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Background: Antipneumococcal capsular polysaccharide antibody concentra-
tions are used as predictors of vaccine efficacy against vaccine serotype (ST) 
pneumococcal disease among infants. While pneumococcal conjugate vaccines 
(PCV) are recommended globally, factors associated with optimal PCV immune 
response are not well described. We aimed to systematically assess local setting 
factors, beyond dosing schedule, which may affect PCV antibody levels.
Methods: We conducted a literature review of PCV immunogenicity, 
abstracting data from published reports, unpublished sources, and con-
ference abstracts from 1994 to 2010 (and ad hoc 2011 reports). Studies 
included in this analysis evaluated ≥ 2 primary doses of PCV before 6 
months of age in non–high-risk populations, used 7-valent or higher PCV 
products (excluding Aventis-Pasteur and Merck products) and provided 
information on geometric mean concentration (GMC) for STs 1, 5, 6B, 14, 
19F or 23F. Using random effects meta-regression, we assessed the impact 
of geographic region, coadministered vaccines and PCV product on postpri-
mary GMC, adjusting for dosing schedule and ELISA laboratory method.
Results: Of 12,980 citations reviewed, we identified 103 vaccine study arms 
for this analysis. Children in studies from Asia, Africa and Latin America 
had significantly higher GMC responses compared with those in studies 
from Europe and North America. Coadministration with acellular pertussis 
DTP compared with whole-cell DTP had no effect on PCV immunogenicity 

except for ST14, where GMCs were higher when coadministered with acel-
lular pertussis DTP. Vaccine product, number of PCV doses, dosing inter-
val, age at first dose and ELISA laboratory method also affected the GMC.
Conclusions: PCV immunogenicity is associated with geographic region 
and vaccine product; however, the associations and magnitude varied by ST. 
Consideration of these factors is essential when comparing PCV immuno-
genicity results between groups and should be included in the evidence base 
when selecting optimal PCV vaccine schedules in specific settings.
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Following the licensure of the first pneumococcal conjugate vac-
cine (PCV), subsequent pneumococcal formulations have relied 

on antipneumococcal capsular polysaccharide antibody concentra-
tion measurements for their evaluation and licensure. A geometric 
mean concentration (GMC) of 0.35 µg/mL of serotype (ST)-specific 
anticapsular IgG has been recommended by the World Health Organ-
ization (WHO) as the population correlate of protection against inva-
sive pneumococcal disease (IPD) in infants to be used for licensure of 
new products.1–3 Evaluations of nasopharyngeal (NP) carriage have 
suggested that higher antibody concentrations correlate with protec-
tion against mucosal infection; however, those measured systemic 
antibody concentrations are likely a marker for local mucosal immu-
nologic processes and not the effector mechanism.4–7 The suggestion 
that circulating IgG is not the effector mechanism for prevention of 
NP colonization is reinforced by studies showing that pneumococ-
cal polysaccharide vaccine has no impact on colonization in situa-
tions where it has been shown to be immunogenic.6,8 Factors that may 
affect the antibody response to PCV include the number of and inter-
val between doses, geographic region (where maternal transmission 
of antibodies and age of first exposure to pneumococcus may vary), 
age at first dose, coadministered vaccines and the PCV product used.

PCV is recommended by the WHO for use in the routine 
infant immunization schedules of all countries, especially those 
with a high disease burden.9 The WHO has recommended PCV 
since 2007 and the recommended schedule until 2012 has been a 
3-dose primary series schedule without a subsequent booster. How-
ever, studies have shown that although 3-dose primary series sched-
ules produce higher antibody concentrations compared with 2-dose 
primary series schedules, a 2-dose primary series with a booster 
dose also confers high antibody concentrations.10,11 Accordingly, the 
WHO now recognizes a 2-dose primary series with a booster as an 
acceptable alternate schedule.12 Many countries have already intro-
duced PCV using a 3-dose primary series schedule with a booster 
or 1 of the WHO recommended schedules.13–17 However, it is not 
known whether any of these schedules are suboptimal from a dis-
ease impact perspective in the context of other cofactors related to 
the geographic region, coadministered vaccines and PCV product.
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Given the conditions or setting in which a PCV is to be 
used, the combination of effects may be important for determin-
ing the optimal dosing schedule. The objectives of this article were 
to identify which factors affect the postvaccination pneumococcal 
antibody response other than dosing schedule and to illustrate esti-
mated antibody concentrations for various common epidemiologic 
situations rather than presenting results solely as the relative change 
in antibody concentration from 1 setting to another.

METHODS

Literature Search
This analysis is part of a larger project describing the 

impact of PCV dosing schedules on IPD, immunogenicity, NP 
carriage, pneumonia and indirect effects.11,18–21 Details on the lit-
erature search terms and methods used in this systematic review 
are described elsewhere (see Methods Appendix22). In brief, a 
systematic literature review was performed to collect all available 
English language data published from January 1994 to September 
2010 (supplemented post hoc with studies from 2011) on the effect 
of various PCV vaccination schedules among immunized children 
on immunogenicity, NP colonization, IPD, pneumonia and indi-
rect effects among unvaccinated populations. Articles published 
in 14 databases, from ad hoc unpublished sources and abstracts 
from meetings of the International Symposium on Pneumococci 
and Pneumococcal Disease (1998–2010) and the Interscience Con-
ference on Antimicrobial Agents and Chemotherapeutics (1994–
2010), were searched. We included all randomized controlled clini-
cal trials, nonrandomized trials, surveillance database analyses and 
observational studies of any PCV schedule on 1 or more outcomes 
of interest. Studies were included for abstraction if pneumococcal 
polysaccharide vaccine was used as a booster dose, but not as a 
primary dose. Titles and abstracts were reviewed twice and those 
with relevant content on 1 of the 5 outcomes (immunogenicity, car-
riage, invasive disease, pneumonia and indirect effects) underwent 
full review using a standardized data collection instrument. We did 
not search non-English language literature because of the low like-
lihood they would have relevant data for this project. Details on the 
search methods are provided in the Methods Appendix.22

Data Abstraction
Citations recovered through the literature search went 

through several stages of independent review to determine their 
eligibility, as described elsewhere.22 Citations meeting inclusion 
criteria were categorized on an outcome specific basis into “study 
families,” where each family included abstracts or publications gen-
erated from a single protocol, population, surveillance system or 
other data collection system relevant to that outcome. Investigators 
identified primary data from the individual studies making up each 
study family for inclusion in the analysis. The primary data were 
selected as the most current and complete data available for that 
study family. In some cases, these data were drawn from >1 publi-
cation within a family. We also defined “study arms” as a group of 
children distinguished by immunization schedule or PCV product.

We abstracted core information on the following: number 
of children in a “study arm”; PCV manufacturer, valency and con-
jugate protein; coadministered vaccines; country; age at each dose 
and date of study and publication. Additional data abstracted for 
the analysis on immunogenicity covariates included study popu-
lation characteristics (HIV status, sickle cell disease, indigenous 
subgroups and other high-risk groups) and ELISA laboratory meth-
ods. Results that were abstracted included ELISA IgG GMC, the 
percentage of children with ST-specific antibody concentrations 
>0.35 µg/mL [or 0.2 µg/mL if GlaxoSmithKline (GSK) ELISA 

method used], and whether other assays were performed such as 
opsonophagocytic assay and avidity measures.

Inclusion and Exclusion Criteria
Study arms meeting the following criteria were included in 

the analysis: children immunized with at least 2 primary doses of 
PCV, with a first dose at ≤ 4 months of age and the last primary 
dose at ≤ 6 months of age; used licensed or similar to licensed PCV 
products 7-valent or higher and provided information on ELISA 
IgG GMC for any of the 6 STs of interest (1, 5, 6B, 14, 19F or 23F). 
Merck and Aventis products were excluded because they were not 
pursued for licensure and contained carriers that are not the same as 
those used in licensed products. Study arms evaluating only high-
risk populations, including those with HIV infection, sickle cell 
disease, chronic illness and indigenous subgroups, were excluded.

Pneumococcal Vaccine Dosing Schedules
Study arms with immunogenicity data after a second or third 

primary dose were defined as “2 primary dose” or “3 primary dose” 
arms, respectively. Any 3 primary dose schedules that provided immu-
nogenicity data following the second dose were also included with the 
2 primary dose schedules. “2+0” and “2+1” schedules refer to 2 pri-
mary doses without and with a booster dose, respectively. A booster 
dose was defined as immunization between 9 and 18 months of age 
where infants had already received 2 or more doses of PCV. Mean 
age at immunization, if available, defined age at each dose; otherwise, 
scheduled age was used. To collapse into schedules, age was rounded 
to the nearest 2 weeks. Interval between doses was determined by the 
number of months between first and second primary dose.

Data Analysis
We aimed to assess the effect of PCV dosing schedules and 

study-specific covariates on mean ST-specific GMCs while consider-
ing that most studies did not have intrastudy comparisons of sched-
ules. We therefore followed an ecological regression approach to 
compare dosing schedules across studies. We fitted random effects 
meta-regression models of log-transformed GMC levels by ST, 
weighting by the inverse of their variances and calculating robust 
standard errors to account for multiple arms within studies.23,24 We 
evaluated the effect of geographic region, PCV product and coad-
ministered diphtheria, tetanus and pertussis vaccine (DTP), adjusted 
for the effect of the other covariates and for number of doses, age at 
first dose, interval between doses and ELISA laboratory method. For 
studies that did not report the variances of the GMC, we assigned 
the average variance reported by studies within the same region. A 
detailed description of how missing values were accounted for can be 
found in the accompanying immunogenicity article.11

Using the coefficients for each covariate, the regression 
model output was used to estimate the GMC for combinations of 
region, coadministered DTP type and schedule, including potential 
schedules that have not been studied in the existing literature. The 
most common vaccine schedule in a given region was used as the 
reference group to compute GMC for other schedules. The PCV9 
vaccine was used as the reference to generate GMC values for STs 
1 and 5, and PCV7 (Prevnar) was used as the reference for STs 6B, 
14, 19F and 23F.

Analyses were done in SAS 9.2 (SAS Institute Inc., Cary, 
NC) and STATA 11 (StataCorp, College Station, TX).

RESULTS
Of 12,980 citations reviewed, we identified 62 studies on 

immunogenicity, of which 5215,25–75 used licensed or similar to 
licensed PCV products 7-valent or higher, yielding 103 vaccine 
arms eligible for analysis (Table 1). There were only 2 study arms 
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from the Oceania region (Fiji) and these were grouped with the 
Asia region. Studies were conducted in all regions of the world, 
but there were no studies evaluating a 2-dose primary series in the 
Latin America region. The Americas had the least diversity in the 
schedules evaluated and only evaluated schedules of 2-month inter-
vals between doses starting at the age of 2 months. The most com-
mon schedules found among all study arms were 2-, 4- and 6 month 
schedules (37.9%) and 2-, 3- and 4-month schedules (23.3%), 
with most of them conducted in either North America or Europe. 
In Africa, most studies used either a 2-, 3- and 4-month schedule 
(40%) or 6-,10- and 14-week schedule (30%). In Latin America and 
Asia, a 2-, 4- and 6-month schedule was most common.

Common Covariate Groupings
In every region, except Africa, we found diversity in the 

type of DTP vaccine coadministered with PCV; in Africa, all stud-
ies used whole-cell DTP (DTwP) as the coadministered vaccine 
(Table 2). DTwP was used in many studies in every region except 
Europe. Except Africa, every region had 2-, 4- and 6-month sched-
ules evaluated with both acellular pertussis DTP (DTaP) and DTwP 
enabling comparison of the effect of DTP within and between 
regions without confounding by other factors. 2+1 schedules were 
administered with DTaP only, all from European settings (data not 
shown). Only in Europe could we compare DTaP with DTwP for 
different PCV schedules (3, 4 and 5 months and 2 and 4 months). 
PCV7 was evaluated in all regions. Only 1 and 2 non-PCV7 prod-
ucts were evaluated in North America and Asia/Oceania, respec-
tively, and Europe was the only region with analyzable data on all 
5 PCV products.

Effect of Covariates on PCV Immunogenicity
Regression analysis controlling for covariates found that 3 pri-

mary PCV doses produced significantly higher GMCs than 2 primary 

doses (Table 3). We also noted higher GMCs for schedules that had 
2-month intervals between doses in the primary series compared with 
1-month intervals for STs 6B, 14 and 23F, although these results were 
not significant. Age at first dose, interval between doses, number of 
doses and age at last dose were interrelated (3 of these factors deter-
mine the fourth); therefore, we could not evaluate all of these fac-
tors independently. All but 1 study retained the same interval between 
first to second and second to third primary doses. In our analysis, we 
evaluated age at first dose and age at last dose separately and found 
higher GMCs with increasing age, although this was only significant 
for ST6B with a 1.29-fold increase for each month of increasing age.

Geographic region was associated with both pre- and post 
immunization GMC values (Fig.  1). Although preimmunization 
GMC data were sparse, GMCs appeared lowest in North America 
(N = 2 for STs 1 and 5, N = 9 for other STs) and Latin America 
(N = 1) and highest in Africa (N = 3 for STs 1 and 5, N = 5 for 
other STs). For some STs, preimmunization GMCs were inversely 
related to postimmunization GMCs; in that, if preimmunization 
GMCs were low relative to other regions, their postimmunization 
GMCs were high relative to other regions.

Type of DTP coadministered had no effect on immunogenic-
ity for STs 6B, 19F and 23F, but DTaP was associated with 1.6-fold 
higher GMCs for ST14 than DTwP (P < 0.01) and 1.4- and 1.3-fold 
higher GMCs for STs 1 and 5, and the results were not significant 
(Fig.  2). When limiting evaluations to homogeneous settings in 
North America and Europe, DTaP coadministration remained asso-
ciated with a higher GMC for ST14.

ST-specific postprimary GMCs varied by PCV product 
tested. Compared with PCV7, GSK PCV10 had lower GMCs for all 
STs evaluated in common, but significantly higher GMC for ST19F 
after adjusting for ELISA method (Table 3). PCV13 was also lower 
than PCV7 for the 4 STs evaluated in common, but there were few 
PCV13 studies and the difference was not statistically significant. 

TABLE 1.  Characteristics of Included Study Arms by Region

Characteristic Total  
(N = 103)

Number of Study Arms by Region (% in Region)

Africa  
(N = 10)

Asia/Oceania  
(N = 18)

Europe  
(N = 55)

North America  
(N = 13)

Latin America  
(N = 7)

Schedule characteristics
  Number of primary 

doses*
3 80 8 (80.0) 13 (72.2) 40 (72.7) 12 (92.3) 7 (100)
2 23 2 (20.0) 5 (27.8) 15 (27.3) 1 (7.7) 0

  Interval between doses 1 month 42 9 (90.0) 6 (33.3) 27 (49.1) 0 0
2 months 61 1 (10.0) 12 (66.7) 28 (50.9) 13 (100) 7 (100)

  Age at first dose 0 months 1 1 (10.0) 0 0 0 0
6 weeks 9 4 (40.0) 5 (27.8) 0 0 0

2 months 72 5 (50.0) 6 (33.3) 41 (74.5) 13 (100) 7 (100)
3 months 16 0 2 (11.1) 14 (25.5) 0 0
4 months 5 0 5 (27.8) 0 0 0

  Age at last dose 10 weeks 2 1 (10.0) 1 (5.6) 0 0 0
14 weeks 7 4 (40.0) 3 (16.7) 0 0 0
3 months 3 1 (10.0) 0 2 (3.6) 0
4 months 31 4 (40.0) 1 (5.6) 25 (45.5) 1 (7.7) 0
5 months 18 0 4 (22.2) 13 (23.6) 1 (7.7) 0
6 months 42 0 9 (50.0) 15 (27.3) 11 (84.6) 7 (100)

Covariate characteristics
  DTP DTwP 56 10 (100) 12 (70.6) 13 (23.6) 7 (53.9) 4 (57.1)

DTaP 46 0 5 (29.4) 42 (76.4) 6 (46.2) 3 (42.9)
  PCV product PCV7 62 4 (40.0) 16 (88.9) 29 (52.7) 12 (92.3) 1 (14.3)

PCV9 19 5 (50.0) 0 11 (20.0) 0 3 (42.9)
PCV13 3 0 0 2 (3.6) 1 (7.7) 0
PCV10 15 1 (10.0) 2 (11.1) 9 (16.4) 0 3 (42.9)
PCV11 4 0 0 4 (7.3) 0 0

  Laboratory method Wyeth 75 9 (90.0) 15 (83.3) 38 (69.1) 10 (76.9) 3 (42.9)
GSK 28 1 (10.0) 3 (16.7) 17 (30.9) 3 (23.1) 4 (57.1)

*A study arm with immunogenicity data after a second and third dose will appear in both rows.
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Immunogenicity to all GSK products was evaluated using the GSK 
ELISA laboratory method, which is known to produce lower abso-
lute values than other ELISA measurement methods.

Predictive Analyses
Using the output from the regression model, we estimated 

GMCs for plausible schedules, including some which have not been 
reported in the existing literature, combined with DTP type for 

each region (Table 4). The projected change in GMC comparing the 
3-dose 6-, 10- and 14-week schedule with a 2-dose 6- and 14-week 
schedule in Africa is relatively small for STs 1 and 5 (changing 
from GMC = 5.0 µg/mL for both STs to GMC = 4.77 and 3.88 µg/
mL, respectively), but for the other STs the decrease in GMC is 
more substantial (ie, ST6B dropped from GMC 0.97 to 0.27 µg/mL, 
ST14 dropped from 2.51 to 1.33 µg/mL). Although this hypothetical 
schedule cannot be verified directly, a study by Ota et al69 showed a 

TABLE 2.  Number of Study Arms Evaluating Vaccine STs by Region, Type of DTP Vaccine and Schedule

Region DTP Schedule

Study Arms by ST

6B, 14, 19F, 23F 1, 5

N % N %

Africa DTwP 2 and 3 months or 6 and 10 weeks 2 2.3% 1 3.0
0,10 and 14 or 6, 10 and 14 weeks 4 4.6% 3 9.1
2, 3 and 4 months 4 4.6% 3 9.1

Asia and Oceania DTwP 6 and 10 weeks 1 1.1% — —
4 and 6 months 3 3.4% — —
6, 10 and 14 weeks 3 3.4% 1 3.0
2, 4 and 6 months 3 3.4% — —
4, 5 and 6 months 2 2.3% — —

DTaP 2 and 4 months 1 1.1% — —
1.5, 3 and 6 or 2, 4 and 6 months 3 3.4% 1 3.0
3, 4, and 5 months 1 1.1% — —

Europe DTwP 2, 3 and 4 months 5 5.7% 1 3.0
2, 4 and 6 months 7* 8.0% 1 3.0

DTaP 2 and 3 months 2 2.3% — —
2 and 4 or 3 and 5 months 8 9.2% 6 18.2
2, 3 and 4 or 3,4 and 5 months 12† 13.8% 4 12.1
2, 4 and 6 months 6‡ 6.9% 5 15.2

North America DTwP 2 and 4 months 1 1.1% — —
2, 4 and 6 months 6 6.9% — —

DTaP 2, 4 and 6 months 6 6.9% 1 3.0
Latin America DTwP 2, 4 and 6 months 4 4.6% 4 12.1

DTaP 2, 4 and 6 months 3 3.4% 2 6.1
Total 87 33

*N = 8 for ST19F.
†N = 14 for ST14.
‡N = 7 for ST19F.

TABLE 3.  Effect of Covariates on GMC, Adjusted for Dosing Schedule and Other Covariates

Characteristic
Fold change in GMC*

ST1 (N = 31) ST5 (N = 32) ST6B (N = 87) ST14 (N = 89) ST19F (N = 89) ST23F (N = 87)

DTP DTwP Ref Ref Ref Ref Ref Ref
DTaP 1.36 1.33 1.18 1.60† 1.16 1.00

Region Europe Ref Ref Ref Ref Ref Ref
Africa 2.89† 4.22† 1.94‡ 0.98 1.21 0.96
Asia§ 3.41† 3.17† 2.23† 1.73† 1.53† 1.76†
North America 1.14 1.42 0.85 0.77 0.56† 0.69
Latin America 2.59† 2.57† 1.79 1.35 1.44 1.36

PCV product PCV7 — — Ref Ref Ref Ref
PCV9 Ref Ref 1.99† 1.03 0.70 1.25
PCV13 0.80 0.98 0.84 0.79 0.75 0.79
PCV10 0.77 0.81 0.73‡ 0.72† 1.66† 0.55†
PCV11 0.93 0.95 0.62 0.58‡ 1.29 0.53‡

Interval between 
doses

1 month Ref Ref Ref Ref Ref Ref
2 months 1.05 1.03 1.88 1.34 0.96 1.56

Number of 
primary doses

3 Ref Ref Ref Ref Ref Ref
2 0.91 0.75‡  .15† 0.40† 0.68† 0.26†

Age first dose 1-month increase 1.15 1.02 1.29‡ 1.11 1.11 1.18
Laboratory 

method
Wyeth Ref Ref Ref Ref Ref Ref
GSK 0.52 1.19 0.50† 0.82 0.72 0.98

*Compared to reference group.
† P < 0.01; ‡P < 0.05 compared with reference group.
§Includes Fiji; there were no other studies in the Oceania region included in analysis.
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GMC of 0.05 and 1.03 for STs 6B and 14, respectively, using a simi-
lar 2- and 3-month schedule; the GMC in the 3-dose group was 3.47 
for ST 6B and 4.65 for ST 14. In Asia, the predicted fold change was 
similar, but because GMCs were higher in Asia than in Africa, the 
GMCs for the 2-dose 6- and 14-week schedule in Asia are similar 
to the GMCs for the 3-dose 6-, 10- and 14-week schedule in Africa 
(eg, for ST19F in Africa, the GMC = 4.26 µg/mL with 3 doses and 
in Asia, the GMC = 4.25 µg/mL for 2 doses).

Predicted GMC responses followed similar trends in North 
America and Europe. In North America, the predicted change in 
GMC comparing a 2-, 4- and 6-month schedule with a 2- and 4-month 
schedule coadministered with DTaP remains relatively small for STs 
1 and 5 (changing from 3.00 and 2.34 µg/mL to 2.73 and 1.75 µg/mL, 
respectively). A larger change is predicted for the other STs, with 
GMCs changing from 1.09 to 0.16 and 4.50 µg/mL to 1.78 µg/mL for 
STs 6B and 14, respectively. Increasing the interval between primary 

doses from 1 to 2 months also tended to increase GMCs, although 
less substantially than increasing the number of doses. Lowest GMCs 
were predicted for 2-dose schedules with 1 month between doses. 
Nearly all schedules produced predicted GMCs above the 0.35 µg/mL  
value correlated with high vaccine efficacy in children except for 
certain 2-dose schedules in Europe, North America, Africa and Latin 
America for STs 6B and 23F.

DISCUSSION
The number of PCV doses, interval between doses, geo-

graphic region, PCV product and preimmunization antibody levels 
are all significantly associated with postprimary PCV IgG antibody 
concentration, but varied by ST. Within a region, the number of pri-
mary doses had the largest effect on postprimary GMC. Predicted 
GMCs were higher than the 0.35 µg/mL putative population-based 

FIGURE 1.  Average pre- and post-PCV pneumococcal IgG GMC in children by ST and region.
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correlate of protection against IPD used for licensure for most esti-
mated combinations of schedule and covariates, except for certain 
2-dose schedules. Predicted postprimary GMCs for specific sched-
ules varied by region; because of large differences in postimmuni-
zation antibody levels between regions, a 2-dose schedule in Asia 
could have higher GMCs than a 3-dose schedule in North America. 
Coadministration of PCV with DTaP compared with DTwP had no 
impact on the GMC response, except for ST14, where DTaP was 
associated with a higher GMC response.

Higher antibody responses may correlate with mucosal pro-
tection because they reflect a more robust local immune response, 
thus potentially reducing disease transmission and increasing herd 
or indirect protection.4,5 In settings where GMC responses are 
lower, particularly in Europe and North America, 2-dose sched-
ules can result in GMCs below the 0.35 µg/mL correlate of protec-
tion for some STs. A study in the United Kingdom that directly 
compared a 2- and 3-month primary schedule with a 2-, 3- and 
4-month schedule with PCV7 found significantly reduced anti-
body responses to STs 6B, 23F and 18C, with GMCs of 0.19 and 
0.22 µg/mL for STs 6B and 23F, respectively, in the 2-dose arm.15 
These GMC values are similar to the GMCs predicted for a 2- and 
3-month schedule in our analysis (0.19 and 0.34 µg/mL for STs 6B 
and 23F, respectively).

The expanded valency PCV products, PCV13 (Pfizer) and 
PCV10 (GSK), both had lower GMCs than PCV7 (Pfizer) for 3 
of the 4 STs compared in common, but PCV10 was found to have 
a higher GMC for ST19F, and both new products add STs 1 and 
5 which showed antibody responses considerably greater than the 
0.35 µg/mL threshold. The ST19F result is supported by all 4 avail-
able head-to-head evaluations of GSK PCV10 versus PCV7. The 
reduced effects for the other STs are supported in 225,39 of 3 head-to-
head studies with available ST data.25,39,71 The data were too sparse 
to directly compare immunogenicity of PCV13 versus PCV10, but 
given that both vaccines produced antibody levels above the desired 
0.35 µg/mL threshold for all STs, the relevance of these findings for 
policy makers is unclear.

Age at first dose was significantly associated with immu-
nogenicity in this analysis for ST6B only. However, because our 
analysis was dominated by studies with first dose at 6 weeks or 
older, reduced immunogenicity when the first dose is given at birth 
was obscured (only 1 study evaluating a birth dose was included). 
A study in Kenyan infants comparing a birth dose to a first dose at 
6 weeks of age found lower GMCs in the birth dose group for STs 
4, 9V, 18C and 19F at 18 weeks; however, there were no significant 

differences in the proportion of each group reaching the protective 
GMC of 0.35 µg/mL.70

The burden of pneumococcal disease by age for a particular 
region is an important consideration when determining the optimal 
age at first dose. If the peak incidence of IPD or pneumonia occurs 
within the first 6 months of life, an earlier age of first dose would be 
expected to prevent a greater proportion of disease, and according to 
our analyses, would not result in meaningfully lower GMCs than a 
later first dose.76 The burden of disease is also important when con-
sidering increasing the interval between primary doses from 1 to 2 
months, which significantly increases postprimary schedule immu-
nogenicity for STs 6B, 14 and 23F. An increased interval could be 
particularly beneficial in situations where 2 primary doses are used; 
however, if much disease occurs early in life, shorter intervals may 
be beneficial in preventing disease despite the lower GMCs.

There were strong regional differences in the magnitude of 
the pneumococcal ST-specific immune response, with Asia, Africa 
and Latin America having the highest GMCs. Because of these dif-
ferences, there is a limited extent to which findings in North Amer-
ica and Europe can be extrapolated fully to developing country set-
tings. However, we still noted differences in GMCs for different 
numbers of doses and intervals in Asia, Africa and Latin America. 
Although developing country settings had high GMC responses, 
optimizing vaccine response in these settings remains important 
because factors associated with disease risk such as malnutrition, 
higher prevalence of colonization and early onset of colonization 
are more prevalent in low-income populations.

Coadministration of PCV with DTaP versus DTwP did not 
produce discernible differences in immunogenicity for STs 6B, 
19F or 23F. Unexpectedly, coadministration with DTaP was sig-
nificantly associated with higher immunogenicity for ST14 com-
pared with DTwP. Studies of Haemophilus Influenzae type b (Hib) 
conjugate vaccines conjugated to diphtheria or tetanus revealed 
carrier-induced suppression when coadministered with DTP vac-
cines; the adjuvant property of whole-cell pertussis was absent in 
the newer DTaP products revealing carrier suppression and result-
ant lower Hib antibody concentrations.77 Unfortunately, there are 
no randomized head-to-head comparisons of PCV coadministered 
with DTaP versus DTwP. A study by Dagan et al78 evaluating PCV 
has shown a reduced ST-specific antibody response for STs conju-
gated to tetanus toxoids when coadministered with DTaP compared 
with DTwP; the same explanation as for Hib conjugate vaccine is 
believed to play a role. However, ST14 is not conjugated to tetanus 
toxoid, so there is no explanation for why this ST is affected by 
type of DTP coadministered. In the aforementioned study, ST14 
demonstrated an attenuated response with DTaP coadministration, 
although this difference was only significant after the booster dose. 
Another study by Schuerman et al79 comparing DTaP versus DTwP 
coadministration in similar study populations observed a trend 
towards an increased ST14 response with DTaP coadministration, 
although the difference was not statistically significant and disap-
peared after the booster dose. We found no other evidence in the 
published literature to support an increase in immunogenicity of 
ST14 with DTaP coadministration, suggesting that the increased 
ST14 immunogenicity from DTaP coadministration in this meta-
analysis requires further evaluation.

Although we aimed to be comprehensive in identifying 
potentially relevant immunogenicity covariates, there may be fac-
tors that were not recognized or not captured completely. Very few 
studies directly compared covariates and between-study meta-
analyses such as ours likely have residual confounding. We were 
unable to control for certain potential confounders because factors 
were sometimes region specific; studies in Africa used only DTwP 
and PCV13 was evaluated only in North America and Europe. 

FIGURE 2.  Effect of DTaP versus DTwP coadministration on 
postprimary PCV GMC for selected vaccine STs.
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Determining the relative benefit of 1 schedule over another for the 
currently available PCV10 and PCV13 products was limited by the 
paucity of data for those vaccines, which also limited our ability to 
assess impact on STs 1 and 5. Because the individual components 
of the dosing schedule (number of doses, age of first dose, interval 
and age at last dose) are correlated (ie, fixing 3 variables determines 
the fourth), the exact attribution of each component is difficult to 
differentiate. Additionally, because the GSK ELISA method pro-
duces lower absolute GMCs compared with other ELISA methods, 
comparing studies using different assays confounds interpretations 
of differences in immunogenicity. Despite these limitations, we 
confirmed the results of the meta-analysis with studies reporting 
comparisons within a single population, or within a region if a 
study was not available, and found overall agreement in all cases.

This review identifies gaps in the existing literature and 
can direct future research in forming a robust knowledge base on 
which policy decisions can be made, particularly in developing 
countries where limited resources and uncertainty regarding which 
dosing schedule to implement can delay the introduction of life-
saving vaccines. Developing an understanding of whether higher 
GMCs are associated with mucosal protection could have signifi-
cant implications on how the cofactors explored in this analysis can 
impact disease transmission.

This review contributed to the WHO Strategic Advisory 
Group of Experts statement and revised Expanded Programme 
on Immunization guidelines regarding optimization of PCV dos-
ing schedules.12 We have attempted to quantify the effect of certain 
covariates on the immune response to PCV and have demonstrated 
the importance of adjusting for these factors when evaluating vari-
ous dosing schedules. When considered together with program-
matic factors, ST distribution, efficacy, cost effectiveness and bur-
den of disease, our analysis contributes to an evidence base that can 
help policy makers optimize use of PCV in different settings.
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