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When we walk into a new restaurant, we know what to do. 
We might find a table and wait to be served. We know 
that the starter will come before the main, and when the 

bill arrives, we know it is the food we are paying for. This is possible 
because we already know a lot about how restaurants work and only 
have to map this knowledge onto the specifics of the new situation. 
This requires that the common structure is abstracted away from 
the sensorimotor specifics of experience, so it can be applied seam-
lessly to new but related situations.

Such abstraction has been variously described as a schema (in the 
context of human behavior1 and memory research2,3), learning set4 
(in the context of animal reward-guided behavior), transfer learning5 
and meta-learning6 (in the context of machine learning). We have 
little understanding of how the necessary abstraction is achieved in 
the brain or how abstract representations are tied to the sensorimo-
tor specifics of each new situation. However, recent data suggest that 
interactions between frontal cortex and the hippocampal formation 
play an important role7. Neurons8,9 and fMRI voxels10,11 in these brain 
regions form representations that generalize over different sensorim-
otor examples of tasks with the same structure and track different 
task rules embedded in otherwise similar sensory experience12,13.

Both frontal cortex14–17 and hippocampus18–27 have been hypoth-
esized to represent task states and the relationships between them. 
It has not been clear what distinguishes the representations in these 
regions, but insight might be gained by considering spatial cogni-
tion. In rodent hippocampus, place cells are specific to each particu-
lar environment28–30, but firing patterns in neighboring entorhinal 
cortex (including grid cells) generalize across different environ-
ments—that is, they are abstracted from sensorimotor particulari-
ties31–35. Similarly, there is evidence that mPFC representations of 
spatial tasks generalize across different paths36–38.

One possibility is that, as in space, abstracted or schematic 
representations of tasks in cortex are flexibly linked with the sen-
sorimotor characteristics of a particular environment to rapidly 
construct concrete task representations in hippocampus, afford-
ing immediate inferences39,40. Indeed, hippocampal manipula-
tions appear particularly disruptive when new task rules must 
be inferred, either early in training41 or when contingencies 
change42,43.

To probe cortical and hippocampal contributions to generaliza-
tion, we developed a behavioral paradigm where mice encountered 
a series of problems with the same abstract structure (probabilistic 
reversal learning) but different physical instantiations and, hence, 
different sensorimotor correlates. We recorded single units in 
mPFC and hippocampus across multiple problems in each record-
ing session. We examined neuronal representations of both the 
individual elements of each trial and the cross-trial learning that 
controlled animals’ choices. Both mPFC and dCA1 representations 
of trial events were low dimensional—that is, a small set of tem-
poral patterns of activity, corresponding to tuning for particular 
trial events, explained a large fraction of variance in both regions. 
However, they differed with respect to how these representations 
generalized across problems. In mPFC, the same neurons tended 
to represent the same events across problems, irrespective of the 
sensorimotor particulars of the current problem. By contrast, 
although the same events were represented by hippocampus in 
each problem, the specific neurons that represented a given event 
differed in each problem. Both hippocampus and prefrontal cor-
tex (PFC) also contained representations of animals’ current policy 
that integrated events over multiple trials. These policy representa-
tions were again abstract in PFC but tied to sensorimotor specifics 
in hippocampus.
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Fig. 1 | Transfer learning in mice. a, Trial structure of the probabilistic reversal learning problem. Mice poked in an initiation port (gray) and then 
chose between two choice ports (green and pink) for a probabilistic reward. b, Block structure of the probabilistic reversal learning problem. Reward 
contingencies reversed after the animal consistently chose the high reward probability port. c, Example sequence of problems used for training, showing 
different locations of the initiation (I) and two choice ports (A and B) in each problem. d, Example behavioral session late in training in which the animal 
completed 12 reversals. Top sub-panels show animals’ choices, outcomes they received and which side had high reward probability; bottom panel shows 
exponential moving average of subjects’ choices (tau = 8 trials). e, Mean number of trials after a reversal taken to reach the threshold to trigger the next 
reversal, as a function of problem number. f, Probability of choosing the new best option (the choice that becomes good after the reversal) on the last 
ten trials before the reversal and the first ten trials after the reversal split by the first problem and the last problem. The P value refers to the difference 
between the slopes after the reversal point in early and late training (paired-sample t-test, two-sided). g, Mean number of pokes per trial to a choice port 
that was no longer available because the subject had already chosen the other port, as a function of problem number. h, Mean number of pokes per trial  
to a choice port that was no longer available as a function of reversal number on the first five problems and the last five problems during training. The  
P value refers to the difference in the log of the time constants from fitted exponential curves in early and late training (paired-sample t-test, two-sided).  
i,j, Coefficients from a logistic regression predicting current choices using the history of previous choices (i), outcomes (not shown) and choice × 
outcome interactions (j). For each problem and predictor, the coefficients at lag 1–11 trials are plotted. k,l, Coefficients for the previous trial (lag 1, left) and 
average coefficients across lags 2–11 (right), as a function of problem number (P values derived from repeated-measures one-way ANOVAs with problem 
number as the within-subjects factor). Error bars on all plots show mean ± s.e.m. across mice (n = 9 mice). P values in e and g are from the two-way 
repeated-measures ANOVAs with problem number and reversal number as within-subjects factors.
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Results
Mice generalize knowledge between problems. Subjects seri-
ally performed a set of reversal learning problems that shared the 
same structure but had different physical layouts. In each problem, 
every trial started with an ‘initiation’ nose-poke port lighting up. 
Poking this port illuminated two ‘choice’ ports, which the subject 
chose between for a probabilistic reward (Fig. 1a). Once the subject 
consistently (75% of trials) chose the high reward probability port, 
reward contingencies reversed (Fig. 1b). Once subjects completed 
ten reversals on a given port layout (termed a ‘problem’), they were 
moved onto a new problem where the initiation and choice ports 
were in different physical locations (Fig. 1c). All problems, there-
fore, shared the same trial structure (initiate then choose) and a 
common abstract rule (one port has high and one has low reward 
probability, with reversals) but required different motor actions due 
to the different port locations. In this phase of the experiment, prob-
lem switches occurred between sessions, and subjects completed ten 
different problems.

We first asked whether subjectsʼ performance improved across 
problems, consistent with their generalizing the problem structure 
(one port is good at a time, with reversals) (Fig. 1b). Mice took 
fewer trials to reach the 75% correct threshold for triggering a 
reversal within each problem (F9,72 = 3.52, P = 0.001; Extended Data  
Fig. 1a) and, crucially, also across problems (F9,72 = 3.91, P < 0.001; 
Fig. 1e), consistent with generalization. Improvement across prob-
lems tracking the good port might reflect an increased ability to 
integrate the history of outcomes and choices across trials. To assess 
this, we fit a logistic regression model predicting choices, using the 
recent history of choices, outcomes and choice × outcome inter-
actions. Across problems, the influence of both the most recent 
(F9,71 = 5.08, P < 0.001; Fig. 1j,l) and earlier (F9,71 = 5.46, P < 0.001;  
Fig. 1j,l) choice × outcome interactions increased. Subjects’ choices 
were also increasingly strongly influenced by their previous choices 
(F9,71 = 11.77, P < 0.001; Fig. 1i,k), suggesting a decrease in sponta-
neous exploration.

We also asked whether subjects generalized the trial struc-
ture (initiate then choose; Fig. 1a) across problems, by assessing 
how often they made nose-pokes inconsistent with this sequence 
(that is, pokes to the alternative choice port after having made 
a choice, instead of returning to initiation). Mice made fewer 
out-of-sequences pokes across reversals within each problem (F9,72 
= 17.82, P < 0.001; Extended Data Fig. 1b) but, notably, also across 
problems (F9,72 = 18.29, P < 0.001; Fig. 1g). This improvement was 
not just driven by animals’ poor performance on the first problem 
but continued throughout training (F9,64 = 9.36, P < 0.001). To assess 
whether it was driven simply by learning to follow port illumina-
tion, we examined behavior on ‘forced choice’ trials where only one 
choice port illuminated, and the other was inactive. Animals did 
not just follow the light and were equally likely to poke the high 
reward probability choice port as the choice port that was illumi-
nated, demonstrating that their behavior was influenced by their 
belief about reward availability and not just the port illumination 
(Extended Data Fig. 2i,j), although it remains possible that they 
used port illumination while acquiring a new problem.

This observed improvement across problems is consistent with 
meta-learning (or ‘learning to learn’). In line with this, on early 
problems mice learned the new poke sequences necessary to exe-
cute trials gradually over many reversals, suggesting instrumental 
learning. However, at the end of the training, they acquired the new 
poke sequence in a single reversal, suggesting that they ‘learned how 
to learn’ the sequence (t17 = 2.81, P = 0.023; Fig. 1h). Similarly, ani-
mals adapted to reversals faster at the end of training compared to 
the beginning of training (t17 = 5.04, P = 0.001; Fig. 1f). Therefore, 
they had also ‘learned how to learn’ from reward.

These data demonstrate generalization but do not provide a 
mechanism. A possible mechanism is task abstraction, whereby the 

brain uses the same neuronal representation for different physical 
situations that play the same task role. To investigate whether such 
representations existed, we next examined cellular responses in 
mPFC and hippocampus.

Abstract and problem-specific representations in PFC and CA1. 
We recorded single units from dorsal CA1 (345 neurons, n = 3 mice, 
91–162 neurons per mouse) and mPFC (556 neurons, n = 4 mice, 
117–175 neurons per mouse) (Supplementary Fig. 1 and Fig. 2) in 
separate animals using electrophysiology. For recordings, we modi-
fied the behavioral task such that changes from one problem to the 
next occurred within session, with the problem transition triggered 
once subjects completed four reversals on the current problem, up 
to a maximum of three problems in one session. Subjects adapted 
well to this and, in most recording sessions, performed at least 
four reversals in three problems, allowing us to track the activity 
of individual units across problems (Fig. 2c). Cross-problem learn-
ing reached asymptote before starting recordings—that is, during 
recording sessions, mice no longer showed improvement across 
problems (Extended Data Fig. 2), and there were no differences in 
behavioral performance between CA1 and PFC animals (Extended 
Data Fig. 2c,f).

During recording sessions (7–16 sessions per mouse, 341–650 
trials per session), we used ten different port layouts, but, to sim-
plify the analysis, they were all reflections of three basic layout types 
(Fig. 2b), each of which occurred once in every session in a random-
ized order. In the first layout type, the initiation port (I1) was the top 
or bottom port, and the choice ports were the far left and far right 
ports. One of these choice ports remained in the same location in 
all three layouts used in a session and will be referred to as the A 
choice. This acted as a control for physical location, allowing us to 
assess how the changing context of the different problems affected 
the representation of choosing the same physical port. Both the 
other choice port (B choice) and the initiation port moved physi-
cal locations between problems. In the second layout type, both the 
initiation port (I2) and the B choice port (B2) were in locations not 
used in layout type 1. In the third layout type, the initiation port was 
the same as the initiation port in layout type 1 (I3 = I1), and the B 
choice port was the same as the initiation port from layout type 2 
(B3 = I2). Hence, in every recording session, we had examples of (1) 
the same port playing the same role across problems, (2) different 
ports playing the same role across problems and (3) the same port 
playing different roles across problems.

As animals transferred knowledge of the trial structure across 
problems, we reasoned that neurons might exhibit ‘problem-general’ 
representations of the abstract stages of the trial (initiate, choose 
and outcome) divorced from the sensorimotor specifics of each 
problem. On inspection, such cells were common in PFC (Figs. 2d 
and 3a and Extended Data Fig. 3a). Although some problem-general 
tuning was observed in CA1, activity for a given trial event (for 
example, initiation) typically varied more across problems in CA1 
than in PFC (Figs. 2e and 3b and Extended Data Figs. 3b and 4). 
Some CA1 neurons fired at the same physical port across problems 
even though its role in the task had changed. Other CA1 neurons 
‘remapped’ between problems, changing their tuning with respect 
to both physical location and trial events.

These single-unit examples suggest that problem-general repre-
sentations may be more prominent in PFC, while both tuning to 
physical location, and complete remapping between problems may 
be more common in CA1.

Representations generalize more strongly in PFC than CA1. To 
assess whether our single-unit observations hold up at the popu-
lation level, we sought to characterize how neural activity in each 
region represented trial events and how these representations gen-
eralized across problems.
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Fig. 2 | Recording units across multiple problems in a single session. a, Silicon probes targeting hippocampal dorsal CA1 and mPFC were implanted in 
separate groups of mice. b, Diagram of problem layout types used during recording sessions. c, Example recording session in which a subject completed 
four reversals in each of three problems. Top panel shows the ports participating in each problem color-coded by layout type. Bottom panel shows 
the exponential moving average of choices, with the choices, outcomes and reversal blocks shown above. d, Example PFC neurons. Cell 1 in PFC fired 
selectively to both choice ports (but not initiation) in each problem, even though the physical location of the choice ports was different both within and 
across problems. Cell 2 fired at the initiation port in every problem, even when its physical location changed. Cell 3 fired at B choice ports in all problems 
but also gained a firing field when initiation port moved to the previous B choice port (showing that PFC does have some port-specific activity). Cell 4 
responded to reward at every choice port in every problem. Cell 5 responded to reward omission and had high firing during the ITI. Cell 6 responded to 
reward at B choice port (that switched location) in each problem. e, Example CA1 neurons. Some CA1 cells also had problem general firing properties 
(cells 1 and 2). Cell 1 fired at B choice that switched physical location between problems. Cell 2 responded to the same port in all problems and modulated 
its firing rate depending on whether it was rewarded or not. Cell 3 fired at the same port in all layouts. Cell 4 switched its firing preference from initiation 
to B choice that shared physical locations, analogous to ‘place cells’ firing at a particular physical location. This port selectivity was more pronounced in 
CA1 than PFC (Extended Data Fig. 4). Cells 5 and 6 ‘remapped’, showing interactions between problem and physical port. Cell 5 fired at a given port in 
one layout but not when the same port was visited in a different layout. Cell 6 fired at choice time at a given port in one layout and changed its preferred 
firing time to pre-initiation in a different layout. In all plots, average firing rates are arranged by layout types 1, 2 and 3, but the order in which they were 
experienced is plotted in the ‘Experienced layouts’ sub-panel. Error bars show firing rates ± s.e.m. across trials.
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Fig. 3 | Example neurons in physical space and behavioral task. a, Example PFC neurons. For each cell, left panels show trajectories of animals’ nose 
(gray) and locations where spikes occurred (red) in a 2D space corresponding to the view of a camera positioned above the box looking at the ports, affine 
transformed to correct for the oblique view of the ports. Middle panels show firing rate heat maps in this same 2D space. Right panels show average firing 
rates across the trial for each trial type. Layout types are indicated by the color of boxes (blue, yellow and purple). Cell 1 fired at the initiation port in every 
problem even when its physical location changed. Cell 2 fired at all choice ports in all problems. For choice port selective cells (PFC and CA1 cell 2), we split 
the firing rate maps by whether the within-choice port spikes (and occupancies) occurred at times before outcome (left) or during reward consumption 
(right) to further show that these cells are selective to trial events. b, Example CA1 neurons. Cell 1 fired at the bottom initiation port in layout type 2 but not 
when this same port acted as a B choice in layout type 3 or when the port was not a part of the current problem but was visited in layout 1. Cell 2 fired at 
one of the B ports in one layout type 3 and had no selectivity to the same port in layout type 2 when this port was an initiation port and, instead, fired at a 
different B choice in layout type 2. Error bars show firing rates ± s.e.m. across trials.
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We first assessed the influence of different trial variables in 
each region using linear regression to predict spiking activity of 
each neuron, at each timepoint across the trial, as a function of the 
choice, outcome and outcome × choice interaction on that trial  
(Fig. 4a). As the task was self-paced, we aligned activity across trials 
by warping the time period between initiation and choice to match 
the median interval (for more details, see ‘Time warping methods’ 
and Supplementary Fig. 2). We then quantified how strongly each 
variable affected population activity as the population coefficient 
of partial determination (CPD) (that is, the fraction of variance 
uniquely explained by each regressor) at every timepoint across the 
trial (Fig. 4b). This analysis was run separately for each problem 
in the session, and the results were averaged across problems and 
sessions. Both regions represented current choice, outcome and 
choice × outcome interaction, but there was regional specificity in 
how strongly each variable was represented. Choice (A vs B) repre-
sentation was more pronounced in CA1 than PFC (peak variance 
explained—CA1: 8.4%, PFC: 4.8%, P < 0.001), whereas outcome 
(reward vs no reward) coding was stronger in PFC (peak vari-
ance explained—CA1: 7.1%, PFC: 12.9%, P < 0.001). Furthermore, 
choice × outcome interaction explained more variance in CA1 than 
PFC (peak variance explained—CA1: 3.7%, PFC: 2.4%, P < 0.001).

Although highlighting some differences in population coding 
between regions, this approach cannot assess the relative contri-
bution of abstract representations that generalize across problems 
versus features specific to each problem, such as the physical port 
location. This requires comparing activity both across timepoints in 
the trial and across problems, which we did using representational 
similarity analysis (RSA)44. We extracted firing rates around initia-
tion and choice port entries (±20 ms around each port entry type) 
and categorized these windows by which problem they came from, 
whether they were initiation or choice, and, for choice port entries, 
whether the choice was A or B and whether it was rewarded, yield-
ing a total of 15 categories (Fig. 4c). For each session, we computed 
the average activity vector for each category and then quantified the 
similarity between categories as the correlation between the corre-
sponding activity vectors. We show RSA matrices for this ‘choice 
time’ analysis (Fig. 4c, left panels) and an ‘outcome time’ analysis 
(Fig. 4c, right panels) where the windows for choice events were 

moved 250 ms after port entry, holding the time window around 
trial initiations constant.

To quantify the factors influencing representation similarity, we 
created representational similarity design matrices (RDMs) that 
each encapsulated the predicted pattern of similarities under the 
assumption that activity was influenced by a single feature of the 
behavior (Fig. 4d). For example, if the population activity repre-
sented only which physical port the animal was at, its correlation 
matrix would look like Fig. 4d, Port. We included RDMs for a set 
of problem-general features: the trial stage (‘Initiation vs Choice’), 
choice (A vs B) and trial outcome (both on its own as ‘Outcome’ and 
in conjunction with choice ‘Outcome at A vs B’). To assess whether 
the changing context provided by different problems modified the 
representation of choosing the same physical port at the same trial 
stage, we included a ‘Problem-specific A choice’ RDM that repre-
sents similarity between A choices (which are always in the same 
location) within each problem.

To assess the influence of these features on neural activity, we 
modeled the experimentally observed patterns of representational 
similarity (Fig. 4c) as a linear combination of the RDMs (Fig. 4d), 
quantifying the influence of each by its corresponding weight in the 
linear fit. As the RSA matrices changed between choice time and 
outcome time (Fig. 4c), we characterized this time evaluation using 
a series of such linear fits, moving the time window around choice 
port entries in steps from before port entry until after the reward 
delivery while holding the time window around initiation port con-
stant, generating the time series for the influence of each RDM on 
activity shown in Fig. 4e.

Consistent with our single-unit observations, both PFC and CA1 
represented both problem-specific and problem-general features to 
some extent. However, there was a marked regional specificity in how 
strongly different features were encoded (Fig. 4e). PFC had stron-
ger, abstract, sensorimotor-invariant representation of trial stage 
(Initiation vs Choice) and trial outcome (P < 0.001). In contrast, CA1 
had stronger representation of the physical port that the subjects were 
poking and whether it was an A vs B choice (P < 0.001). Additionally, 
CA1, but not PFC, showed a problem-specific representation of A 
choices (P < 0.001). This is striking because, during A choices, both the 
physical port and its meaning are identical across problems, indicating  

Fig. 4 | Problem-general and problem-specific representations in PFC and CA1 population activity. a, Linear regression predicting activity of each neuron 
at each timepoint across the trial, as a function of the choice, outcome and outcome × choice interaction. b, CPDs from the linear model shown in a for 
choice, outcome and outcome × choice regressors in PFC and CA1. Significance levels for within-region effects were based on a two-sided permutation 
test where firing rates were rolled with respect to trials. Significance levels for differences between regions were based on a two-sided permutation test 
across sessions. All significance levels were corrected for multiple comparison over timepoints. c, Representation similarity at ‘choice time’ (left) and 
‘outcome time’ (right), quantified as the Pearson correlation between the demeaned neural activity vectors for each pair of conditions. d, RDMs used to 
model the patterns of representation similarity observed in the data. Each RDM codes the expected pattern of similarities among categories in c under 
the assumption that the population represents a given variable. The Port RDM models a representation of the physical port poked (for example, far left) 
irrespective of its meaning in the trial. A vs B choice models a representation of A/B choices irrespective of physical port. The Outcome RDM models 
representation of reward versus reward omission. The Outcome at A vs B RDM models separate representations of reward versus omission after A and 
B choices. Choice vs Initiation models representation of the stage in the trial. Problem-specific A choice models separate representation of the A choice 
in different problems. e, CPDs in a regression analysis modeling the pattern of representation similarities using the RDMs shown in d. The time course 
is given by sliding the windows associated with choices from being centred on choice port entry to 0.76 seconds after choice port entry while holding 
time windows centred on trial initiations fixed. Stars indicate timepoints where regression weight for each RDM was significantly different between the 
two regions (P < 0.05 (small stars) and P < 0.001 (big stars)), from one-sided permutation tests across sessions corrected for multiple comparison over 
timepoints. f, Confusion matrices from linear decoding of position in trial, using a decoder that was trained on one problem and tested on another, averaged 
across animals and across all problem pairs. Colored squares indicate three possible patterns of decoding that indicate different neuronal content. Blue 
indicates correct cross-task decoding to the same abstract state (for example, B choice decodes to B choice). Red indicates decoding to a different state 
that could have occurred at the same sequential position in the trial (for example, B choice decodes to A choice). Dashed green corresponds to decoding to 
the same physical port for those training and test layouts where the Initiation and B choice ports interchanged (for example, B choice decodes to Initiation 
when the decoder was trained on layout 2 and tested on layout 3). g, Bar plots showing the probability of the cross-task decoder outputting the correct 
abstract state (blue), the other state that can have the same position in the trial sequence (red) and the state that has the same physical port as the 
training data (dashed green, computed only from confusion matrices where B choice and initiation ports interchange) computed using the corresponding 
cells highlighted in f. Error bars report the mean ± s.e.m. across different mice (CA1: n = 3 mice; PFC: n = 4). Significance levels were compared against the 
null distribution obtained by shuffling animal identities between regions (one-sided permutation tests). NS, not significant.
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that the changing problem context alone induced some ‘remapping’ 
in CA1 but not PFC. Finally, there was a regional difference in the 
representation of trial outcome. PFC outcome representations were 

more general (the same neurons responded to reward or reward 
omission across ports and problems, P < 0.001). CA1 also maintained 
an outcome representation, but this was more likely to be conjunctive 
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Fig. 5 | Generalization of low-dimensional representations of trial events. a, Diagram of SVD analysis. A data matrix comprising the average activity 
of each neuron across timepoints and trial types was decomposed into the product of three matrices, where diagonal matrix Σ linked a set of temporal 
patterns across trial type and time (rows of VT) to a set of cellular patterns across cells (columns of U). b, First temporal mode in VT from SVD 
decomposition of data matrix from PFC plotted in each problem separately for clarity and separated by A (green) and B (pink) rewarded (solid) and 
non-rewarded (dashed) choices. c, First cellular mode from SVD decomposition of data matrix from PFC in each problem showing that similar patterns of 
cells participate in all problems. d, Variance explained when using temporal activity patterns V1

T from one problem to predict either held-out activity from 
the same problem (solid lines) or activity from a different problem (dashed lines). Light purple and lilac lines indicate variance explained when shuffling 
timepoints in the firing rates matrices. e, Variance explained when using temporal activity patterns V1

T to predict either activity from the same problem 
and brain region (solid lines) or a different brain region (and, therefore, different animal) and the same problem (dashed lines) D2. f, Variance explained 
when using cellular activity patterns U1 from one problem to predict either held-out activity from the same problem (solid lines) or activity from a different 
problem (dashed lines). Dashed light purple and lilac lines indicate variance explained when shuffling cells in the firing rates matrices. g, Cumulative 
weights along the diagonal Σ using pairs of temporal V1

T and cellular U1 activity patterns from one problem to predict either held-out activity from the same 
problem (solid lines) or activity from a different problem (dashed lines). Weights were normalized by peak cross-validated cumulative weight computed 
on the activity from the same problem. h, To assess whether the temporal singular vectors generalized significantly better between problems in PFC 
than CA1, we evaluated the area between the dashed and solid lines in d for CA1 and for PFC separately, giving a measure for each region of how well 
the singular vectors generalized. We computed the difference in this measure between CA1 and PFC (pink line in h) and compared this difference to the 
null distribution obtained by permuting sessions between brain regions (gray histogram; black line shows the 95th percentile of distribution). Temporal 
singular vectors generalized equally well between problems in the two regions. i, Cellular singular vectors generalized significantly better between 
problems in PFC than CA1. Computed as in h but using the solid and dashed lines from f. g, Pairs of cellular and temporal singular vectors generalized 
significantly better between problems in PFC than CA1. Computed as in h but using the solid and dashed lines from g. a.u., arbitrary units.
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than in PFC—different neurons would respond to reward on A and 
B choices (P < 0.001).

These representational differences between regions survived 
the animal random effects test (see the ‘Statistical significance’ sec-
tion, Extended Data Fig. 5 and individual animal plots in Extended 
Data Fig. 6a–c). To ensure that they were not driven by fine-grained 
selectivity to physical movements, we re-ran the analysis on residual 
firing rates after regressing out the influence of two-dimensional 
(2D) nose position, velocity and acceleration (for more details, 
see the ‘Additional controls for physical movement’ section). All 
inter-region differences except the stronger representation of A vs B 
choice in CA1 survive this control (Extended Data Fig. 7c–e), con-
sistent with the single-cell examples described above (Fig. 3a,b and 
Extended Data Fig. 3). We also assessed whether problem specific-
ity in CA1 might be driven by slow drift over time but found that 
representations changed abruptly at transitions between problems 
(Extended Data Fig. 8).

We used a cross-problem decoding analysis to further character-
ize differences in representation between regions. We trained a lin-
ear model to decode position in the trial (Initiation and A/B choice/
reward/no-reward) using data from one problem and tested the 
decoding performance on a different problem (Fig. 4f,g). Because the 
B and initiation ports moved and sometimes interchanged between 
problems, the pattern of decoding errors is informative about 
whether activity primarily represented physical port or abstract trial 
stage (Initiation vs Choice). Where PFC made errors, they were pre-
dominantly to the other state that could occur at the same sequential 
position in the trial (A rather than B choice or outcome). By contrast, 
CA1 predominantly decoded to the same physical port as the train-
ing data. Together, these population results confirm that PFC had a 
predominantly generalizing representation, and this representation 
embeds the sequential properties of the trial while CA1 encoded 
problem specifics (such as port identity) more strongly.

Generalization of low-dimensional population activity. To fur-
ther explore how the structure of population activity generalized 
between problems, we assessed how accurately low-dimensional 
activity patterns in one problem could explain activity in another. 
Using singular value decomposition (SVD), we decomposed activity 
in each problem into a set of cellular and temporal modes. Cellular 
modes correspond to sets of neurons whose activity covaries over 
time and, hence, can be thought of as cell assemblies. Each cellular 
mode is specified by a vector with a weight for each cell, indicating 
how strongly the cell participates in the mode. Cellular and temporal 
modes come in pairs, such that each cellular mode has a correspond-
ing temporal mode, which is a vector of weights across timepoints 
indicating how the activity of the cellular mode varies over time.

To evaluate the cellular and temporal modes for a given prob-
lem, we first regressed out general movement-related features onto 
the firing rates (for more details, see Extended Data Fig. 7 and the 
‘Additional controls for physical movement’ section). After removing 
the effect of velocity, acceleration and 2D nose position, we computed 
the average residual firing rate at each timepoint across the trial for 
four types of trials: rewarded A choices, non-rewarded A, rewarded 
B and non-rewarded B (non-rewarded trials included both correct 
trials and incorrect trials). For each cell, we concatenated these four 
time series to create a single time series containing the average activ-
ity of the cell across each timepoint of the four trial types. The tem-
poral modes span this same set of timepoints and, hence, capture 
variation across both time-in-trial and trial-type. We then stacked 
these single-cell activity time series for all neurons to create an activ-
ity matrix D where each row contained the activity of one neuron  
(Fig. 5a). Using SVD, we decomposed this activity matrix into cellular 
and temporal modes U and V, linked by a diagonal weight matrix Σ

D = UΣVT

The cellular modes are the columns of U, and the temporal 
modes are the rows of VT. Both modes are unit vectors, so the con-
tribution of each pair to the total data variance is determined by 
the corresponding element of the diagonal matrix Σ. The modes are 
sorted in order of explained variance, such that the first cellular and 
temporal mode pair explains the most variance. The first cellular 
and temporal mode of PFC activity in three different problems is 
shown in Fig. 5b,c. It is high throughout the inter-trial interval (ITI) 
and trial, with a peak at choice time but strongly suppressed after 
reward (similar to cell 5 in Fig. 2d).

We reasoned that (1) if the same events were represented across 
problems (for example, initiation, A/B choice and outcome), then 
the temporal modes would be exchangeable between problems, no 
matter whether these representations were found in the same cells; 
(2) if the same cell assemblies were used across problems, then the 
cellular modes would be exchangeable across problems, no matter 
whether the cell assemblies played the same role in each problem; 
and (3) if the same cell assemblies performed the same roles in 
each problem, then pairs of cellular and temporal modes would be 
exchangeable across problems.

To see whether the same representations existed in each problem, 
we first asked how well the temporal modes from one problem could 
be used to explain activity from other problems. Because the set of 
temporal modes V is an orthonormal basis, any data of the same rank 
or less can be perfectly explained when using all the temporal modes. 
However, population activity in each problem is low dimensional, so 
a small number of modes explain a great majority of the variance. 
Modes that explain a lot of variance in one problem will explain a 
lot of variance in the other problem only if the structure captured 
by the mode is prominent in both problems. The question is, there-
fore, how quickly variance is explained in problem 2ʼs data, when 
using the modes from problem 1 ordered according to their variance 
explained in problem 1. To assess this, we projected the data matrix 
D2 from problem 2 onto the temporal modes V1 from problem 1, giv-
ing a matrix MV whose elements indicate how strongly each temporal 
mode contributes to the problem 2 activity of each neuron:

MV = D2V1

The variance explained by each temporal mode is given by squar-
ing the elements of MV and summing over neurons. We express this 
as a percentage of the total variance in D2 and plot the cumulative 
variance explained as a function of the number of D2ʼs temporal 
modes, when ordering modes according to variance explained in 
D1 (Fig. 5d). To control for drift in neuronal representations across 
time, we computed the data matrices separately for the first and sec-
ond halves of each problem. We compared the amount of variance 
explained using modes from the first half of one problem to model 
activity in the second half of the same problem, with the variance 
explained using modes from the second half of one problem to 
model activity from the first half of the next problem.

In both PFC and CA1, the cumulative variance explained as a 
function of the number of temporal modes used did not depend on 
whether the two datasets were from the same problem (solid) or dif-
ferent problems (dashed) (Fig. 5d,h; P > 0.05). This indicates that the 
temporal patterns of activity and, therefore, the trial events represented 
did not differ across problems in either brain area. However, as this 
analysis used only the temporal modes, it says nothing about whether 
the same or different neurons represented a given event across prob-
lems. In fact, we can even explain activity in one brain region using 
temporal modes from another region and mouse (Fig. 5e).

The pattern was very different when we used cellular modes 
(that is, assemblies of co-activating neurons) from one problem 
to explain activity in another. We quantified variance explained in 
problem 2 using cellular modes from problem 1, by projecting the 
problem 2 data matrix D2 onto problem 1 cellular modes U1, giving  
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a matrix Mu whose elements indicate how strongly each cellular 
mode contributes to problem 2 the activity at each timepoint:

MU = UT
1D2

The total variance explained by each temporal mode is given by 
squaring the elements of MU and summing over timepoints. In both 
PFC and CA1, cellular modes in U that explained a lot of variance in 
one problem explained more variance in the other half of the same 
problem than they did in an adjacent problem (Fig. 5f; differences 
between solid and dashed lines). However, the within-problem  

versus cross-problem difference was larger in CA1 than PFC  
(Fig. 5i; P < 0.05). This indicates that PFC neurons whose activity 
covaried in one problem were more likely to also covary in another 
problem, when compared to CA1 neurons. As this analysis consid-
ered only the cellular modes, it does not indicate whether a given 
cell assembly carried the same information across problems.

To assess how well the cellular and temporal activity patterns from 
problem 1 explained activity in problem 2, we projected dataset D2 
onto the cellular and temporal mode pairs of problem 1 (UT

1 , V1).

Σ2 = UT
1D2V1
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trials back (one-sided t-test, P < 0.05) except for the 7th trial (t6 = 1.99, P = 0.094). Error bars report the mean ± s.e.m. across mice. b, CPDs from regression 
models predicting neural activity using current trial events, subjects’ policy (estimated using the behavioral regression in a) and policy interacted with current 
choice. Stars denote the timepoints at which each regressor explained significantly more variance than expected by chance (permutation test based on 
rolling firing rates with respect to trials, P < 0.001, corrected for multiple comparisons; for more details on permutation tests, see the ‘Statistical significance’ 
section). c, Correlations across problems between policy weights in regressions predicting neural activity. Regressions were run separately for A (left panels) 
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evaluated for each pair of timepoints; values on the diagonal show how correlated policy representation was at the same timepoint in both problems. Positive 
correlation indicates that the same neurons coded policy with the same sign in both problems. d, To quantify whether policy generalized more strongly 
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times for A (solid) and B (dashed line) choices. Significant differences between conditions are indicated by stars as shown in the legend.
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If the same cell assemblies perform the same roles in two differ-
ent problems, the temporal and cellular modes will align, and Σ2 
will have high weights on the diagonal. We, therefore, plotted the 
cumulative squared weights of the diagonal elements of Σ within 
and between problems (Fig. 5g). In both PFC and CA1, cellular and 
temporal modes aligned better in different datasets from the same 
problem (solid lines) than for different problems (dashed lines). 
However, this difference was substantially larger for CA1 than PFC 
(Fig. 5j; P < 0.05). All results also held true when using a time win-
dow between only initiation and choice (Extended Data Fig. 9).

These data show that, although the temporal structure of activity 
in both regions generalizes perfectly across problems, brain regions 
and subjects— a consequence of the same set of trial events being 
represented in each—the cell assemblies used to represent them 
generalized more strongly in PFC than CA1.

Generalization of policy representations. So far, we have focused 
on how neuronal representations of individual trial events general-
ize across problems. But, to maximize reward, the subject must also 
track which option is best by integrating the history of choices and 
outcomes across trials. To be useful for generalization, this policy 
representation should also be divorced from the current sensorimo-
tor experience of any specific problem.

To estimate subjects’ beliefs about which option was best, we 
used a logistic regression predicting the current choice as a function 
of the choice and outcome history (Fig. 6a). This gave a trial-by-trial 
estimate of the probability the animal would choose A versus B—that 
is, the animal’s policy. We used this policy as a predictor in a linear 
regression predicting neural activity, run separately for each prob-
lem with results averaged across problems and sessions (Fig. 6b).  
Policy explained variance that was not captured by within-trial 
regressors such as choice, reward and choice × reward interac-
tion. Specifically, the subjects’ policy interacted with the current 
choice-explained variance (P < 0.001) starting around the time of 
trial initiation, when it would be particularly useful for guiding  
the decision.

We next asked whether this policy representation generalized 
across problems. Policy may generalize differentially for A and 
B choices because only the B port varied between problems. We, 
therefore, analyzed A and B choice trials separately. We ran a set 
of linear regressions, each predicting neural activity in one prob-
lem at a single timepoint in the trial, using policy and trial outcome 
as regressors. The policy beta weights from each regression corre-
spond to the pattern of neural activity that represented policy in one 
problem at one timepoint. We can, therefore, quantify the extent 
to which policy representations generalized between problems as 
the correlation coefficient between the policy beta weights. We 
computed the average across-problem correlation of these weights 
between every pair of timepoints (Fig. 6c). The diagonal elements of 
these matrices show the average correlation across problems at the 
same timepoint in each problem. These correlations were larger in 
PFC than CA1 on both A and B choices (P < 0.05, permutation test; 
Fig. 6d), showing that, on average, policy representations general-
ized across problems better in PFC than CA1.

One possible explanation is that PFC simply represented action 
values in a problem-general way. A more interesting possibility is 
that current policy shapes the representation of each trial stage dif-
ferently, but, in CA1, these representations are more tied to the sen-
sorimotor specifics of the current problem. To test this, we examined 
time slices through the correlation matrices at initiation, choice and 
outcome times (Fig. 6e). In PFC, all three correlation profiles on 
both A and B trials peaked at the correct timepoint (the equivalent 
to the diagonal elements of the matrix)—that is, the policy represen-
tations generalized across problems but were specific to each part 
of the trial (initiate, choose and outcome). A similar pattern was 
present in CA1 but only on A choices (which are the same physical 

port across problems). No CA1 correlation was significantly above 
zero on B choices. Indeed, whereas PFC policy correlations were 
greater than CA1 correlations for all representations (all P < 0.05) 
on both A and B choices, CA1 correlations showed a greater differ-
ence between A and B trials at outcome time (Fig. 6e; all P < 0.05).

Overall, therefore, both PFC and CA1 maintained representa-
tions of the subject’s current policy that were not simple value rep-
resentations, as they differed depending on the trial stage. These 
representations were abstracted across problems in PFC but tied to 
the sensorimotor specifics in CA1. A portion, but not all, of this 
problem specificity in CA1 was accounted for by the port identity.

Discussion
Humans and other animals effortlessly generalize prior experi-
ence to novel situations that are only partially related. To do this, 
we must reduce experiences to abstractions—features that are com-
mon between different situations. Critically, we must also bind these 
abstractions to the specifics of the current situation. Our study 
makes three contributions to understanding how, and when, this 
process happens.

First, we show that this focus on abstraction, common in stud-
ies of spatial reasoning and memory2,3, is also important in stan-
dard reinforcement learning paradigms, such as reversal learning. 
Whereas the dominant focus in these paradigms has been on vari-
ables such as value and prediction error45–47 (important for learning 
actions de novo), we show that the neural representation in mPFC 
reflects the temporal structure of the problem itself, which may 
allow actions to be generalized from similar previous experiences. 
One intriguing possibility is that such representations are formed 
during the shaping process that precedes most operant experiments.

Second, we show that mPFC and CA1 contain different represen-
tations that suggest different functional roles. Population responses 
in mPFC were dominated by problem-invariant representations that 
might form the abstraction. By contrast, the CA1 responses contained 
major sources of variance that were either invariant to the senso-
rimotor particularities (port selective) or, intriguingly, the interac-
tion of these with the problem structure (demonstrating ‘remapping’ 
between problems or reflecting the interaction of task policy and 
individual port). Representations such as these are required to bind 
task-general abstractions to the current sensory problem.

Third, we show that task abstractions in mPFC simultaneously 
represent behavior over markedly different temporal scales. Part of 
the mPFC representation pertained to the immediate next action in 
the sequence (for example, go to the initiation port), but part of the 
representation pertained to the integrated history of rewards and 
actions over many trials that allowed the animal to make profitable 
choices. Notably, both parts of the representation were largely main-
tained in an abstract form that generalized over problems with dif-
ferent sensory particularities.

These findings are related to previous findings across several dif-
ferent literatures.

In reinforcement learning, recent data have highlighted the 
low-dimensional structure of abstract task representations in 
rodent orbitofrontal cortex9. This aligns with our finding that 
low-dimensional temporal modes are consistent across different 
sensorimotor instances of the reversal learning problem in both 
mPFC and CA1. We also confirm that they are consistent between 
animals and further demonstrate that they are broadly consistent 
between different brain areas (mPFC and CA1), suggesting that this 
low-dimensional temporal structure does not reflect the unique 
representational properties of a particular brain area. Notably, how-
ever, because we record across the same neurons in different prob-
lems, we are able to ask not only whether the temporal dimensions 
are preserved across problems but also whether these temporal 
modes align to the same neurons in each problem—that is, whether 
the same neurons represent the same trial events across problems.  
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They do so significantly more in PFC than CA1. It is this that 
enables us to propose different functional roles for the two different 
brain regions.

Recent reinforcement learning work has also found a form of 
abstraction in primate PFC and hippocampus48. Because abstrac-
tion was assessed across conditions that used the same physical 
operandum and, hence, shared sensorimotor correlates, it is not 
possible in these data to discern whether hippocampal representa-
tion would generalize to different sensorimotor instantiations of the 
same problem. By contrast, the focus of our study is on how these 
brain regions enable generalization of knowledge across problems 
that share the same abstract structure but different sensorimotor 
experiences. In future work, it would be valuable to examine the 
converse situation, where problems with different abstract structure 
recruit the same sensorimotor sequences. Such designs would be 
particularly powerful in contexts where theory makes quantitative 
predictions for how task structure shapes representations49,50.

The essence of reinforcement learning is the integration of 
rewards over temporally extended experiences to generate expected 
values or policies51. Our demonstration that these policy represen-
tations are abstracted aligns directly with ideas from computer sci-
ence, such as meta-reinforcement learning6,52,53, which have recently 
been proposed as models to understand prefrontal activity. Indeed, 
our behavioral data directly demonstrate meta-learning, as reversals 
become faster with increasing experience.

Notably, we also found that policy coding was not unique to 
PFC, as hippocampus also contained policy representations, cor-
roborating existing findings for the existence of signals relevant 
for decision-making in hippocampal formation54–56. We expand on 
these observations to provide further evidence that hippocampal 
activity might represent sensorimotor specifics of events in the con-
text of broader memory schemas and task structures.

Although relatively new to the neuroscience of reinforcement 
learning, the overarching ideas in our study are central in the study 
of memory and space. Here, it is commonly assumed that hippo-
campal representations reflect the sensory details of each episodic 
experience19,20,57, and cortical representations abstract these details 
to allow generalization58–60. Indeed, in spatial studies in rodents, 
new abstractions (schemas) rely causally on mPFC3. Equally, spatial 
reasoning in rodents is dependent on grid cells30, which abstract of 
the fundamental 2D properties of physical space. Recent data and 
modeling have shown that hippocampal spatial representations are 
bound to this abstraction40,61. We think that our study demonstrates 
that many of these ideas carry directly over to structural abstrac-
tions in reinforcement learning problems and, therefore, further 
align these historically distinct fields.

We do not perceive the world as it really is. Starting with the 
visual 2D inputs on the retina that we use along with prior expe-
rience to infer the 3D world around us62, our brains likely develop 
structural placeholders for many of our experiences. In fact, we 
remember things more easily if we know the general schema or a 
script for a particular event63, and we often ignore information that 
does not align with our understanding of the world64. More broadly, 
here we demonstrate that mice also acquire sophisticated models of 
tasks that they frequently experience in their environment and can 
apply this knowledge to solve new problems faster. We further show 
that PFC contains generalized representations of variables needed to 
solve new related problems while hippocampus combines sensorim-
otor and abstract information to represent an interaction between 
the two, which might be crucial for both interpreting our ongoing 
experiences as well as encoding and recall of episodic memories.
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Methods
Behavioral apparatus. Experiments were performed in custom-made operant 
boxes, controlled using pyControl65. The boxes used in the training phase of the 
experiment had six nose-poke ports on the back wall, each with infrared beam, 
stimulus LED and solenoid valve for dispensing liquid rewards and a speaker for 
auditory stimuli. For recording experiments, mice were transferred to operant 
boxes with nine nose-poke ports located in electrically shielded sound-attenuating 
chambers. The operant box design is detailed at https://github.com/pyControl/
hardware/tree/master/Behaviour_box_small.

Subjects. Nine male C57BL/6J mice were used in the study, aged 6 weeks at 
the start of the experiment. Animals were group-housed before surgery and 
individually housed after surgery on a 12-hour light/dark cycle. All nine animals 
were implanted with silicon probes, but we obtained data from only seven, due 
to one probe being damaged during surgery and having to cull one animal before 
recordings. No statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications9,37,38. Animals 
were pseudo-randomly assigned to the CA1 and PFC groups. Data collection 
and analysis were not performed blinded to the conditions of the experiments. 
Experiments were carried out in accordance with Oxford University animal use 
guidelines and performed under UK Home Office Project Licence P6F11BC25.

Behavioral training. Mice were placed on water restriction 48 hours before starting 
behavioral training, with 1 hour of water access provided 24 hours before the first 
session. Mice were trained 6 days per week, and, on the day off, they received 
1 hour ad libitum water access in their home cage. On training days, mice typically 
received all their water in the task but were given additional water if required to 
maintain their body weight above 85% of their pre-restriction baseline weight.

Mice were trained on a sequence of reversal learning problems, each with the 
same structure but a different physical port layout. Each reversal learning problem 
used three nose-poke ports, out of the six or nine ports available in the operant 
box. One port was used for trial initiation; the other two were choice ports where 
reward could be obtained. During the initial training phase (Fig. 1a), ports not 
used in the current problem were covered. During recording sessions, ports used in 
all three problems presented in the session were exposed throughout, and unused 
ports were covered.

Each trial started with the initiation port lighting up, until the subject poked 
it, after which two choice ports both lit up. Mice chose one of the choice ports, 
which triggered a sound cue (250 ms long), indicating the trial outcome, with a 
pure tone (5 kHz) indicating that they will get a reward and white noise indicating 
reward omission. Reward was delivered at the termination of the auditory cue. A 
2-second ITI started once the animal left the port after reward consumption or a 
non-rewarded choice. One in four randomly selected trials was a forced-choice 
trial, where a single randomly selected choice port lit up that the animals had to 
select. At any given point in time, one choice port had a high reward probability, 
and the other one had a low probability. Reward probability reversals were 
triggered 5–15 trials after the subject crossed a threshold of 75% correct choices 
(exponential moving average, tau = 8 trials).

In the initial training stage of experiment (Fig. 1), mice encountered a single 
problem (that is, port layout) per session and moved to the next problem the 
session after they had completed ten reversals on the current problem. In each 
problem, the first three reversals had reward probabilities of 0.9 and 0.1 at the 
good/bad choice ports. The fourth and fifth reversals had reward probabilities 
of 0.85 and 0.15, and the remaining reversals had reward probabilities of 0.8 
and 0.2. In this phase, each session was 30 minutes long, and animals performed 
two sessions per day. The reward sizes during this stage were incrementally 
decreased from 15 µl in the beginning of the training to 4 µl, based on the animalsʼ 
performance. Each session started with a free reward given from each of the two 
choice ports. Mice were divided into three groups, with each group starting on a 
different layout. Sequentially presented layouts were chosen to be as different as 
possible, and the sequence of problem layouts was counterbalanced across animals.

Once mice had completed ten problems, we started presenting multiple 
problems in each session to prepare them for recording sessions where we 
sought to record neurons across multiple problems. Initially, mice were trained 
on two problems in a session in the nine port operant boxes subsequently used 
for recordings. Mice completed 12 different problems in this stage, with the port 
layout used in each chosen to be as different from the previous one as possible. 
The reward probabilities in this phase were always 0.8 and 0.2, and the reward 
size was 4 µl. After mice completed two reversal blocks on one layout, choice ports 
that were going to be a part of the new problem layout both lit up. Mice received 
a free reward from each of the new choice ports. Next, the new initiation port lit 
up, signaling mice where they could initiate a trial. See Supplementary Fig. 3 for all 
port layouts and counterbalancing used in the experiment.

Behavior during recordings. During recordings, subjects completed four 
reversal blocks in each of three different problem layouts in every session. Task 
parameters were the same as during the two-layout-per-session training stage, 
with the exception that now subjects needed to complete four blocks on each 
problem before they were moved onto a new one. As before, the problem change 

was signaled by the two new choice ports lighting up until the subject collected a 
reward from each, followed by the new initiation port lighting up. Port layouts used 
during recording sessions were designed to allow us to ask specific questions of the 
neural activity and were all reflections of three basic layout types, each of which 
was presented once per session in a randomized order (results in Fig. 2b).

Electrophysiological recordings and spike sorting. Cambridge NeuroTech 32 
silicon channel probes were used for all recordings, with F series probes used 
for hippocampus and P series for mPFC. For hippocampal recordings, probes 
were implanted above the CA1 cell layer and lowered after surgery until they 
were in the layer, as assessed by local field potential and spike activity. For mPFC 
recordings, we lowered the probe ~100 µm on every recording day. Neural activity 
was acquired at 30 kHz with a 32-channel Intan RHD 2132 amplifier board (Intan 
Technologies) connected to an OpenEphys acquisition board. Behavioral, video 
and ephys data were synchronized using sync pulses output from the pyControl 
system. Recordings were spike sorted using Kilosort66 and manually curated using 
phy (https://github.com/kwikteam/phy). Clusters were classified as single units and 
retained for further analysis if they had a characteristic waveform shape, showed a 
clear refractory period in their autocorrelation and were stable over time.

Surgery and histology. Subjects were taken off water restriction 48 hours 
before surgery and then anaesthetised with isoflurane (3% induction, 0.5–1% 
maintenance), treated with buprenorphine (0.1 mg kg−1) and meloxicam (5 mg kg−1) 
and placed in a stereotactic frame. A silicon probe mounted on a microdrive 
(Ronal Tool) was implanted into either mPFC (AP: 1.95, ML: 0.4, DV: −0.8) or 
dCA1 (AP: −2, ML: 1.7, DV: −0.7), and a ground screw was implanted above 
the cerebellum. Both DV coordinates are relative to the brain surface. Mice 
were given additional doses of meloxicam each day for 3 days after surgery and 
were monitored carefully for 7 days after surgery and then placed back on water 
restriction 24 hours before restarting task behavior. At the end of the experiment, 
electrolytic lesions were made under terminal pentobarbital anaesthesia to mark 
the probe location; animals were perfused; and the brains were fixed-sliced and 
imaged to identify probe locations.

Data analysis. All analyses were carried out using custom Python code. Only 
sessions where animals completed three problems and four reversals in each 
problem were used for neural analyses.

Time-in-trial alignment. Activity was aligned across trials by warping the time 
interval between trial initiation and choice to match the median interval across 
all recorded trials. Activity before trial initiation or after choice was not warped. 
Spike times that occurred between initiation and choice were converted into the 
aligned reference frame by linear interpolation between initiation and choice 
time. The firing rate of each neuron was calculated in the aligned reference frame 
at timepoints evenly spaced every 40 ms, from 1 second before trial initiation 
to 1 second after trial outcome, using a Gaussian kernel with 40-ms standard 
deviation. To compensate for the change in spike density due to time warping, 
spikes in the warped interval between initiation and choice were weighted by the 
stretch factor applied before evaluating the firing rate (Supplementary Fig. 2).

Statistical significance. Significance of differences between brain areas in analyses 
reported throughout the paper were computed by shuffling the sessions of CA1 
and PFC animals to obtain null distributions. To correct for multiple comparison 
across timepoints, the null distributions were formed by taking the peak difference 
between CA1 and PFC across timepoints in each permutation. This approach is a 
commonly used method for family-wise error correction for permutation tests67. 
Real differences in the data were compared against the 95th and 99th percentiles 
of such null distributions. All comparisons also survived a group test obtained by 
shuffling animal identities between regions (Extended Data Fig. 5). To establish the 
significance levels for the effects within regions (Figs. 4b and 6b), the firing rates 
were rolled with respect to trial identities, so that the autocorrelations between 
consequent trials were retained. Where parametric statistical tests were used, the 
data distribution was assumed to be normal, but this was not formally tested.

Representational similarity regression analysis. We created representational 
similarity matrices that consisted of the Pearson correlation coefficients of neurons 
in 15 different conditions, defined by the trial stage, choice, outcome and problem 
number (Results and Fig. 4). Because neurons were not simultaneously recorded, 
we collapsed data across recording sessions for each brain region into a single 
matrix (cells × trial events) and then calculated the correlation matrix across cells 
between different trial events (that is, representational similarity). We used a linear 
regression to model the patterns of representation similarity in the data as a linear 
combination of RDMs:

ri,j = β0 +

9∑

n=1
βnRDMn(i,j)+ ∈i,j

where r(i,j) are elements of the RSA matrix, and RDMn(i,j) are elements of the nth 
RDM. The set of RDMs used is shown in Fig. 4d. Before regressing the correlation 
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matrices onto the RDMs, the diagonal elements from both were deleted, and 
a constant matrix of ones was added to the design matrix to account for any 
condition-independent correlation between neurons. We plotted the CPDs from 
the regression model described above. The CPD was defined as:

CPD (RDMi) = (SSE
∼i − SSEfull model) /SSE∼i

where SSE∼i refers to the sum of squares from a regression model excluding the 
RDMi of interest, and SSEfull model is the sum of squares from a regression model 
including all the RDMs. CPDs describe how much unique variance each RDM 
accounts for in the RSA matrix calculated from firing rates.

Decoding analyses. We trained a support vector classifier (implemented using 
sklearn.svm.SVC) to classify stages of the trial (Initiation, A choice, B choice, A 
reward, B reward, A no-reward and B no-reward) from neural activity on one 
problem and tested how it performed on a different problem. This was computed 
for all problem pairs, and the mean decoding accuracy for each trial stage was 
shown in a form of a confusion matrix (Fig. 4f).

We then analyzed these confusion matrices to look for patterns of decoding 
associated with a representation of (1) physical port, (2) trial stage (initiation, 
choice and type of outcome) and (3) abstract choice. In one of our problem 
layout pairs, initiation port became a B choice (layout 2 to layout 3), and, in 
another, initiation became a B choice (layout 3 to layout 2), so mistakes made by 
the decoder between B choice and Initiation in these pairs indicate a prominent 
representation of port location. Decoding errors between A choices and B 
choices, A rewards and B rewards and A no-rewards and B no-rewards indicate 
a representation of trial stage. Lastly, representation of an abstract choice (A vs 
B) independent of port location was computed by summing cells corresponding 
to the same abstract choice but in a different physical location across problems. 
Statistical significance of differences between PFC and CA1 in decoding patterns 
was established by permuting animal identities between regions and comparing the 
real differences against the 95% confidence interval of the shuffle.

Surprise measure. To investigate the time course of how quickly the firing rates of 
neurons change in response to layout changes (Extended Data Fig. 8), we used the 
‘surprise’ measure from the information theory:

s(xij) =

(
1
n

n∑

i=1
xij − μkl

)2

/σ2
kl

where xij is the firing rate of one neuron on a given trial i and problem layout j; 
and μk and σk are the baseline mean and standard deviation of the firing rate of 
that neuron on a particular problem layout. If j = k, then the s(xij) on each trial i is 
calculated based on the mean firing rate μ and standard deviation σ of the withheld 
trials from the same problem. More precisely, to calculate how much the firing rates 
change during the same problem layout, s(xij) was calculated on the ten trials before 
the problem layout switch (‘test’ within problem), where μk and σk were calculated 
on the ten trials before those ‘test’ trials (‘train’ within problem). If j ≠ k, then the 
s(xij) on each trial i was calculated based on the mean firing rate μ and standard 
deviation σ of the withheld trials from a different problem. So, to estimate how 
much the firing rates change after the problem layout switch, s(xij) was calculated 
on the 20 trials after the problem layout switch (‘test’ between problems), where μk 
and σk were calculated from the ‘train’ trials from a different layout. This measure 
was calculated for each neuron separately and then averaged across all neurons for 
each brain region.

SVD. SVD was performed using the numpy linalg.svd function in Python. SVD is 
a principal component analysis technique that decomposes any n × m matrix into a 
product of three matrices:

D = UΣVT

where D comprises the data matrix to be decomposed; U and VT are sets of  
singular vectors capturing patterns of covariation in the data; and Σ is a diagonal 
weight matrix.

In our SVD analyses, each row of D was the demeaned, trial-aligned activity 
of one neuron across each timepoint of four concatenated trial types: rewarded A 
choices, non-rewarded A, rewarded B and non-rewarded B. So the shape of D was 
[n_neurons, 4 × n_timepoints_per_trial]. The columns of U are vectors that we 
term cellular modes because each is a set of weights over neurons, representing 
groups of neurons whose activity covaries. Each cellular mode has a corresponding 
row in V T that we term a temporal mode, as it is a set of weights over timepoints, 
representing the time course of the cellular mode’s activity. Each temporal mode 
spans the same set of timepoints as the data matrix and, hence, captures variation 
both over time-in-trial and trial-type. As both modes are unit vectors, their 
contribution to the total data variance is determined by the corresponding element 
of the diagonal matrix Σ.

The cellular modes are given by eigendecomposition of the covariances 
between neurons, as can be seen from the following:

DDT
= (UΣVT

)(UΣVT
)
T

DDT
= (UΣVT

)(VΣUT
)

DDT
= UΣ2UT

As DDT is the non-normalized covariance between neurons across timepoints, 
Σ2 is a diagonal matrix of eigenvalues, U are the corresponding eigenvectors and  
UT = U−1 because U is an orthonormal basis.

Similarly, the temporal modes are given by eigendecomposition of the 
covariances between timepoints:

DTD =

(
UΣVT

)T
(UΣVT

)

DTD = (VΣUT
)(UΣVT

)

DTD = VΣ2VT

As DTDT is the non-normalized covariance between timepoints across neurons, 
Σ2 is a diagonal matrix of eigenvalues, V are the corresponding eigenvectors and  
VT = V−1 because V is an orthonormal basis.

Our goal was to test whether cellular and temporal patterns generalize across 
different problems by quantifying how well cellular and/or temporal modes from 
one problem explained variance in another. As a control for drift in representations 
over time, we compared generalization between problems with generalization to 
held-out data from the same problem. To do this, we constructed separate data 
matrices for the first and second half of each problem:

Di,h = Ui,hΣi,hVT
i,h

where i is the problem number i = {1, 2, 3}, and h is the half of the problem  
that the data are taken from h = {f, s}. We can then compare generalization 
between the second half of one problem with the first half of the next with 
generalization between first and second half of the same problem, to ensure  
that any drift is matched between within-problem and cross-problem  
comparisons.

We quantified three different ways in which activity patterns might generalize 
between problems. (1) Generalization of temporal modes irrespective of whether 
they recruited the same neurons. This corresponds to the same trial events being 
represented but not necessarily by the same neurons. (2) Generalization of cellular 
modes irrespective of whether they have the same time course. This corresponds  
to the same cell assemblies co-activating but not necessarily representing the  
same trial events. (3) Generalization of cellular and temporal mode pairs.  
This corresponds to the same cell assemblies representing the same trial events 
across problems.

To quantify how well temporal modes generalized across problems, we 
projected the data matrix from half of one problem on the temporal modes from 
an adjacent half of a different problem:

Mcross
v = D2,fV1,s

The total variance explained by each temporal mode for this problem pair is 
given by squaring the elements of Mcross

v  and summing over neurons. We average 
across all adjacent problem pairs and plot the cumulative variance explained as a 
function of the number of temporal modes used.

The corresponding within-problem variance explained is given by projecting 
the data matrix from half of one problem onto the temporal modes from the other 
half of the same problem:

Msame
v = D1,fV1,s

Similarly for the cellular modes, the cross-problem generalization was given 
by projecting the data matrix from half of one task on the cellular modes from an 
adjacent half of a different problem:

Mcross
U = UT

1,sD2,f

The total variance explained by each cellular mode for this problem pair is 
given by squaring the elements of Mcross

U  and summing over timepoints. Again, 
we average across all adjacent problem pairs and plot the cumulative variance 
explained as a function of the number of cellular modes used.

The corresponding within-problem variance explained is given by projecting 
the data matrix from half of one problem onto the cellular modes from the other 
half of the same problem:

Msame
U = UT

1,sD1,f
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To quantify how well pairs of neural and temporal patterns generalized 
between problems, we projected the data matrix from half of one problem on the 
cellular and temporal modes from an adjacent half of a different problem:

Σcross = UT
1,sD2,fV1,s

Σcross is not diagonal; however, if the same cell assemblies perform the same 
roles in two problems, the temporal and cellular modes will align, and Σcross will 
have high weights on the diagonal. We, therefore, plotted the cumulative sum of 
the squared weights of the diagonal elements. Because we had different numbers 
of neurons in each brain region, Σcross was normalized by the number of neurons 
recorded from the respective brain region.

The corresponding within-problem variance explained is given by projecting 
the data matrix from half of one problem onto the cellular and temporal modes 
from the other half of the same problem:

Σsame = UT
1,sD1,fV1,s

To determine the significance of the differences between two regions, we 
compared differences in the data between PFC and CA1 against a null distribution 
of differences between areas under the curve by shuffling the sessions between 
CA1 and PFC animals.

Estimating policy. We obtained a trial-by-trial estimate of subjectsʼ behavioral 
policy using a logistic regression predicting current trial choice, using the history of 
choices, rewards and choice × reward interactions (Fig. 6a). This gave an estimate 
on each trial of the probability that the animal would choose A, which we term the 
animalʼs policy. We used this policy and its interaction with current choice (policy 
× choice), together with current trial events (choice, outcome and outcome × 
choice interaction), to predict neural activity in a linear regression, quantifying the 
variance explained by each predictor at each timepoint as the CPD (Fig. 6b).

To understand whether policy representations generalized between problems, 
we conducted this linear regression separately for A and B choices (dropping 
the current trial choice predictor from the regression), obtaining one vector of 
coefficients for A choices and one for B choices, indicating how policy affected 
the activity of each neuron, which we term policy representations. As the policy 
representation may change across the trial, we did this for a set of time windows 
across the trial, obtaining a policy representation for each timepoint for A and B 
choices. We quantified how similar policy representations were between problems 
and timepoints as the Pearson correlation, to obtain the matrices shown in Fig. 
6c. Finally, to understand whether these across trial policy signals might also be 
tied to representations of unique trial stages, we examined time slices through 
the correlation matrices at initiation, choice and outcome times. The differences 
between these signals at each timepoint were then compared against null 
distributions described in the ‘Statistical significance’ section.

Additional controls for physical movement. To provide additional controls for 
movement-related activity, we sought to eliminate the effect of an animal’s position, 
velocity and acceleration on firing rates before performing all our subsequent 
analyses. To do this, we used DeepLabCut68 pose estimation software to extract the 
animal’s nose position in each session. Because the cameras in the operant boxes 
were located above the animal, there were some artifacts in the tracking caused by 
the occlusion of the nose by the ports and the head cap, which caused the estimated 
position to jump to incorrect locations. To correct for this, we first removed all 
samples where the likelihood of correct estimation output by DeepLabCut was 
below 90%. We then removed samples adjacent to jumps in position larger than 
ten times the standard deviation of displacements between frames, estimated 
using the 16th and 84th percentiles of the displacement distribution. We then 
removed samples that were not in contiguous groups of at least five. After this 
artifact removal step, we interpolated the missing data, taking advantage of the 
fact that the movements of the ears and nose are highly correlated, such that the 
trajectories of the ears provide information about movements of the nose when 
the nose is occluded. The interpolation was implemented by minimizing a cost 
function with two terms: (1) the sum of squared derivatives of the nose position, 
which promotes linear interpolation of missing data, and (2) the sum of squared 
differences between the derivatives of the ear and nose positions, which promotes 
the interpolated trajectory of the nose tracking those of the ears.

Next, because we had the ground truth of our port locations in physical space, 
we performed a linear registration and transformed the 2D coordinates extracted 
from the video from the oblique camera view to a more informative horizontal 
view of the wall of the ports. Finally, we used our behavioral data to find when the 
animals were inside the ports and corrected for any inaccuracy in our DeepLabCut 
data by placing these coordinates inside the ports.

As we did not expect that the 2D coordinates of animal’s nose position would 
be linearly related to neural firing rates (for example, due to previously reported 
existence of ‘place cells’ in CA1), we first needed to create vectorized ‘occupancy 

maps’ (Extended Data Fig. 7a). Specifically, we defined a set of Gaussian 
‘radial basis functions’ with the centers randomly selected from an animal’s 2D 
coordinates in each session and a standard deviation of 1 cm. Next, for each 
timepoint, we calculated the activity of each basis function (Gaussian in distance 
from center of this field), resulting in a matrix of shape [time, n_basis_functions].

To account for cross-correlations in this matrix, we next performed a principal 
component analysis to extract the first ten orthogonal occupancy components 
across time accounting for >95% of variance. To confirm that our key results 
could not be explained by movement-related parameters, we repeated our main 
analyses using the residual firing rates from a linear model predicting the firing 
of each neuron using these occupancy components, as well as the acceleration 
and velocity of the animal at each timepoint (Extended Data Fig. 7a,b). Because 
we did not have video data for all our animals due to technical limitations at the 
time of experiments, the significance between brain areas in these analyses was 
only computed by shuffling the sessions of CA1 and PFC animals to obtain null 
distributions and correcting for multiple comparisons as before (see the ‘Statistical 
significance’ section).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data from the study are available to download at https://doi.org/10.6084/m9. 
figshare.19773334.

Code availability
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Extended Data Fig. 1 | Transfer learning in mice. a) Number of trials following a reversal taken to reach the threshold to trigger the next reversal, as a 
function of reversal number within each problem and problem number. b) Number of pokes per trial to a choice port that was no longer available because 
the subject had already chosen the other port, as a function of reversal number within each problem and problem number. Shaded area indicates the mean 
± SEM across mice (n = 9).
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Extended Data Fig. 2 | Behaviour during recordings. a) Number of trials following a reversal taken to reach the threshold to trigger the next reversal, 
as a function of reversal number within each problem (F(3, 18) = 24.19, p < .001) and problem number (F(23, 138) = 1.47, p = .09) during recordings. b) 
Average number of trials following a reversal taken to reach the threshold to trigger the next reversal, as a function of problem number during recordings 
(analogous to Fig. 1e). c) There was no significant difference in the mean number of trials animals took to reach the threshold for a reversal during 
recordings between PFC and CA1 animals (t (7) = 0.42, p = .690). d) Number of pokes per trial to a choice port that was no longer available because the 
subject had already chosen the other port, as a function of reversal number within each problem (F(3, 18) = 11.12, p < .001) and problem number (F(23, 138) = 
0.10, p = .474) during recordings. e) Average number of out of sequence pokes mice made as a function of problem number during recordings (analogous 
to Fig. 1g). f) There was no significant difference in the mean number of out of sequence pokes during recordings between PFC and CA1 animals (t (7) = 
1.39, p = .220). g, h) Mice made more out of sequence pokes per trial during the first reversal block compared to every following reversal (Reversal 1 vs 
Reversal 2: t (167) = 2.61, p = .015), 1 vs 3: t (167) = 3.84, p = .001; 1 vs 4: t (167) = 4.15, p < .001). g) All out of sequence pokes plotted as a function reversal 
block number within problem. h) Out of sequence A/B choice pokes plotted as a function reversal block number within problem i-j) Mice did not just 
follow the lights to complete a trial. I) On forced A trials where A choice was illuminated but B choice was good animals were as likely to first choose the 
B choice port (not illuminated but good port at the time) as the illuminated A port (t (7) = 0.76, p = .470) and were much more likely to choose the good B 
port than other ports (initiation and ports used in other problems) (t (7) = 6.25, p <.001). J) On forced B trials where B choice was illuminated but A choice 
was good animals were as likely to first choose the A choice port as the B port (t (7) = 1.45, p =.200), and were more likely to choose the A choice than the 
other ports (t (7) = 2.94, p =.030). Error bars report the mean ± SEM (A-I) or median, inter quartile range and min and max(I-J) across mice (n = 7), dots 
show individual subjects.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Additional example units in physical space and task. For every cell, the top subpanels show nose trajectories in grey and spikes 
in red in each problem layout, in a 2D space corresponding to the view of a camera positioned above the box looking at the ports, affine transformed to 
correct for the oblique view of the ports, (initiation port is indicated in grey, A ports in green and B ports in pink). Middle panels show firing rate heat maps, 
showing activity within choice ports separately for time before outcome information is delivered, and during reward consumption. Bottom panels show 
corresponding task event aligned activity. a) PFC cells. Cell 1 is a reward cell and fires at all choice ports during the reward consumption period. Cell 2 is 
a rewarded choice cell and starts to fire for all rewarded choices before the reward is released. b) CA1 cells. Cell 1 has a conjunction of space and reward, 
only firing for B-rewards at ports in the upper right portion of the map. Note that in layout 1 the animal does in fact make some error pokes into a port that 
is inactive, but will be the B port in layout 2. It fires at this port in layout 2 (where it gets a reward) but not layout 1. Cell 2 is a port selective cell that always 
fires at the same port, no matter whether it is choice or initiation.
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Extended Data Fig. 4 | Port selectivity is more pronounced in CA1 than PFC. a-d) To evaluate the relative influence of problem-general and port-specific 
representations in situations where they conflicted, we sorted neurons by their time of peak activity in Layout Type 2 and plotted their activity in Layout 
Types 2 and 3. The B Choice port in Layout Type 3 was the Initiation port in Layout Type 2. For comparison we also plotted A choices that shared the same 
physical port in both layouts. A) PFC activity on A choice trials in Layout Type 2 (left) and Layout Type 3 (right). b) PFC activity on B choice trials in Layout 
Type 2 (left) and Layout Type 3 (right). c-d) Same as A-B but for CA1. E) We identified cells that had their peak firing rate around initiation in Layout Type 
2 and plotted their average activity in Layout Type 3 on A (left) and B (right) choice trials. f) We identified cells that had their peak firing rate around A 
(left) or B (right) choices in Layout Type 3 and plotted their average activity in Layout Type 2 on A (left) and B (right) choice trials. CA1 neurons that fired 
at initiation in Layout Type 2 fired at B choice in Layout type 3, and vice versa, indicating that they primarily represented physical port. PFC neurons that 
fired at initiation time in Layout Type 2 generalised to initiation time in layout type 3 but also had a peak at B choice, and vice versa, indicating influence of 
both task-general and port-specific representations. Error bars on all plots report mean firing rates ± SEM across cells.
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Extended Data Fig. 5 | Animal based permutation tests. Significance of key differences between CA1 and PFC assessed by permuting subjects between 
regions, rather than sessions as done in main figures. a) Coefficients of partial determination from the linear model shown in Fig. 4a for choice, outcome, 
and outcome x choice regressors in PFC and CA1. b) Coefficients of partial determination in a regression analysis modelling the pattern of representation 
similarities using the RDMs shown in Fig. 4d. c) Sums along the diagonal of the correlation matrices shown in Fig. 6c separately for A and B choices.  
d) Slices through the correlation matrices at initiation (left), choice (centre) and outcome (right) times for A (solid) and B (dash line) choices. For animal 
shuffles in singular value decomposition analyses see Extended Data Fig. 9.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | RSA and the low dimensional structure of activity analyses for individual animals. a) Representation similarity at 'choice 
time' (top) and 'outcome time' (bottom) for each PFC mouse, quantified as the Pearson correlation between the demeaned neural activity vectors for 
each pair of conditions. b) Representation similarity at 'choice time' (top) and 'outcome time' (bottom) for each CA1 mouse. c) Coefficients of partial 
determination (CPDs) in regression analyses modelling the patterns of representation similarities in individual mice using the RDMs shown in Fig. 4d. 
D) Variance explained when using temporal activity patterns V1

T from one problem to predict either held out activity from the same problem (solid lines) 
or activity from a different problem (dash lines) in individual PFC and CA1 mice. e) Variance explained when using cellular activity patterns U1 from one 
problem to predict either held out activity from the same problem (solid lines) or activity from a different problem (dash lines) in individual PFC and CA1 
mice. f) Cumulative weights along the diagonal Σ using pairs of temporal V1

T and cellular U1 activity patterns from one problem to predict either held out 
activity from the same problem (solid lines) or activity from a different problem (dash lines) in individual PFC and CA1 mice. Subpanels in D, E and F show 
differences in area under the curve (within - between problems) for each CA1 and PFC animal.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Fine-grained movement related activity controls. a) We do not expect 2D nose coordinates to be linearly related to firing rates 
so to account for place cell like coding of nose position in the firing rates of neurons we defined a set of gaussian “radial basis functions” with the centres 
randomly selected from an animal’s 2D coordinates in each session (different coloured circles). Next, for each time point we calculated the activity of each 
basis function (gaussian in distance from centre of this field) resulting in a time x (# of basis functions) matrix (left). To account for cross-correlations 
in this matrix we next did a principal component analysis to extract the first ten orthogonal occupancy components across time (middle). Next, we fit a 
linear regression model predicting firing rates of neurons with occupancy as well as nose velocity, and acceleration predictors, resulting in residual firing 
rates that do not contain variability related to these movement and position parameters (right). b) Top two principal components from the PCA analysis 
of occupancies in A from an example session. The first component differentiates initiation in Layout 1 and port B in Layout 2 (same physical location) from 
other ports. The second component differentiates port A (same physical location) from all other ports. c) Representation similarity at 'choice time' (left) 
and 'outcome time' (right), quantified as the Pearson correlation between the residual neural activity (after accounting for movement related parameters) 
vectors for each pair of task conditions as in Fig. 4c. d) Representational Similarity Design Matrices (RDMs) used to model the patterns of representation 
similarity observed in the data. Port RDM was not included in this analysis as the PCs we regress out to account for movement related activity correlate 
strongly with the port position in the task (as in b). Using an RDM that is so highly correlated with a parameter that has already been regressed out can 
lead to false correlations (a la Berkson’s paradox). e) Coefficients of partial determination in a regression analysis modelling the pattern of representation 
similarities in residual firing rates using the RDMs in D. f-g) Policy analyses conducted on residual firing rates after accounting for movement related 
activity. The generalisation of policy on A trials is no longer stronger in PFC than CA1. Stars denote significance levels from two-sided permutation tests 
across sessions corrected for multiple comparison over time points. Controls of precise physical movements in singular value decomposition analyses are 
presented in the main text (Fig. 5d–j).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Rapid problem-induced ‘remapping’ in CA1 but not PFC. The change in activity across transitions between problems was 
quantified using a ‘surprise’ measure indicating how unexpected the population activity was on each trial and time-point given the average activity at that 
time-point across 10 ‘baseline’ trials prior to those shown in the figure (see Surprise Measure Methods). Three types of transition between Layout Types 
were analysed (left, middle and right columns), the diagrams at the top of the figure show how initiation and choice ports changed position for each. In 
the first type of transition (left) both initiation and B choice were in different locations in the two problems. In the second type (middle) initiation was in 
the same physical location but B choices were in different ports. In the third type (right) initiation was in different physical locations but initiation port in 
layout 2 was in the same location as choice B in layout 3. The A choice port was always in the same physical location in all problem layouts. a-j) Heatmaps 
showing how surprising the activity at each time point of each trial was around transitions between problems. Activity in CA1 on A and B choice trials 
is shown in a-c and d-f respectively. Activity in PFC on A and B choice trials is shown in g-i and j-l respectively. In CA1, when an initiation or choice port 
moved to a different physical location, the neuronal representation at the corresponding stage of the trial changed immediately, as indicated by an abrupt 
increase in surprise at the layout transition a-f.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional analyses of low dimensional structure of activity in PFC and CA1. a – c) Generalization of low dimensional structure 
of activity across problems when considering; a) all time-points in the trial (raw firing rates), b) only time-points between initiation and choice (raw firing 
rates), c) only time-points between initiation and choice using residual firing rates after accounting for physical movement. Left: Variance explained when 
using temporal activity patterns V1

T from one problem to predict either held out activity from the same problem (solid lines) or activity from a different 
problem (dash lines). Middle: Variance explained when using cellular activity patterns U1 from one problem to predict either held out activity from the 
same problem (solid lines) or activity from a different problem (dash lines). Right: Cumulative weights along the diagonal Σ using pairs of temporal V1

T and 
cellular U1 activity patterns from one problem to predict either held out activity from the same problem (solid lines) or activity from a different problem 
(dash lines). d) Permutation tests for significance of differences between CA1 and PFC in generalization of temporal (left), cellular (middle) and cellular 
and temporal (right) singular vector, based on the null distribution obtained by shuffling animals across groups (raw firing rates) or sessions (residual 
firing rates after accounting for physical space). We could not permute animals in the analyses of residual firing rates because we were not set up for 
recording video data for our first implanted animal.
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