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Abstract: Obstructive sleep apnea is a chronic and prevalent condition that is associated with
endothelial dysfunction, atherosclerosis, and imposes excess overall cardiovascular risk and mortality.
Despite its high prevalence and the susceptibility of CVD patients to OSA-mediated stressors, OSA
is still under-recognized and untreated in cardiovascular practice. Moreover, conventional OSA
treatments have yielded either controversial or disappointing results in terms of protection against
CVD, prompting the need for the identification of additional mechanisms and associated adjuvant
therapies. Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen
activator (tPA) and urinary-type plasminogen activator (uPA), is a key regulator of fibrinolysis and cell
migration. Indeed, elevated PAI-1 expression is associated with major cardiovascular adverse events
that have been attributed to its antifibrinolytic activity. However, extensive evidence indicates that
PAI-1 can induce endothelial dysfunction and atherosclerosis through complex interactions within
the vasculature in an antifibrinolytic-independent matter. Elevated PAI-1 levels have been reported
in OSA patients. However, the impact of PAI-1 on OSA-induced CVD has not been addressed to
date. Here, we provide a comprehensive review on the mechanisms by which OSA and its most
detrimental perturbation, intermittent hypoxia (IH), can enhance the transcription of PAI-1. We also
propose causal pathways by which PAI-1 can promote atherosclerosis in OSA, thereby identifying
PAI-1 as a potential therapeutic target in OSA-induced CVD.

Keywords: obstructive sleep apnea; intermittent hypoxia; plasminogen activator inhibitor-1;
endothelial dysfunction; atherosclerosis

1. Introduction

Obstructive sleep apnea (OSA) is a chronic condition affecting up to one billion people
worldwide [1]. OSA is defined as a sleep-breathing disorder that involves a decrease or com-
plete cessation of airflow despite ongoing efforts to breathe due to a collapsed upper airway.
This leads to partial reductions (hypopneas) and complete pauses (apneas) in breathing
that usually last between 10 and 30 s, but some may persist longer. This can lead to abrupt
reductions in blood oxygen saturation, with oxygen levels falling as much as 40% or more in
severe cases [2]. As a result, several pathological mechanisms ensue such as intermittent hy-
poxia (IH), sleep fragmentation, episodic hypercapnia, and increased intrathoracic pressure
swings [3–5]. Consequently, these processes can induce major changes in the autonomic
nervous system balance with both increased tonic and reactive sympathetic activity along
with parasympathetic withdrawal, disruption of the hypothalamic–pituitary–adrenal-axis,
systemic and cellular oxidative stress, and inflammation, fibrosis, and accelerated cellular
senescence, all of which resulted in neurocognitive deficits, endothelial dysfunction, hyper-
tension, and atherosclerosis [6–13]. Predictably, OSA is considered as an independent risk
factor for cardiovascular disease (CVD) including coronary artery disease (CAD), ischemic
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stroke, and myocardial infarction (MI) [14]. The majority of strokes and MIs seem to be
prompted by atherothrombotic events along with compromised fibrinolytic activity, increas-
ing the propensity for such events [15,16]. The fibrinolytic system is designed to cleave the
insoluble polymeric network of fibrin from the vascular system to prevent clot overgrowth
and vessel occlusion. Generally, plasminogen is activated by serine proteases plasminogen
activators (PAs) including tissue-type PA (tPA) and urokinase-type PA (uPA) into plasmin,
which in turn lyses the fibrin and other extracellular matrix components [17,18]. To prevent
bleeding, plasminogen activator inhibitor-1 (PAI-1) is normally synthesized in equimolar
amounts to PAs, forms a covalent bond with Pas, and stabilizes fibrin [19]. However, many
processes including oxidative stress [20], inflammation [21], and fibrosis [22] can lead to ele-
vated levels of PAI-1, which have been implicated in a multitude of diseases and conditions
including CVD [23], cancer [24], metabolic disease [25], renal disease [26], behavioral and
psychiatric conditions [27], and aging processes [28]. Furthermore, PAI-1 has been shown
to induce endothelial dysfunction and atherosclerosis through antifibrinolytic-dependent
mechanisms including inflammation [29], endothelial nitric oxide synthase (eNOS) inhibi-
tion [30], neointimal hyperplasia [31], and vascular senescence [28]. Despite the fact that
PAI-1 levels are consistently elevated in OSA patients [32–42], and that OSA can trigger
processes that can upregulate PAI-1 production, little to no attention has been given to
PAI-1 as a biomarker or as a promoter of OSA-induced CVD in clinical practice. Here,
we will summarize the mechanisms involved in upregulating PAI-1, the pathological role
of PAI-1 in CVD, and underline the mechanisms by which OSA could upregulate PAI-1,
thus, highlighting PAI-1 as a potential therapeutic target in OSA-induced CVD. Finally, we
will discuss some of the therapeutic approaches to reduce PAI-1 levels, which may hold
promise as adjuvant therapies in OSA since existing treatments (e.g., continuous positive
airway pressure (CPAP)) appear to be ineffective in reversing or mitigating the frequency
and severity of cardiovascular events in OSA patients [43,44].

2. PAI-1 Sources, Structure, and Function

PAI-1 can be synthetized by numerous types of cells including platelets, macrophages,
adipocytes, hepatocytes, vascular smooth muscle cells, endothelial cells, and others [45–47].
Approximately 10% of the PAI-1 produced circulates in the blood or is deposited in the
subendothelial matrix, while the rest is retained in platelets [48,49]. Platelets can de novo
synthesize PAI-1 despite lacking nuclei through activated PAI-1 mRNA, with the synthesis
rates being increased upon platelet activation [50]. The circulating PAI-1 fraction exists
in its active conformation at levels of 5–50 ng/mL with large intra- and inter-personal
variability, while platelet PAI-1 concentrations can reach up to 300 ng/mL with 50% shown
to be biologically active [48,51,52]. Ultimately, PAI-1 plasma levels are increased under
numerous pathological conditions [53]. The structure and function of PAI-1 have been ex-
tensively reviewed previously [25,54,55]. Briefly, PAI-1 is a single chain molecule with two
interactive domains including a surface-exposed reactive center loop (RCL) that presents
as a substrate peptide becoming the primary site for uPA/tPA binding, and a flexible joint
region with helices D, E, and F that bind to vitronectin and stabilize PAI-1 in its active form
while enhancing its binding affinity to uPA/tPA 200-fold [24,56–61]. PAI-1 exists in three
distinct structurally and functionally distinct conformations including active, latent, and
cleaved [54,62]. Unless bound to vitronectin, the active form can be readily converted to
the more energetically favorable inactive latent form by internalizing the RCL, which may
serve as a regulatory mechanism to prevent excessive anti-fibrinolysis [63–65]. However,
the latent form can be reactivated. In its cleaved form, PAI-1 is still able to bind to other
proteins with its helix, but its ability to inhibit uPA/tPA is abrogated [63]. As alluded to
earlier, PAI-1 is a master regulator of the plasminogen system. PAI-1 can rapidly inactivate
uPA/tPA with a second-order-rate constant between 106 and 107 m−1 s−1, forming a non-
covalent Michaelis-like complex and eventually forming an ester bond between the serine
residue of the protease and the carboxyl group of the P1 residue of PAI-1 [66,67]. PAI-1 also
plays an important role in extracellular matrix (ECM) remodeling by indirectly modulating
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the activity of matrix metalloproteinases (MMPs) [68]. Indeed, by inhibiting the plasmin
activation required for the cleavage of pro-MMP, PAI-1 can block ECM degradation [55].

3. Mechanisms Involved in PAI-1 Upregulation

The human PAI-1 promoter shows a high degree of homology with mice and rats,
suggesting that they are regulated by similar mechanisms. The 5′-flanking region contains
a ‘TATA’ box with several transcription binding sites including hypoxia inducible factor-1α
(HIF-1α), Smads, activator protein-1 (AP-1), specificity protein-1 (SP-1), and nuclear factor
kappa B (NF-
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promoter activity in cultured endothelial cells [74]. Other experimental in vitro and in 
vivo studies performed in animal models as well as in humans have shown that the ad-
ministration of antioxidants can decrease PAI-1 expression [20,75–83]. Due to their intri-
cate interactions with multiple signaling pathways and transcription factors, ROS are in-
volved in most of the mechanisms regulating PAI-1 expression. For instance, ROS-in-
duced PAI-1 increased transcription and expression is mediated through the activation of 
mitogen-activated protein kinase (MAPK) and NF-Ƙ B pathways that are tightly involved 
in pro-fibrotic and pro-inflammatory pathways [74,84]. ROS signaling can also stimulate 
AP-1, HIF-1α, and p53, all of which can increase the transcription of PAI-1 [85,86] (Figure 
1). 

3.2. Inflammation 
Inflammation is a complex constellation of reactions between the host normal de-

fense processes to internal and external stressors that have been implicated in many con-
ditions and age-related diseases, especially in promoting atherosclerosis, a hallmark of 
CVD [87–89]. Low-grade inflammation induces endothelial dysfunction and subintimal 
cholesterol accumulation, leading to the upregulation of intercellular adhesion molecules 
and selectins that promote the binding and transmigration of inflammatory cells includ-
ing monocytes and T-helper cells into the vessel wall. Infiltrating monocytes can trans-
form into resident macrophages that express and activate inflammasomes that are key to 
the propagation of inflammation through the generation of multiple cytokines that am-
plify the inflammatory cascade within the vessel wall [89]. Coupled with enhanced ROS 
production, inflammation enters a vicious cycle in combination with OS, further aggra-
vating atherosclerosis [90]. The link between inflammation and the fibrinolytic system is 
well-established. Experimental in vitro and in vivo studies as well as clinical studies have 
identified tumor necrosis factor-α (TNF-α) as a substantial contributor to increased PAI-1 
expression [91–96]. In endothelial cells, TNF-α upregulated PAI-1 levels and was abol-
ished by N-acetyl cysteine, indicating ROS as a mediator [73]. Administration of TNF-α 
in mice significantly increased the PAI-1 levels in adipose tissue, while obese mice treated 
with antibodies targeting TNF-α exhibited reduced plasma PAI-1 expression and adipose 
tissue-PAI-1 levels [97,98]. It is suggested that TNF-α can induce PAI-1 gene expression 
via redox-sensitive mechanisms triggering NF-ƘB translocation and interaction with a 
regulatory region that is present on the PAI-1 promoter [21,96]. These data showcase the 
interplay between inflammation and OS and their integral role in upregulating PAi-1. 
Other pathways have been suggested in TNF-α-mediated PAI-1 induction including 
MAPK and protein kinase C [93]. Interleukin-6 (IL-6) is another inflammatory cytokine 
involved in PAI-1 upregulation. IL-6 is an acute phase inflammatory reaction protein that 
can induce C-reactive protein (CRP) synthesis and cortisol production [99]. Animals in-
jected with IL-6 had significant increases in PAI-1 levels, while using IL-6 receptor antag-
onist reduced the PAI-1 expression in COVID patients [100,101]. IL-6 can activate NF-ƘB 
and MAPK, leading to increased PAI-1 transcription [55,102] (Figure 1).  

3.3. Fibrosis 
Progressive vascular fibrosis is a prominent feature of atherosclerosis and CVD [103]. 

Transforming growth factor-β (TGF-β) is a major regulator of the fibroproliferative re-
sponse to tissue damage [104]. TGF-β can control cell proliferation and migration, matrix 
synthesis, calcification, and immunomodulation, all being integral components of athero-
sclerosis [105]. TGF-β can be produced by all cells composing the vasculature and can also 
be produced in atherosclerotic lesions. However, TGF-β is mainly released by activated 
platelets adherent to activated endothelium. As a result, TGF-β induces the transcription 
of platelet-derived growth factor, collagens, fibronectin, and thrombospondins while sup-
pressing the breakdown of ECM by inducing the transcription of PAI-1 and metallopro-
tease inhibitors, leading to the accumulation of the fibrotic matrix followed by calcification 

B). In the next section, we will discuss the major contributors to PAI-1
upregulation (Figure 1).
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3.1. Oxidative Stress

Oxidative stress (OS) is the end result of an imbalance between the production of
oxidants and the capacity of the antioxidant system. Although they play an important
role in regulating cellular function and signal transduction, free radicals such as reactive
oxygen species (ROS) can be detrimental when produced in excess, given their ability to
damage lipids, proteins, and DNA [69]. OS is undeniably a major contributor to multiorgan
dysfunction in many disease states including CVD [70]. Indeed, ROS overproduction
directly decreases nitric oxide (NO) bioavailability, uncouples eNOS, oxidizes low-density
lipoprotein (OxLDL), and induces vascular inflammation [71]. OS is a significant upregula-
tor of PAI-1 transcription. Indeed, incubating endothelial cells with H2O2 induced marked
increases in PAI-1 mRNA and protein expression [72]. Conversely, the PAI-1 promoter
was suppressed by up to 75% in the presence of antioxidants [73]. Furthermore, inhibiting
NADPH oxidase, a major source of ROS, abolished the PAI-1 release and promoter activity
in cultured endothelial cells [74]. Other experimental in vitro and in vivo studies performed
in animal models as well as in humans have shown that the administration of antioxidants
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can decrease PAI-1 expression [20,75–83]. Due to their intricate interactions with multiple
signaling pathways and transcription factors, ROS are involved in most of the mechanisms
regulating PAI-1 expression. For instance, ROS-induced PAI-1 increased transcription and
expression is mediated through the activation of mitogen-activated protein kinase (MAPK)
and NF-
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increase the transcription of PAI-1 [85,86] (Figure 1).

3.2. Inflammation

Inflammation is a complex constellation of reactions between the host normal defense
processes to internal and external stressors that have been implicated in many condi-
tions and age-related diseases, especially in promoting atherosclerosis, a hallmark of
CVD [87–89]. Low-grade inflammation induces endothelial dysfunction and subintimal
cholesterol accumulation, leading to the upregulation of intercellular adhesion molecules
and selectins that promote the binding and transmigration of inflammatory cells including
monocytes and T-helper cells into the vessel wall. Infiltrating monocytes can transform
into resident macrophages that express and activate inflammasomes that are key to the
propagation of inflammation through the generation of multiple cytokines that amplify the
inflammatory cascade within the vessel wall [89]. Coupled with enhanced ROS production,
inflammation enters a vicious cycle in combination with OS, further aggravating atheroscle-
rosis [90]. The link between inflammation and the fibrinolytic system is well-established.
Experimental in vitro and in vivo studies as well as clinical studies have identified tumor
necrosis factor-α (TNF-α) as a substantial contributor to increased PAI-1 expression [91–96].
In endothelial cells, TNF-α upregulated PAI-1 levels and was abolished by N-acetyl cys-
teine, indicating ROS as a mediator [73]. Administration of TNF-α in mice significantly
increased the PAI-1 levels in adipose tissue, while obese mice treated with antibodies
targeting TNF-α exhibited reduced plasma PAI-1 expression and adipose tissue-PAI-1 lev-
els [97,98]. It is suggested that TNF-α can induce PAI-1 gene expression via redox-sensitive
mechanisms triggering NF-
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B translocation and interaction with a regulatory region that
is present on the PAI-1 promoter [21,96]. These data showcase the interplay between in-
flammation and OS and their integral role in upregulating PAi-1. Other pathways have
been suggested in TNF-α-mediated PAI-1 induction including MAPK and protein kinase
C [93]. Interleukin-6 (IL-6) is another inflammatory cytokine involved in PAI-1 upregula-
tion. IL-6 is an acute phase inflammatory reaction protein that can induce C-reactive protein
(CRP) synthesis and cortisol production [99]. Animals injected with IL-6 had significant
increases in PAI-1 levels, while using IL-6 receptor antagonist reduced the PAI-1 expression
in COVID patients [100,101]. IL-6 can activate NF-
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3.3. Fibrosis

Progressive vascular fibrosis is a prominent feature of atherosclerosis and CVD [103].
Transforming growth factor-β (TGF-β) is a major regulator of the fibroproliferative response
to tissue damage [104]. TGF-β can control cell proliferation and migration, matrix synthesis,
calcification, and immunomodulation, all being integral components of atherosclerosis [105].
TGF-β can be produced by all cells composing the vasculature and can also be produced in
atherosclerotic lesions. However, TGF-β is mainly released by activated platelets adherent
to activated endothelium. As a result, TGF-β induces the transcription of platelet-derived
growth factor, collagens, fibronectin, and thrombospondins while suppressing the break-
down of ECM by inducing the transcription of PAI-1 and metalloprotease inhibitors, leading
to the accumulation of the fibrotic matrix followed by calcification [103,105]. Overall, TGF-β
production in atherosclerotic lesions can result in negative remodeling and progressive
narrowing of the arteries, leading to MI and stroke [103]. TGF-β is considered as one of
the major drivers of PAI-1 upregulation. In vitro studies have shown that PAI-1 expression
is induced by TGF-β in various types of cells, while elevated PAI-1 levels are associated
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with enhanced TGF-β expression and ECM deposition under many pathological condi-
tions [22,106–111]. TGF-β can induce PAI-1 production through the activation of the Smad
pathway via the nuclear translocation of the Smad 2/3 and Smad 4 complex and binding to
the PAI-1 promoter [112]. Interestingly, TGF-β can induce ROS production and suppress
antioxidant activity in various types of cells and in vivo [113–119]. Thus, PAI-1 expression
can also be mediated through TGF-β-induced ROS production. MAPK and NF-
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B signal-
ing are redox sensitive pathways that can be induced by TGF-β [55,114,120,121]. In TGF-β
treated cells, inhibition of NADPH oxidase blocked TGF-β induced MAPK activated PAI-1
expression [85]. Furthermore, TGF-β can upregulate PAI-1 through Smad interactions with
p53 and the transcription factors AP-1 and SP-1 [22,85,122] (Figure 1).

3.4. Hypoxia

Hypoxia triggers many cellular processes both in physiological and pathological
conditions and has been associated with vascular dysfunction and atherosclerosis [123].
Vascular wall cells respond to hypoxia by tuning metabolism, angiogenesis, inflammation,
cell survival signaling, and ultimately, may develop endothelial dysfunction [124,125].
The main regulator of such processes is the transcription factor HIF-1α. Under normoxic
conditions, HIF-1α is constantly degraded, whereas hypoxia promotes its stability and
transcriptional activity [126]. However, HIF-1α is stabilized in atherosclerotic lesions
even under normoxic conditions. ROS, OxLDL, NF-

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 24 
 

 

promoter activity in cultured endothelial cells [74]. Other experimental in vitro and in 
vivo studies performed in animal models as well as in humans have shown that the ad-
ministration of antioxidants can decrease PAI-1 expression [20,75–83]. Due to their intri-
cate interactions with multiple signaling pathways and transcription factors, ROS are in-
volved in most of the mechanisms regulating PAI-1 expression. For instance, ROS-in-
duced PAI-1 increased transcription and expression is mediated through the activation of 
mitogen-activated protein kinase (MAPK) and NF-Ƙ B pathways that are tightly involved 
in pro-fibrotic and pro-inflammatory pathways [74,84]. ROS signaling can also stimulate 
AP-1, HIF-1α, and p53, all of which can increase the transcription of PAI-1 [85,86] (Figure 
1). 

3.2. Inflammation 
Inflammation is a complex constellation of reactions between the host normal de-

fense processes to internal and external stressors that have been implicated in many con-
ditions and age-related diseases, especially in promoting atherosclerosis, a hallmark of 
CVD [87–89]. Low-grade inflammation induces endothelial dysfunction and subintimal 
cholesterol accumulation, leading to the upregulation of intercellular adhesion molecules 
and selectins that promote the binding and transmigration of inflammatory cells includ-
ing monocytes and T-helper cells into the vessel wall. Infiltrating monocytes can trans-
form into resident macrophages that express and activate inflammasomes that are key to 
the propagation of inflammation through the generation of multiple cytokines that am-
plify the inflammatory cascade within the vessel wall [89]. Coupled with enhanced ROS 
production, inflammation enters a vicious cycle in combination with OS, further aggra-
vating atherosclerosis [90]. The link between inflammation and the fibrinolytic system is 
well-established. Experimental in vitro and in vivo studies as well as clinical studies have 
identified tumor necrosis factor-α (TNF-α) as a substantial contributor to increased PAI-1 
expression [91–96]. In endothelial cells, TNF-α upregulated PAI-1 levels and was abol-
ished by N-acetyl cysteine, indicating ROS as a mediator [73]. Administration of TNF-α 
in mice significantly increased the PAI-1 levels in adipose tissue, while obese mice treated 
with antibodies targeting TNF-α exhibited reduced plasma PAI-1 expression and adipose 
tissue-PAI-1 levels [97,98]. It is suggested that TNF-α can induce PAI-1 gene expression 
via redox-sensitive mechanisms triggering NF-ƘB translocation and interaction with a 
regulatory region that is present on the PAI-1 promoter [21,96]. These data showcase the 
interplay between inflammation and OS and their integral role in upregulating PAi-1. 
Other pathways have been suggested in TNF-α-mediated PAI-1 induction including 
MAPK and protein kinase C [93]. Interleukin-6 (IL-6) is another inflammatory cytokine 
involved in PAI-1 upregulation. IL-6 is an acute phase inflammatory reaction protein that 
can induce C-reactive protein (CRP) synthesis and cortisol production [99]. Animals in-
jected with IL-6 had significant increases in PAI-1 levels, while using IL-6 receptor antag-
onist reduced the PAI-1 expression in COVID patients [100,101]. IL-6 can activate NF-ƘB 
and MAPK, leading to increased PAI-1 transcription [55,102] (Figure 1).  

3.3. Fibrosis 
Progressive vascular fibrosis is a prominent feature of atherosclerosis and CVD [103]. 

Transforming growth factor-β (TGF-β) is a major regulator of the fibroproliferative re-
sponse to tissue damage [104]. TGF-β can control cell proliferation and migration, matrix 
synthesis, calcification, and immunomodulation, all being integral components of athero-
sclerosis [105]. TGF-β can be produced by all cells composing the vasculature and can also 
be produced in atherosclerotic lesions. However, TGF-β is mainly released by activated 
platelets adherent to activated endothelium. As a result, TGF-β induces the transcription 
of platelet-derived growth factor, collagens, fibronectin, and thrombospondins while sup-
pressing the breakdown of ECM by inducing the transcription of PAI-1 and metallopro-
tease inhibitors, leading to the accumulation of the fibrotic matrix followed by calcification 

B, and other factors are promoted
by HIF-1α and in return, enhance HIF-1α stability [123]. PAI-1 is one of the main tran-
scriptional targets of HIF-1α. Indeed, cells exposed to hypoxia display increased PAI-1
mRNA expression and stability [127–131]. HIF-1α knockdown limited irradiation-induced
PAI-1 upregulation in endothelial cells [132]. ROS production in endothelial cells induced
HIF-1α and subsequently PAI-1 production [133,134]. Additionally, ROS induced HIF-1α
via a specific NF-
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pulmonary artery smooth muscle PAI-1 was induced by an NF-
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B-dependent HIF-1α tran-
scription [136]. Although HIF-1α appears to dominate the PAI-1 transcriptional response
to hypoxia, other pathways including HIF-2α, early growth response protein-1 (Egr-1), and
CCAAT-enhancer-binding protein-α (C/EBPα) can augment this response independently
of HIF-1α [137,138] (Figure 1).

3.5. Hormones

Insulin can directly stimulate PAI-1 production in hepatocytes, an effect that is aug-
mented by the presence of insulin-like growth factor [139,140]. The same effect was
observed in cocultured endothelial cells and smooth muscle cells (SMCs) [141]. In the
context of insulin resistance, compensatory hyperinsulinemia decreases the activity of
the PI3-K/Akt pathway and augments the MAPK/ERK pathway, a major driver of PAI-1
production [142,143]. Elevated levels of glucose can also directly increase the expression
of PAI-1 in endothelial cells and SMC through an effect on two adjacent Sp1 sites [122].
These data explain the elevated levels of PAI-1 in conditions characterized by hyperin-
sulinemia and hyperglycemia such as obesity, metabolic syndrome, and type 2 diabetes
mellitus [25,144,145]. Under intense stress, very high levels of glucocorticoid hormones can
increase the production of PAI-1 protein [146]. Glucocorticoids bind to their cytoplasmic
glucocorticoid receptor and the complex is translocated to the nucleus and directly binds to
the glucocorticoid response element that enhances PAI-1 transcription [86]. Angiotensin II,
a major vasoconstrictor and contributor to hypertension upregulated by the activation of
the renin–angiotensin–aldosterone system (RAAS), has been reported to induce PAI-1 ex-
pression in cultured endothelial cells in an angiotensin receptor independent manner [147].
Ang II can increase ROS production, fibrotic signaling (TGF-β), and inflammation, all of
which can increase the expression of PAI-1 [148–150] (Figure 1).
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4. Pathological Role PAI-1 Role in Cardiovascular Disease

In humans, PAI-1 deficiency is a rare disorder that is attributed to mutations in the
SERPINE1 gene that leads to either the absence of PAI-1 plasma detectable levels or the
production of a non-functional PAI-1 protein [151–153]. The disease is characterized mainly
by delayed mild to moderate bleeding following a traumatic event or injury, or during
surgeries and in the contest of pregnancy complications [154,155]. Difficulty in establishing
an accurate diagnosis stems from the fact that the PAI-1 activity assay detects elevated levels
but is much less performant at the lowest detectable ranges [155]. Thus, the true preva-
lence of this rare condition is not well-established. On the other hand, two frequent PAI-1
gene polymorphisms have been shown to affect the PAI-1 levels [156,157]. The 4G/5G
polymorphism that refers to single guanosine insertion/deletion at the transcription site is
associated with higher PAI-1 activity, and the G/A polymorphism that refers to the single
nucleotide substitution of guanine with adenine upstream of the transcription site leads to
increases in the transcription rate [157,158]. Several clinical studies have suggested that
PAI-1 polymorphisms (possibly leading to increased PAI-1 levels or activity) are an indepen-
dent risk factor for major adverse cardiovascular events (MACE) including atherosclerosis,
CAD, MI, stroke, and venous thrombosis [159–166]. Even in the absence of polymorphisms,
elevated PAI-1 levels have been linked to the aforementioned events [23,167–170]. The
Framingham Heart Study showed that PAI-1 levels are predictive of CVD events after
accounting for established risk factors, while a serial increase in PAI-1 is associated with
a further increase in risk [168]. Additionally, a recent meta-analysis identified 38 articles
between 1991 and 2016 that reported PAI-1 levels in 11,557 patients. In studies assessing
PAI-1 concentrations and activity levels, 15.1% and 29.6% of the patients included in these
studies experienced MACE, respectively. Furthermore, patients with MACE had higher
PAI-1 concentrations with a mean difference of 6.11 ng/mL [171]. However, not all stud-
ies confirmed a direct link between the elevated PAI-1 levels and CVD, especially after
adjusting for the confounding factors [172–175]. It is very likely that the absence of such
an association may be explained by the fact that factors such as age, sex, obesity, insulin
resistance, and diabetes are positively correlated with plasma PAI-1 levels [25,175–178].

In order to comprehensively evaluate the pathological role of PAI-1, several mouse
models have been developed. These murine lines are either completely PAI-1 deficient
(PAI-1−/−) or overexpress native or stabilized human or murine PAI-1. PAI-1−/− mice
develop normally with no apparent macroscopic or microscopic histological abnormali-
ties [179]. Although the deficiency of PAI-1 has been shown to increase the resistance to
thrombosis and is protective against atherosclerosis [180–182], other studies have shown
that the absence of PAI-1 can promote atherosclerosis and cardiac fibrosis [183–185]. It is
suggested that abrogating the controlling effect of PAI-1 on the plasminogen system can
contribute to the atherogenic and fibrotic role of plasmin, since the latter can mediate in-
flammation, foam cell formation, and ECM remodeling [186–188]. These data highlight the
importance of the balance required between all the components of the fibrinolytic system
to maintain homeostasis. For mice overexpressing PAI-1, transgenic mice overexpressing a
stable active form of human PAI-1 (PAI-1 stab) display phenotypic abnormalities includ-
ing alopecia and hepatosplenomegaly with age-dependent coronary arterial thrombosis,
even in the absence of severe hypercholesterolemia [189,190]. In addition, transgenic mice
overexpressing native human PAI-1 develop venous, but not arterial thrombosis [191].
For transgenic mice overexpressing stable murine PAI-1, they appear to suffer from an
occasional tail autoamputation with no evidence of thrombosis [191]. The phenotypic
differences observed could be attributable to cross-species differences and to the nature of
the stable variant [54]. Although the major vascular pathological role of PAI-1 is related
to its ability to create a hypofibrinolytic environment, the function of the PAI-1 extends
beyond controlling fibrinolysis through the inhibition of plasmin formation as plasmin
is involved in other physiological processes including ECM remodeling, angiogenesis,
cell growth, and differentiation [192]. PAI-1 can also affect cell migration and signaling
through the interaction with vitronectin and LDL receptor related protein 1 (LRP1). Several
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studies have noted additional anti-fibrinolytic independent mechanisms by which PAI-1
can induce endothelial dysfunction and atherosclerosis (Figure 2).
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4.1. Pro-Inflammatory

As mentioned before, proinflammatory cytokines such as TNF-α and IL-6 can upregu-
late PAI-1 expression [93,100]. However, PAI-1 possesses the intrinsic ability to modulate
inflammation. In alveolar epithelial cells stimulated by cigarette smoke extraction and
lipopolysaccharides (LPS), expression of inflammatory factors and monocyte migration
were detected. After transfection with siRNA-targeted PAI-1, these inflammatory indi-
cators were attenuated, suggesting a proinflammatory role of PAI-1 at least in chronic
obstructive pulmonary disease (COPD) [193]. Moreover, PAI-1 can modulate inflammation
and induce macrophage infiltration in murine lungs after LPS-infusion through toll-like
Receptor-4 (TLR4) [194]. More recently, it has been shown that PAI-1 promotes neutrophil
diapedesis and tissue injury after ischemia-reperfusion (I/R). After I/R, PAI-1 accumulates
on the endothelial cell surface and encounters rolling neutrophils expressing LRP1. PAI-1
then facilitates the adhesion of neutrophils through the intracellular adhesion molecule-1
(ICAM-1) triggering endothelial permeability, transmigration of neutrophils to the suben-
dothelium, and ultimately inflammation and vascular injury [29] (Figure 2). Although
the proinflammatory roles of PAI-1 have not been extensively studied in the setting of
endothelial dysfunction, the few studies described earlier support the assumption that such
effects may be involved in PAI-1-induced CVD.

4.2. eNOS Inhibition

NO is a gaseous molecule that is synthesized by nitric oxide synthases from L-arginine
with a half-life of 2–30 s [195]. In the endothelium, eNOS is the major producer of NO
that diffuses to the smooth muscle cells and stimulates soluble guanylate cyclase, thereby
relaxing SMCs and initiating vasodilation [195]. NO has also anti-thrombotic, antiprolif-
erative, and anti-inflammatory properties [196]. An imbalance in NO production or in its
bioavailability can induce endothelial dysfunction and subsequent CVD [197,198]. Several
protein–protein interactions have been shown to modulate eNOS activity such as caveolin-1,
heat shock protein 90, and hemoglobin-α [199]. Very recently, it has been uncovered that
PAI-1 can be endocytosed by endothelial cells and directly bind to and suppress the ability
of eNOS to produce NO [30] (Figure 2). Additionally, chemical inhibition of PAI-1 was
shown to impair its interaction with eNOS and to enhance endothelium-dependent vasodi-
lation in blood vessels [30]. Another recent study showed that delivery of recombinant
PAI-1 to carotid arteries resulted in reductions in NO signaling and the enhancement of
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endothelial-derived hyperpolarization signaling [200]. This evidence incriminates PAI-1 as
a direct mediator of endothelial dysfunction.

4.3. Senescence

Senescence is an orchestrated cellular process characterized by the permanent termina-
tion of cellular proliferation. Tissue resident cells exhibit hallmarks of the cellular senescent
phenotype predominantly during the development of age-related disorders including
atherosclerosis [201]. Stress-induced premature cellular senescence is the major contributor
to age-dependent vascular pathologies [202]. Quintessential senescent stimuli include
ROS-mediated DNA damage, telomere erosion, and the activation of certain transforming
genes [203,204]. Still, senescent cells are metabolically active and capable of producing
factors called the senescence messaging secretome (SMS). Extensive evidence has identi-
fied PAI-1 as a prominent member of the SMS [28,205]. PAI-1 levels increase with age in
many different tissues, which are associated with the increased incidence of stress-induced
thrombosis in aged mice [206]. In a murine model of thrombosis, plasma PAI-1 levels were
elevated in old thrombosed mice when compared to age-matched non-thrombosed mice or
younger thrombosed mice [207]. These results indicate that the elevation of PAI-1 with age
could predict the onset and progression of atherothrombosis in the elderly population. In
endothelial cells, the majority of high passage cells were senescent and had upregulated
levels of PAI-1, p21, and monocyte adhesion molecule, while the overexpression of SIRT-1
prevented stress-induced senescence by suppressing the PAI-1 levels and enhancing eNOS
expression [208]. Several other in vitro studies showed that TGF-β and p53 pathways ele-
vated PAI-1 levels and inhibited the proliferation of fibroblasts and keratinocytes. However,
with the absence of PAI-1, TGF-β and p53 were unable to inhibit proliferation in both
cells [209,210]. More importantly, overexpressing PAI-1 was sufficient to promote replica-
tive senescence in fibroblasts [209]. These data strongly indicate that PAI-1 is not only a
marker, but also a bona fide mediator of senescence. To confirm that PAI-1 induces vascular
senescence in vivo, experiments using the inhibition of PAI-1 have been shown to reduce
p16 levels and telomere attrition induced by eNOS inhibition in murine aortic tissue [211].
Additionally, in a murine model of accelerated aging (klotho hypomorph), plasma levels
of PAI-1 were 45-fold higher than in wild-type mice with increased renal expression of
p16 that was reduced after PAI-1 pharmacological inhibition with a noticeable increase in
life span [212]. The mechanisms involved in PAI-1-mediated senescence are still unclear.
One suggested pathway was the inhibition of insulin-like growth factor binding protein-3
(IGFBP-3) degradation. IGFBP-3 has been shown to directly induce cellular senescence and
its depletion was protective against doxorubicin-induced senescence [213]. PAI-1 inhibition
also decreased IGFBP-3, p21, p16, and p53 levels in doxorubicin-treated endothelial cells,
fibroblasts, and cardiomyocytes [214] (Figure 2). Overall, it is evident that the PAI-1 plays
an important role in mediating and controlling cellular senescence.

4.4. Neointimal Hyperplasia

Neointimal hyperplasia is a prominent process involved in CVD such as atherosclero-
sis and restenosis after balloon angioplasty. Migration of SMCs from the media through
the ECM into the intima is a key step in neointimal hyperplasia [215]. PAI-1 levels have
been shown to increase in human vascular diseases characterized by neointima forma-
tion [216,217]. Through its interactions with vitronectin and LRP1, PAI-1 can mediate SMC
adhesion and migration. PAI-1 binding to vitronectin inhibits its interactions with its re-
ceptors on SMC, thereby attenuating SMC adhesion and migration [218,219]. On the other
hand, PAI-1 binding to LRP1 could promote SMC migration [220]. Thus, the concentrations
of PAI-1 and vitronectin can influence neointimal formation. Pharmacological inhibition of
PAI-1 in vitro and in vivo can prevent SMC migration and neointimal hyperplasia [31,221].
Indeed, targeting PAI-1 inhibited SMC migration through collagen gels including those
supplemented with vitronectin, but did not inhibit the migration in endothelial cells and
PAI-1 deficient SMCs [31]. Moreover, PAI-1 inhibition decreased the LRP-mediated signal
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transduction in SMCs that was markedly lower in endothelial cells. Importantly, targeting
PAI-1 blocked intimal hyperplasia and inflammation in murine models of pathological
vascular remodeling, but did not impair reendothelialization after mechanical denudation
of the vascular endothelium [31]. These findings suggest an important role of PAI-1 in
neointima formation, at least in settings involving atherosclerosis and restenosis (Figure 2).

5. Is PAI-1 a Mediator of OSA-Induced CVD?

OSA is a chronic condition that is highly prevalent globally, especially among obese
subjects. Extensive evidence links OSA to increased risk of CVD and overall mortality.
The prevalence of OSA among stroke patients is estimated to be 50–70% [222], while up
to 65% of patients who seek medical attention for a cardiovascular event are diagnosed
with OSA [223]. Despite its high prevalence in patients with CVD and the susceptibility
of cardiac patients to OSA-related stressors and adverse cardiovascular outcomes, OSA
often remains under-recognized in the field of cardiovascular medicine. During sleep,
OSA triggers IH coupled with sleep fragmentation that can induce elevations in blood
pressure, OS, and inflammation [3,5,224]. Using rodent models of IH, hemodynamic
changes emerge and lead to blood pressure alterations, along with impairments in vascular
reactivity, ROS production, activation of proinflammatory cytokines, and altered lipid
metabolism, all of which are important factors promoting endothelial dysfunction and
atherosclerosis [4,5]. Unfortunately, the beneficial effects of current OSA therapies such
as continuous positive airway pressure (CPAP) on CVD outcomes are inconsistent and
fraught with scientific controversy. For instance, the largest randomized control study
to date (SAVE) failed to demonstrate conclusive evidence of significant reductions in the
primary end point (composite CVD) among patients treated with CPAP after a mean
of 3.7 years follow-up [44]. A similar randomized clinical trial involving approximately
2500 subjects failed to identify OSA as an independent factor increasing the prevalence of
ischemic coronary events, whereas treatment with CPAP did not significantly reduce the
CAD prevalence [43]. Moreover, although incident CAD events are significantly enhanced
by OSA, this risk is apparent only in those patients without a previous history of CAD [225].
This suggests that once the atherosclerotic vascular pathological processes reach more
advanced stages, their reversibility with OSA treatment may not be possible, a finding that
was recapitulated in mice exposed to IH for prolonged periods of time [226]. Furthermore,
differential sex-specific responses to CPAP for OSA, at least for circulating inflammatory
biomarkers even after adjusting for confounding factors, warrant further investigation
to inform sex-specific personalized treatment approaches [227]. Ultimately, the need for
additional adjuvant therapies aimed at the cardiovascular disturbances induced by OSA
are needed.

Circulating PAI-1 levels are elevated in OSA patients [32–42]. Indeed, OSA has been
associated with a hypercoagulable state and a decrease in fibrinolytic activity [228], putting
OSA patients at high risk of developing thrombosis [229–231]. As described earlier, ROS and
proinflammatory cytokines are major drivers of PAI-1 transcription. Extensive evidence
from clinical and experimental studies shows that lipid, protein, and DNA oxidative
stress markers are all elevated in OSA patients and in animals exposed to IH [232–239].
Additionally, neutrophils and monocytes isolated from OSA patients were shown to be
activated and exhibited increased ROS production [240,241]. Evidence from animals and
cells exposed to IH also shows that NADPH oxidases, xanthine oxidase, and mitochondria
are all major sources of ROS [224]. NF-
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B binding activity [246]. A recent meta-analysis identified a significant association
between OSA and elevated TNF-α levels, while TNF-α levels were consistently correlated
with the severity of OSA [247]. Furthermore, the hypoxic stimulus resulting from IH can
promote HIF-1α signaling and contribute to the upregulation of PAI-1 [248]. Although
clinical studies show normal or even reduced levels of plasma TGF-β levels (another major
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driver of PAI-1 transcription) in OSA [249,250], it has been shown that TGF-β increased
with OSA severity in exhaled breath condensate, which can be normalized by CPAP
treatment [250]. Furthermore, several animal studies have reported increased TGF-β/Smad
signaling in renal, lung, and cardiac tissues when exposed to IH [251–253]. The majority of
OSA patients have other or more coexisting co-morbidities including obesity, hypertension,
diabetes, and metabolic syndrome [254–257]. Thus, the increased RAAS activation and the
enhanced levels of Ang II, along with dyslipidemia, hyperglycemia, and insulin resistance
may impose a synergistic effect on PAI-1 levels in OSA patients. Collectively, OSA appears
to positively affect the PAI-1 levels as the majority of the mechanisms involved in PAI-1
upregulation can be triggered by OSA (Figure 3).
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As indicated in the aforementioned paragraphs, PAI-1 contributes to endothelial dys-
function and atherosclerosis through inflammation, decreased eNOS function, neointimal
formation, and vascular senescence, all of which have been reported in OSA and animals
exposed to IH (Figure 3). Impaired endothelial function has been reported in both children
and adult patients with OSA [258,259]. In animals, a recent meta-analysis analyzed over
125 studies evaluating the impact of IH on vascular function reported that IH altered va-
sodilation and induced increases in vasoconstrictive responses [260]. Several other studies
have reported that IH can uncouple vascular eNOS, reduce eNOS phosphorylation, or
directly reduce NO bioavailability [7,8,261–263]. However, no studies have examined the
potential inhibitory effects of PAI-1 on eNOS under IH settings. A meta-analysis of 18
studies confirmed that OSA is an independent risk factor for carotid intima media thick-
ness (cIMT), even after adjusting for confounding factors [264]. Another meta-analysis in
animals showed that cIMT significantly increases upon IH exposure and that IH increased
atherosclerotic plaque size in ApoE −/− mice [260]. OSA is considered as an acceleration
trigger of cellular senescence. Indeed, it has been suggested that OSA can cause telomere
shortening through enhanced oxidative stress, hypoxia, inflammation, and circadian clock
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disturbances [265]. Recently, plasma exosomes isolated from untreated OSA patients were
shown to increase the senescence markers of naïve endothelial cells including p16 and x-gal,
while similar cells exposed to IH recapitulated the same senescent phenotype [266]. Further-
more, accelerated epigenetic age clock was detected in patients with OSA when compared
to the matched controls, and furthermore, adherent treatment with CPAP resulted in the
deceleration of epigenetic aging [267]. However, the role of PAI-1 in promoting neointimal
formation and mediating vascular senescence has yet to be evaluated in OSA. Thus, it
is plausible that OSA-induced vascular dysfunction can be mediated, at least in part, by
deregulated PAI-1-related pathways (Figure 3). Future experimental studies assessing the
impact of IH in vitro and transgenic mouse lines of PAI-1 will provide valuable insights
into the mechanisms by which PAI-1 induces vascular dysfunction in the context of OSA.

Given that PAI-1 is an independent risk factor for MACE, that PAI-1 shows elevated
levels in OSA patients, and that there is a failure of conventional treatments to prevent
adverse cardiovascular outcomes in OSA patients, it is tempting to propose that targeting
PAI-1 may be advantageous in OSA patients with a risk of CVD. Many approaches have
been dedicated to the development of PAI-1 inhibitors including small molecules, synthetic
peptides, RNA aptamers, and monoclonal antibodies. The mechanisms of action by which
these inhibitors are operationally active include: (i) blocking the initial formation of the
Michalis complex between PAs and PAI-1; (ii) accelerating the transformation of active
PAI-1 to its latent inactive form; or (iii) impeding the formation of the final inhibitory
complex, leading to the substrate behavior of PAi-1 [54]. Several experimental studies
have shown that PAI-1 inhibitors can inhibit metabolic dysregulation, improve endothelial
function, and prevent atherosclerosis in the setting of diet-induced obesity [31,211,268,269].
Despite the extensive characterization of PAI-1 inhibitors and the promising results from the
in vitro and in vivo studies, none of the existing PAI-1 inhibitors have yet to be approved
for use in humans. This is mainly due to the affinity and specificity issues, structural
plasticity of PAI-1, and the counteraction of PAI-1 binding proteins that can modulate its
activity (such as vitronectin) [54]. However, evaluating the potential beneficial effects of
PAI-1 inhibitors in the setting of IH is essential to assess whether PAI-1 is potentially a
recommended approach as a therapeutic target in OSA-mediated CVD.

6. Conclusions

OSA is a chronic and extremely frequent condition that is associated with endothelial
dysfunction, atherosclerosis, and overall cardiovascular risk and mortality. PAI-1 is a key
regulator of the plasminogen system required for control fibrin stabilization to prevent
bleeding. However, elevated levels of PAI-1 may increase the risk of thrombosis and pro-
mote atherosclerosis through antifibrinolytic-independent mechanisms. OSA can trigger
several signaling pathways involved in enhancing PAI-1 transcription. Thus, being ele-
vated in OSA patients, PAI-1 could play an additive role in OSA-induced CVD. However,
PAI-1 influence on CVD in the setting of OSA has yet to be addressed. To this effect,
experimental studies evaluating the impact of IH in PAI-1 deficient, overexpressing, and
vascular-specific deletion transgenic animals are critically needed to elucidate the role of
PAI-1 in OSA-induced CVD. Furthermore, the use of PAI-1 inhibitors under IH conditions
may also provide insights into the effectiveness of PAI-1 antagonism in preventing or
mitigating OSA-mediated CVD. Therefore, PAI-1 could spark clinical interest as a putative
drug target for the treatment of PAI-related CVD in OSA.
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Abbreviations

AP1 Activation protein 1
CAD Coronary artery disease
CPAP Continuous positive airway pressure
CRP C-reactive protein
CVD Cardiovascular disease
ECM Extracellular matrix
eNOS Endothelial nitric oxide synthase
GR Glucocorticoid receptor
HIF-1α Hypoxia-inducing factor-1α
IH Intermittent hypoxia
IL-6 Interleukin-6
LRP1 Low density lipoprotein receptor-related protein 1
MACE Major adverse cardiovascular events
MAPK Mitogen-activated protein kinase
MI Myocardial infarction
MMP Matrix metalloproteinase
NF-κB Nuclear factor kappa B
OSA Obstructive sleep apnea
PAI-1 Plasminogen activator inhibitor-1
RCL Reactive center loop
ROS Reactive oxygen species
SMC Smooth muscle cell
Sp1 Specificity protein 1
TGF-β Transforming growth factor-β
TNF-α Tumor necrosis factor
tPA Tissue-type plasminogen activator
uPA Urokinase-type plasminogen activator
uPAR Urokinase-type plasminogen activator receptor
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