations were selected, and those showing prognostic 
significance were obtained applying randomized survival forest 
algorithm.18 According to Jin et al,19 random survival forest in R 
package was used for filtering genes, iterations number of Monte 
Carlo was 100, and the number of previous progressions was 5. 
Characteristic genes were defined as genes exhibiting relative 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
https://dcc.icgc.org/projects/LUSC-KR
https://dcc.icgc.org/projects/LUSC-KR
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significance higher than 0.4. Further Cox regression study based 
on multiple variables was performed, and the following risk scor-
ing mode was built:

In which N denotes quantity of prognosis- related genes, Expk refers to 
the expression level of prognosis- related genes, and eHR

k
 represents the 

assessed gene regression coefficient in the multivariate Cox regression 
study.

2.6  |  Analysis of functional enrichment

Pathway enrichment analysis of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) was performed in the 
R package clusterprofiler,20 identifies over- represented GO terms 

RiskScore =

N
∑

k=1

Expk ∗ e
HR
k

Characteristic
TCGA training 
datasets (n = 256)

TCGA test datasets 
(n = 257)

GSE31210 
(n = 226)

Age(years) <=50 29 19 27

>50 227 236 199

Survival Status Living 161 167 191

Dead 95 90 35

Gender Female 135 141 121

Male 121 116 105

Pathologic_T T 1 82 89

T 2 141 134

T 3 24 22

T 4 7 11

Pathologic_N N 0 166 170

N 1 53 41

N 2 31 38

N 3 1 1

Pathologic_M M 0 174 169

M 1/M X 80 86

Tumor Stage Stage Ⅰ 140 140 168

Stage Ⅱ 66 54 58

Stage Ⅲ 38 42 0

Stage Ⅳ 8 17 0

TA B L E  1 Clinical	information	statistics	
of three sets of datasets

F I G U R E  1 Work	flow	chart
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in biology- related courses, cellular element and molecular func-
tion,	and	KEGG	pathway.	Here,	in	the	study,	FDR <0.05 represented 
statistics- related significance.

GSEA21 was conducted using the JAVA program (http://softw 
are.broad insti tute.org/gsea/downl oads.jsp) with the MSigDB22 on 
C2 canonical pathway gene set collection containing 1320 gene sets. 
After conducting 1000 permutations, gene sets of a p < 0.05 show-
ing noticeable up- regulation were filtered.

2.7  |  Statistical analysis

For comparing survival risk between the two risk groups, the 
Kaplan- Meier (KM) curve was drawn using the score of median 
risk as a cutoff. For testing whether genetic markers were inde-
pendent prognostic factor, a multivariate Cox regression study was 
performed. Statistical significance was determined when p < 0.05. 
AUC study was carried out in the R package pROC. The heat map 
was drawn using R package Pheatmap. Default parameter was 
used in all analyses in R software version 3.4.3, unless otherwise 
specified.

3  |  RESULTS

3.1  |  Identification of gene sets in correlation with 
survival of LUAD cases

For samples of the TCGA train set, the study performed univariate 
regression to examine the relation between gene expression and pa-
tients’ overall survival (OS). Among the 2071 prognostic genes iden-
tified, 1161 genes were of HR<1, while 910 genes were of HR>1. 
The top 20 genes were listed in Table 2.

3.2  |  Genomic variation identification with 
gene set

Genes showing significant deletion or amplification were identi-
fied by GISTIC 2.0 using copy number variation data from TCGA. 
There were 20 significantly amplified fragments in the genome of 
230 genes (Figure 2A); noticeably, these fragments involved many 
important genes such as significant amplification of KRAS in the 
12p12.1 segment (q value = 2.42E- 12), significant amplification of 

gene HR coefficient Z- score p value

ENSG00000107859 1.48694912 0.39672645 5.72186084 1.05E−08

ENSG00000148704 1.434454599 0.360784707 5.57425514 2.49E−08

ENSG00000107984 1.533873881 0.427796484 4.962716871 6.95E−07

ENSG00000138829 1.422130151 0.352155854 4.647037727 3.37E−06

ENSG00000156687 1.46213808 0.379899803 4.635544845 3.56E−06

ENSG00000140478 1.425955115 0.354841845 4.561167459 5.09E−06

ENSG00000178462 1.400199512 0.336614735 4.294593782 1.75E−05

ENSG00000185888 1.376019257 0.319194734 4.263138276 2.02E−05

ENSG00000163975 1.531203385 0.426053952 4.23019025 2.33E−05

ENSG00000159217 1.353621993 0.302783958 4.06409894 4.82E−05

ENSG00000165891 1.456027917 0.375712123 4.011611337 6.03E−05

ENSG00000133466 1.506641141 0.409882763 4.007282786 6.14E−05

ENSG00000266265 1.354880774 0.303713461 3.976929914 6.98E−05

ENSG00000106031 1.355842036 0.30442269 3.962817439 7.41E−05

ENSG00000161714 1.454645204 0.374762025 3.892559471 9.92E−05

ENSG00000251258 1.325733251 0.281965703 3.885360438 0.000102178

ENSG00000121691 0.659952564 −0.415587319 −3.877219552 0.000105657

ENSG00000179241 1.462860113 0.380393501 3.8721129 0.000107896

ENSG00000145192 1.33684358 0.290311298 3.865936536 0.000110664

ENSG00000197213 1.315374686 0.274121558 3.816051598 0.000135604

TA B L E  2 The	top20	most	relevant	
genes for OS

F I G U R E  2 mRNAs	located	in	the	focal	CNA	peaks	are	LUAD-	related.	Scores	and	false-	discovery	rates	(q	values)	from	GISTIC	2.0	for	
alterations (x- axis) plotted against genome positions (y- axis); dotted lines indicate the centromeres. A: The amplifications (red) of genes. 
B: The deletions (blue) of genes. The green line represents 0.25 q value cutoff point that determines significance. C: The most significant 
mutation in the top 50 genes, the upper histogram shows the total number of nonsynonymous and synonymous mutations in each of these 
50 genes, the histogram on the right shows the number of samples in which 50 genes have mutated in all samples. Different colors in the 
heat map indicate the type of mutation, and the gray color means no mutation

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
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EGFR in the 7p11.2 segment (q value = 2.16E- 09), and significant 
expansion of ERBB2 in the 17q12 segment (q value = 2.01E- 05). 
Moreover, there were 21 significant deletion fragments (Figure 2B) 
involving 1878 genes, and among these genes, CD1 showed sig-
nificant absence in the 1p13.2 segment (q value = 2.63E- 05), APC 
had significant deletion in the5q13 segment (q value = 0.017957), 
and CDKN2B also showed a great deletion in the 9p21.3 segment 
(q value = 1.08E- 81). Mutsig2 was used to screen significantly mu-
tated genes using TCGA mutational annotation data; here, a total 
of 438 genes with significant mutation frequencies were detected. 
Figure 2C lists the top 50 genes in the sample showing the most sig-
nificant framework insertions or deletions, missense mutations, syn-
onymous mutations, nonsense mutations, framework shifts, other 
nonsynonymous, or cleavage sites. Among the 50 genes, KRAS, RB1, 
SMAD4, TP53, EGFR, and BRAF were closely involved in the LUAD 
development.

3.3  |  Functional analysis on genomic variant genes

For investigating the functions of genes with genomic variations, 2261 
deleted or amplified genes and significant mutant genes screened 
based on copy number variation were integrated. GO biological pro-
cess and KEGG functional up- regulation study was conducted on the 

2261 genes. KEGG enrichment analysis revealed that natural killer cell- 
mediated cytotoxicity, t- cell receptor signaling pathway, MAPK sign-
aling pathway, chemokine signaling pathway, Foxo signaling pathway, 
other KEGG biological pathways, and non- small- cell lung cancer were 
related to the cancer development (Figure 3A). In the category of bio-
logical process, the pathways were mainly enriched in metabolic pro-
cess, cell communication, cell differentiation, developmental process, 
and other GO terms (Figure 3B). Interestingly, these above terms were 
closely correlated with cancer progress. Our data indicated that the 
genes of these genomic variants were linked to tumor development.

3.4  |  A 7- gene signature for LUAD survival 
was built

Genomic variant genes and prognosis- related genes were integrated, 
and a sum of 218 genes in the intersection of the three groups was 
selected as a candidate gene. Based on the relation of the quantity of 
classification trees and error rate, random forest was used in feature 
selection (Figure 4A). Here, genes with a significance greater than 
0.4 were recruited to build a gene signature, and here, 7 genes were 
acquired (Table 3). The 7 genes were ranked for their out- of- bag 
value (Figure 4B). The 7- gene signature was built with Cox regres-
sion analysis based on multiple variables as follow:

Risk7= −0.1242466∗SMIM4+0.2498433∗RHOV−0.1681485∗BCKDHB

+0.2310252∗CSMD3−0.1523721∗GANC+0.2032291∗FBN2−0.01186835∗MAGEL2

F I G U R E  3 Functional	enrichment	analysis	on	2261	genomic	variant	genes.	A:	Enriched	KEGG	biological	pathways.	B:	Enriched	GO	terms	
in the “biological process” category. Different colors indicate different saliency, and different sizes reflect the number of genes
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F I G U R E  4 Establishment	of	a	7-	gene	signature	for	LUAD	survival.	A:	The	relationship	between	the	number	of	classification	trees	and	
the error rate. B: The order of importance of 7 genes out- of- bag. C: KM survival curve distribution of the 7- gene signature in the TCGA 
training set. D: The ROC curve and AUC of the 7- gene signature classification. E: The risk score, survival status and survival time, and the 
expressions of the 7 genes of the TCGA training set
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The sample risk score was obtained, and the samples were di-
vided according to the medium the risk score (cutoff =	−0.04131651).	
Patients’ prognosis in the two risk groups was significantly different 
(Figure 4C). Our result showed that the 3- year AUC of the model 
was 0.71 in the training set (Figure 4D). Analysis on expression cor-
relation of the 7 genes and risk score showed that high expression 
and high- risk correlation of RHOV, CSMD3, FBN2, and MAGEL2 
were risk factors, whereas low- risk correlation of SMIM4, BCKDHB, 
GANC, and high expression was protective factors (Figure 4E).

3.5  |  The robustness of the 7- gene signature 
was verified

To verify the robustness of the 7- gene signature, the sample risk 
score in the test set was calculated. According to the threshold of 
the training set, we divided the samples into two groups, and no-
ticeable prognostic diversifications between the 2 groups were ob-
served (Figure 5A). Analysis of ROC showed a 5- year AUC of 0.68 
(Figure 5B). The risk score and the expression of the 7 genes were 

TA B L E  3 7-	genes	was	significantly	associated	with	the	overall	survival	in	the	training-	set	patients

Ensembl Gene ID Symbol HR Z- score p value Importance
Relative 
Importance

ENSG00000168273 SMIM4 0.78 −2.208803 2.72E−02 0.0119 1

ENSG00000104140 RHOV 1.30 2.641546 8.25E−03 0.009 0.755

ENSG00000083123 BCKDHB 0.78 −2.290767 2.20E−02 0.0087 0.7351

ENSG00000164796 CSMD3 1.33 3.658676 2.54E−04 0.0085 0.7152

ENSG00000214013 GANC 0.73 −2.486935 1.29E−02 0.0077 0.649

ENSG00000138829 FBN2 1.42 4.647038 3.37E−06 0.0056 0.4702

ENSG00000254585 MAGEL2 1.20 2.275242 2.29E−02 0.0051 0.4305

F I G U R E  5 Robustness	of	the	7-	gene	signal	model	was	verified	in	test	dataset.	A:	KM	curve	in	the	test	set	sample.	B:	The	ROC	curve	and	
AUC of the 7- gene signature classified in the test dataset. C: The relation between risk scores and the expressions of the 7 genes in the test 
set samples
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consistent in the training set (Figure 5C). Thus, the model was vali-
dated as an effective prognostic classifier in the TCGA dataset.

GEO platform was an external dataset for verifying the classifi-
cation of the gene prediction system in different platforms. The sig-
nature was applied to determine sample risk score. The cutoff of the 
training set was the threshold for grouping samples into low-  and high- 
risk groups. We found that patients’ prognosis was evidently better 
in the low- risk group than the high- risk group (Figure 6A). Moreover, 
ROC analysis showed a 3- year AUC of 0.66, which was similar to the 
training set (Figure 6B), and the relationship between the risk score 
and the expressions of the 7 genes was also consistent in the training 
set (Figure 6C). To conclude, our 7- gene signature model showed a 
prognostic significance in both external and internal datasets.

3.6  |  The 7- gene signature model was clinically 
independent

To identify whether the 7- gene signature system was independent in 
clinical applications, the 95% confident interval (CI) of HR, relevant 

hazard ratio (HR), and p value were determined by performing mul-
tivariate and univariate Cox regression in the TCGA test set, TCGA 
training set, and GSE31210 data with clinical information. We then 
analyzed the clinical information of TCGA, GSE65858 patients’ data 
covering tumor stage N stage, M stage, T stage, gender, age, and 
group information using our 7- gene signature (Table 4). Analysis 
from univariate Cox regression showed that in the TCGA training 
set, high- risk group, pathologic T3, pathologic N1, pathologic T2, 
pathologic N2/N3, tumor stage II, tumor stage III, tumor stage IV 
displayed noticeable associations with survival. However, from mul-
tivariate Cox regression analysis, only high- risk group (p = 3.40E- 05, 
CI = 1.52– 3.27, HR = 2.24, 95%) was clinically independent. In the 
TCGA test set, from the results of univariate Cox regression analy-
sis, we observed that pathologic N1, pathologic T4, pathologic T3, 
pathologic N2/N3, tumor stage II, tumor stage IV, tumor stage III, 
and high- risk group were evidently related to survival. Multivariate 
Cox regression demonstrated that pathologic T3, pathologic N1, and 
high- risk group (p = 0.002, 95% CI = 1.25– 2.79, HR = 1.86) were 
clinically independent. In GSE65858, from the data of univariate Cox 
regression analysis, it could be found that tumor stage II and high- risk 

F I G U R E  6 Robustness	of	the	7-	gene	signal	model	was	verified	in	GSE31210	dataset.	A:	KM	survival	curve	distribution	of	the	7-	gene	
signature in GSE31210. B: ROC curves and AUC of the 7- gene signature classification. C: The relationship of expressions of the 7 genes, 
survival time, risk score, and survival status in GSE31210

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65858
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65858
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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TA B L E  4 Univariate	and	multivariate	Cox	regression	analysis	identifies	clinical	factors	and	clinical	independence	associated	with	
prognosis

Variables

Univariate analysis Multivariable analysis

HR 95%CI of HR p value HR 95%CI of HR p value

TCGA training datasets

7- gene risk score

Low- risk group 1 (reference) 1 (reference)

High- risk group 2.72 2.01– 3.68 9.530E−11 2.24 1.52– 3.27 3.40E−05

Age 1.01 0.99– 1.03 0.606 1.01 0.99– 1.03 0.277

Female 1 (reference) 1 (reference)

Male 0.84 0.56– 1.26 0.40 0.85 0.54– 1.31 0.468

Pathologic T 1 1 (reference) 1 (reference)

Pathologic T 2 1.73 1.02– 2.93 0.042 1.36 0.77– 2.37 0.286

Pathologic T 3 2.99 1.39– 6.38 4.86E−03 1.56 0.59– 4.11 0.370

Pathologic T 4 1.78 0.52– 6.08 3.56E−01 0.83 0.18– 3.77 0.808

Pathologic N 0 1 (reference) 1 (reference)

Pathologic N 1 2.34 1.48– 3.70 2.60E−04 1.22 0.50– 2.92 0.657

Pathologic N 2/ N 3 4.10 2.34– 7.16 7.51E−07 1.51 0.32– 6.91 0.598

Pathologic M 0 1 (reference) 1 (reference)

Pathologic M 1/ M X 1.17 0.73– 1.88 5.13E−01 1.14 0.66– 1.96 0.64

Tumor stage Ⅰ 1 (reference) 1 (reference)

Tumor stage Ⅱ 2.77 1.69– 4.50 4.50E−05 1.87 0.73– 4.77 0.192

Tumor stage Ⅲ 4.50 2.60– 7.79 7.53E−08 2.57 0.49– 13.32 0.26

Tumor stage Ⅳ 5.80 2.38– 14.07 1.03E−04 2.92 0.75– 11.33 0.12

Validation cohort, TCGA test datasets, GSE31210

TCGA test datasets

7- gene risk score

Low- risk group 1 (reference) 1 (reference)

High- risk group 1.88 1.31– 2.71 6.65E−04 1.86 1.25– 2.79 0.002

Age 1.01 0.98– 1.03 0.565 1.01 0.98– 1.03 0.334

Female 1 (reference) 1 (reference)

Male 1.36 0.89– 2.06 0.147 1.21 0.77– 1.88 0.397

Pathologic T 1 1 (reference) 1 (reference)

Pathologic T 2 1.26 0.77– 2.06 0.350 1.21 0.70– 2.08 0.482

Pathologic T 3 3.07 1.49– 6.30 0.002 3.89 1.53– 9.86 0.004

Pathologic T 4 3.90 1.75– 8.68 8.57E−04 1.55 0.59– 4.02 0.368

Pathologic N 0 1 (reference) 1 (reference)

Pathologic N 1 2.55 1.49– 4.33 5.71E−04 2.72 1.07– 6.88 3.49E−02

Pathologic N 2/ N 3 2.39 1.40– 4.04 1.23E−03 1.70 0.50– 5.73 3.95E−01

Pathologic M 0 1 (reference) 1 (reference)

Pathologic M 1/ M X 0.95 0.61– 1.47 0.81 0.68 0.40– 1.16 0.163

Tumor stage Ⅰ 1 (reference) 1 (reference)

Tumor stage Ⅱ 2.15 1.23– 3.74 0.007 0.58 0.22– 1.52 0.270

Tumor stage Ⅲ 2.93 1.71– 5.00 8.23E−05 0.96 0.24– 3.69 0.950

Tumor stage Ⅳ 3.04 1.50– 6.16 2.02E−03 2.04 0.68– 6.10 0.203

GSE31210

7- gene risk score

Low- risk group 1 (reference) 1 (reference)

High- risk group 1.94 1.31– 2.86 8.80E−04 1.85 1.17– 2.91 0.008
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Variables

Univariate analysis Multivariable analysis

HR 95%CI of HR p value HR 95%CI of HR p value

Age 1.03 0.98– 1.08 3.06E−01 1.04 0.98– 1.08 0.167

Female 1 (reference) 1 (reference)

Male 1.52 0.78– 2.96 2.19E−01 1.23 0.62– 2.44 0.552

Tumor stage Ⅰ 1 (reference) 1 (reference)

Tumor stage Ⅱ 4.23 2.18– 8.24 p	≤	0.001 3.85 1.96– 7.55 8.67E−05

TA B L E  4 (Continued)

F I G U R E  7 7-	gene	signature	was	validated	in	mutation	dataset	and	copy	number	variation	dataset.	A:	ROC	analysis	of	mutation	
characteristics of LUSC- KR cohort; B: K- M curve of mutation characteristics of LUSC- KR cohort; C: ROC analysis of copy number 
characteristics of GSE36363 queue; B: K- M curve of copy number characteristics of GSE36363 queue

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
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group were noticeably correlated with survival. Corresponding mul-
tivariate Cox regression study demonstrated that high- risk group 
(p = 0.008, CI = 1.17– 2.91, HR = 1.85, 95%) and tumor stage II were 
clinically independent. Hence, the 7- gene prediction system was a 
prognostic marker independent of other clinical factors.

3.7  |  Validation of 7- gene signature model in 
CNV and mutation datasets

We added additional validation of CNV and mutation datasets. 
Specifically, we derived the lung adenocarcinoma samples from 
ICGC mutation dataset LUSC- KR (https://dcc.icgc.org/proje cts/
LUSC- KR), to verify that these gene mutations are in the relation-
ship with the prognosis. Multivariate regression analysis was used 
to calculate the mutation characteristics score of 7 genes in each 
patient. ROC analysis showed that the 5- year AUC was 0.79, and the 
1- year AUC was 0.6 (Figure 7A), suggesting that the mutation char-
acteristics of these 7 genes could effectively evaluate the prognosis 
of patients. The R software package maxstat was used to classify 
patients, and the prognosis of patients with high scores was signifi-
cantly worse than that of patients with low scores (Figure 7B).

We also obtained from the GEO database of lung adenocarci-
noma of CNV data queue GSE36363 (https://www.ncbi.nlm.nih.
gov/geo/query/ acc.cgi?acc=GSE36363), extracted copy number of 
seven genes. The copy number characteristic scores of seven genes 
were calculated for each patient using the same method. ROC anal-
ysis showed that the 5- year AUC was 0.68 and 1- year AUC was 0.77 
(Figure 7C), which suggested that the prognosis of patients could 
be effectively evaluated based on the copy number characteristics 
of these 7 genes. Patients were classified by maxstat, R software 
package. Patients with high scores had significantly worse outcomes 
than those with low scores (Figure 7D).

3.8  |  Enriched pathway differences in the two risk 
groups analyzed by GSEA

GSEA in the TCGA training set was used to analyze significantly en-
riched pathways in the two groups (low- risk and high- risk groups), 
and we obtained a total of 30 significantly enriched pathways, in-
cluding pathways (eg, P53 signaling pathway, DNA replication, focal 
adhesion, cell cycle), which were tightly linked to the progress and 
metastasis of LUAD. The above pathways were greatly enriched to 
the samples of the high- risk group (Figure 8).

4  |  DISCUSSION

LUAD is a highly heterogeneous cancer, as LUAD patients with 
similar TNM staging often develop different survival conditions. 
Traditional clinical pathology indexes (eg, vascular invasion, tumor 
size, TNM staging, and portal vein tumor thrombus) are hard to fit 

the present need for an accurate prediction of individual treatment 
outcomes because currently there is no effective one- size- fits- all 
treatment.23,24 Prognostic molecular markers can show the biology 
features of tumors and are of great significance for individualized 
treatment for LUAD and its prevention. This study analyzed the 
expression profiles of 739 LUAD samples collected from TCGA 
and GEO, and developed a robust 7- gene signature, which was 
independent of clinic- related elements but was predictive of the 
OS of LUAD patients. Gene signature models are now applied in 
clinical practice, for example, Oncotype DX expressed by 21 genes 
is indicative of disease recurrence score,25– 27 and Coloprint with 
an 18- gene signature could predict colon cancer.28– 30 These find-
ings demonstrated that profiling of gene expression to discover 
markers for cancer prognosis has become an effective method in 
high- throughput molecular identification. In the study of Wang 
et al,11 weighted gene correlation network study was employed 
to construct a 4- gene model for evaluating overall survival con-
dition of patients with LUAD and lymph node metastasis; inter-
estingly, the model AUC reached around 0.7 and was verified in 
an external dataset. However, their verification dataset (N = 140) 
and training dataset (N = 156) were small, which may lead to bias 
in their results. In the current study, the AUC was close to 0.7 in 
test set (N = 257), the training set (N = 256), and validation set 
(N = 226) using our 7- gene signature prediction. The 7- gene sig-
nature showed a high AUC but involved fewer genes; moreover, as 
these genes had genomic mutation abnormalities that were easy to 
be clinically detected, our 7- gene signature had a high potential in 
clinical transformation.

In our 7- gene signature, RHOV, CSMD3, FBN2, and MAGEL2 
were risk factors, and SMIM4, BCKDHB, and GANC were protective 
factors. It has been reported that RHOV is overexpressed in non- 
small- cell lung cancer.31 CSMD3 mutations are related to favorable 
clinical outcomes in esophageal cancer.32 Mutation of CSMD3 in 
non- small- cell lung cancer leads to increased proliferation of airway 
epithelial cells,33 and abnormal methylation of FBN2 is a biomarker 
for lung cancer.34,35 Our research provides a better understanding 
for subsequent study on the clinical significance and biological role 
of the 7 genes. MAGEL2, SMIM4, BCKDHB, and GANC have not 
been previously found to be related to tumors, and they were the 
first confirmed as novel prognostic markers for LUDA in this study. 
Furthermore, the current GSEA analysis also showed that pathways 
enriched by the 7 genes were closely associated with biological pro-
cesses and pathways in LUDA progress. According to the current 
findings, the 7- gene signature could be clinically applied, providing 
possible targets for diagnosis of LUDA patients.

Though this study identified possible genes for tumor prognosis 
in large samples through bioinformatics, several limitations should be 
noted. For instance, our samples had insufficient clinical follow- up 
data. Thus, some elements, for example, other health conditions of 
patients in distinguishing prognostic biomarkers, were not taken 
into account. Also, the outcomes achieved only with bioinformatics 
may be inadequate, which requires experimental confirmation with 
a larger sample size.

https://dcc.icgc.org/projects/LUSC-KR
https://dcc.icgc.org/projects/LUSC-KR
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36363
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To sum up, we developed a 7- gene signature stratification sys-
tem with a high AUC in the validating sets and the training sets, and 
showed independence of clinical features. In comparison with other 
clinical features, the 7- gene classifier can improve the prediction of 
survival risk. Hence, the classifier developed in this research can 
serve as a molecular diagnostic marker for evaluating the prognostic 
risk of cases with LUDA.

ACKNOWLEDG MENT
None.

CONFLIC T OF INTERE S T
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS
Huaxing Huang and Surong Zhang involved in conception and de-
sign of the research. Xueni Zeng and Shaona Lin acquired the data. 
Shaona Lin involved in the statistical analysis. Minchao Liang in-
volved in analysis and interpretation of data. Surong Zhang drafted 
the article. Huaxing Huang revised the article for important intellec-
tual content. All authors read and approved the final article.

F I G U R E  8 GSEA	enrichment	results	of	four	pathways,	cell	cycle,	DNA	replication,	focal	adhesion,	and	P53	signaling	pathway



14 of 14  |     ZHANG et Al.

DATA AVAIL ABILIT Y S TATEMENT
The analyzed data generated during the study are available from the 
corresponding author on reasonable request.

ORCID
Huaxing Huang  https://orcid.org/0000-0001-9978-3153 

R E FE R E N C E S
 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J 

Clin. 2015;65(1):5- 29.
 2. Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk fac-

tors for lung cancer worldwide. Eur Respir J. 2016;48(3):889- 902.
 3. Ettinger DS, Akerley W, Borghaei H, et al. Non- small cell lung can-

cer, version 2.2013. J Natl Compr Canc Netw. 2013;11(6):645- 653. 
quiz 53.

 4. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer 
J Clin. 2010;60(5):277- 300.

 5. Davidson MR, Gazdar AF, Clarke BE. The pivotal role of pathol-
ogy in the management of lung cancer. J Thorac Dis. 2013;5(Suppl. 
5):S463- S478.

 6. Warth A, Muley T, Meister M, et al. The novel histologic interna-
tional association for the study of lung cancer/American thoracic 
society/european respiratory society classification system of lung 
adenocarcinoma is a stage- independent predictor of survival. J Clin 
Oncol. 2012;30(13):1438- 1446.

 7. Tsao MS, Marguet S, Le Teuff G, et al. Subtype classification of 
lung adenocarcinoma predicts benefit from adjuvant chemo-
therapy in patients undergoing complete resection. J Clin Oncol. 
2015;33(30):3439- 3446.

 8. Zhang J, Gold KA, Lin HY, et al. Relationship between tumor size 
and survival in non- small- cell lung cancer (NSCLC): an analysis of 
the surveillance, epidemiology, and end results (SEER) registry. J 
Thorac Oncol. 2015;10(4):682- 690.

 9. Liang W, He J, Shen Y, et al. Impact of examined lymph node 
count on precise staging and long- term survival of resected non- 
small- cell lung cancer: a population study of the US SEER da-
tabase and a Chinese multi- institutional registry. J Clin Oncol. 
2017;35(11):1162- 1170.

 10. Dalwadi SM, Szeja SS, Bernicker EH, Butler EB, Teh BS, Farach 
AM. Practice Patterns and outcomes in elderly stage i non- small- 
cell lung cancer: a 2004 to 2012 SEER analysis. Clin Lung Cancer. 
2018;19(2):e269- e276.

 11. Wang Y, Zhang Q, Gao Z, et al. A novel 4- gene signature for over-
all survival prediction in lung adenocarcinoma patients with lymph 
node metastasis. Cancer Cell Int. 2019;19:100.

 12. Liu C, Li Y, Wei M, Zhao L, Yu Y, Li G. Identification of a novel 
glycolysis- related gene signature that can predict the survival of 
patients with lung adenocarcinoma. Cell Cycle. 2019;18(5):568- 579.

 13. Chen R, Khatri P, Mazur PK, et al. A meta- analysis of lung cancer 
gene expression identifies PTK7 as a survival gene in lung adeno-
carcinoma. Cancer Res. 2014;74(10):2892- 2902.

 14. Li Y, Tang H, Sun Z, et al. Network- based approach identified cell 
cycle genes as predictor of overall survival in lung adenocarcinoma 
patients. Lung Cancer. 2013;80(1):91- 98.

 15. Okayama H, Kohno T, Ishii Y, et al. Identification of genes upregu-
lated in ALK- positive and EGFR/KRAS/ALK- negative lung adeno-
carcinomas. Cancer Res. 2012;72(1):100- 111.

 16. Guo JC, Wu Y, Chen Y, et al. Protein- coding genes combined with 
long noncoding RNA as a novel transcriptome molecular staging 
model to predict the survival of patients with esophageal squamous 
cell carcinoma. Cancer Commun (Lond). 2018;38(1):4.

 17. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, 
Getz G. GISTIC2.0 facilitates sensitive and confident localization 

of the targets of focal somatic copy- number alteration in human 
cancers. Genome Biol. 2011;12(4):R41.

 18. Taylor JM. Random survival forests. J Thorac Oncol. 
2011;6(12):1974- 1975.

 19. Meng J, Li P, Zhang Q, Yang Z, Fu S. A four- long non- coding RNA 
signature in predicting breast cancer survival. J Exp Clin Cancer Res. 
2014;33:84.

 20. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package 
for comparing biological themes among gene clusters. OMICS. 
2012;16(5):284- 287.

 21. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA- P: a 
desktop application for gene set enrichment analysis. Bioinformatics. 
2007;23(23):3251- 3253.

 22. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, 
Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. 
Bioinformatics. 2011;27(12):1739- 1740.

 23. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepa-
tocellular carcinoma. N Engl J Med. 2008;359(4):378- 390.

 24. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib 
in patients in the Asia- Pacific region with advanced hepatocel-
lular carcinoma: a phase III randomised, double- blind, placebo- 
controlled trial. Lancet Oncol. 2009;10(1):25- 34.

 25. Siow ZR, De Boer RH, Lindeman GJ, Mann GB. Spotlight on the 
utility of the Oncotype DX((R)) breast cancer assay. Int J Womens 
Health. 2018;10:89- 100.

 26. Bhutiani N, Egger ME, Ajkay N, Scoggins CR, Martin RC 2nd, 
McMasters KM. Multigene signature panels and breast cancer 
therapy: patterns of use and impact on clinical decision making. J 
Am Coll Surg. 2018;226(4):406- 412.

 27. Wang SY, Dang W, Richman I, Mougalian SS, Evans SB, Gross 
CP. Cost- effectiveness analyses of the 21- gene assay in breast 
cancer: systematic review and critical appraisal. J Clin Oncol. 
2018;36(16):1619- 1627.

 28. Kopetz S, Tabernero J, Rosenberg R, et al. Genomic classifier ColoPrint 
predicts recurrence in stage II colorectal cancer patients more accu-
rately than clinical factors. Oncologist. 2015;20(2):127- 133.

 29. Tan IB, Tan P. Genetics: an 18- gene signature (ColoPrint(R)) for 
colon cancer prognosis. Nat Rev Clin Oncol. 2011;8(3):131- 133.

 30. Maak M, Simon I, Nitsche U, et al. Independent validation of a prog-
nostic genomic signature (ColoPrint) for patients with stage II colon 
cancer. Ann Surg. 2013;257(6):1053- 1058.

 31. Shepelev MV, Korobko IV. The RHOV gene is overexpressed in human 
non- small cell lung cancer. Cancer Genet. 2013;206(11):393- 397.

 32. Deng J, Chen H, Zhou D, et al. Comparative genomic analysis of 
esophageal squamous cell carcinoma between Asian and Caucasian 
patient populations. Nat Commun. 2017;8(1):1533.

 33. Liu P, Morrison C, Wang L, et al. Identification of somatic mutations 
in non- small cell lung carcinomas using whole- exome sequencing. 
Carcinogenesis. 2012;33(7):1270- 1276.

 34. Chen H, Suzuki M, Nakamura Y, et al. Aberrant methylation of FBN2 
in human non- small cell lung cancer. Lung Cancer. 2005;50(1):43- 49.

 35. Cortese R, Hartmann O, Berlin K, Eckhardt F. Correlative gene expres-
sion and DNA methylation profiling in lung development nominate new 
biomarkers in lung cancer. Int J Biochem Cell Biol. 2008;40(8):1494- 1508.

How to cite this article: Zhang S, Zeng X, Lin S, Liang M, 
Huang H. Identification of seven- gene marker to predict the 
survival of patients with lung adenocarcinoma using 
integrated multi- omics data analysis. J Clin Lab Anal. 
2022;36:e24190. doi:10.1002/jcla.24190

https://orcid.org/0000-0001-9978-3153
https://orcid.org/0000-0001-9978-3153
https://doi.org/10.1002/jcla.24190

