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Purpose: Although EGFR-mutated patients generally do not benefit from checkpoint 
inhibitors (ICIs), some patients in the KEYNOTE-001 study consistently benefited from 
this treatment. This study investigated immune microenvironment characteristics to identify 
the subgroup of patients that may benefit from ICIs.
Materials and Methods: Using data from The Cancer Genome Atlas Program (TCGA) 
and Cancer Proteome Atlas, TMB and protein level of PD-L1 were explored in the patients 
with EGFR mutations and wild-type patients. Different patterns of EGFR mutations (accord-
ing to EGFR co-mutation with different downstream pathway genesets) were used to group 
EGFR mutation population. Estimated infiltration analyses were used to explore changes in 
the immune microenvironment.
Results: This study analyzed somatic mutation data from 1287 patients from five cohorts 
(TCGA, Broad, The Tumour Sequencing Project, Memorial Sloan Kettering Cancer Center, 
Catalogue Of Somatic Mutations In Cancer database). The probability of EGFR mutation 
was approximately 14.30% (184/1287) and the co-mutation rate was 11.41% (21/184) in 
patients with EGFR mutations. Glycosaminoglycan-related pathways were significantly 
upregulated in the EGFR mutant group. EGFR-mutated patients had lower TMB and PD- 
L1 protein levels than those in wild-type patients. Increase immature DCs infiltration and 
decreased NK CD56dim, T gamma delta, cytotoxic, and Th2 cell infiltration were the main 
immune changes in EGFR-mutated patients. Patients with EGFR-MAPK co-mutations had 
higher levels of TMB and PD-L1 protein expression. Meanwhile, the co-mutated patients had 
a similar immune microenvironment as that in wild-type patients.
Conclusion: In this study, we defined a subgroup of patients with EGFR-MAPK co- 
mutations. These co-mutated patients may benefit from ICI treatment.
Keywords: epidermal growth factor receptor, EGFR mutation, tumor mutation burden, 
TMB, immune checkpoint inhibitor, ICI, lung adenocarcinoma, LUAD

Introduction
Lung cancer is the leading cause of cancer-related morbidity and mortality.1 Non- 
small cell lung cancer (NSCLC) accounts for approximately 80% of all lung 
cancers and mainly comprises lung adenocarcinoma (LUAD) and lung squamous 
carcinoma (LUSC). Epidermal growth factor receptor (EGFR) mutations are com-
mon in LUAD. The incidence of EGFR mutations in LUAD is as low as 12%, 
while in the Asia-Pacific region, the prevalence is approximately 50%.2 The first- 
generation EGFR tyrosine kinase inhibitor (TKI) erlotinib has shown remarkable 
efficacy in the treatment of NSCLC, opening the door to a generation of driver 
gene-positive targeted therapies.3 However, drug resistance is the primary challenge 
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of EGFR-TKIs, with acquired resistance occurring in 
almost all patients within approximately one year.4 While 
immune checkpoint inhibitors (ICIs) significantly 
improved the survival of patients with NSCLC, they did 
not provide benefits to patients with EGFR mutations.5

Thus, EGFR-mutated LUAD faces two dilemmas: tar-
geted therapy resistance and ineffective immunotherapy. 
EGFR-TKI cannot prevent downstream signal-mediated 
resistance mechanisms.6 EGFR mutations combined with 
downstream pathway mutations downregulated the effi-
cacy of EGFR-TKI,7 suggesting the vital role of EGFR 
downstream signal transduction in the therapeutic effects 
in EGFR-mutated LUAD. Although NSCLC patients with 
EGFR mutations do not generally benefit from ICIs, some 
EGFR-mutated patients in the KEYNOTE-001 study bene-
fited from immunotherapy.8 Multiple EGFR mutations 
subtypes have been reported, which may affect TKI 
treatment.9 Thus, the EGFR mutation masked a group of 
people who benefited from ICI treatment due to EGFR 
mutation heterogeneity.

The heterogeneity of EGFR mutations has gradually 
revealed in recent years. The tumor mutation burden 
(TMB) was first used as a valid predictor of ICI 
benefit.10 Studies have shown a lower TMB11 and the 
programmed death-ligand 1 (PD-L1) tumor proportion 
score (TPS) in NSCLC patients with EGFR mutations, 
suggesting that EGFR-mutated patients are not suitable 
for ICI therapy.12 Furthermore, the tumor immune micro-
environment is closely related to the response to ICI 
therapy.13 An immunosuppressive microenvironment 
could partially explain ICI ineffectiveness. The proportion 
of PD-L1+/CD8+ tumor-infiltrating lymphocytes (TILs) in 
EGFR-mutated NSCLC was reportedly lower than that in 
wild-type NSCLC; therefore, patients with EGFR muta-
tions could not benefit from ICI.14 However, patients with 
L858R had a higher TMB than those with exon 19 dele-
tions; thus, patients with L858R might benefit more from 
ICI.15,16 Furthermore, Wu et al reported disease control in 
a patient with EGFR and KRAS mutations after treatment 
with erlotinib, bevacizumab, and nivolumab,17 suggesting 
that EGFR mutations could benefit from ICI therapy.

The massive data resources of The Cancer Genome 
Atlas Program (TCGA), the Cancer Proteome Atlas 
(TCPA),18 cBioPortal,19,20 and Catalogue Of Somatic 
Mutations In Cancer (COSMIC) database21 were used to 
explore whether patients with EGFR mutations could ben-
efit from ICI treatment. Furthermore, the Reactome22 or 
Kyoto Encyclopedia of Genes and Genomes (KEGG)23 

database provided a detailed overview of disease path-
ways. This study sought to identify potential beneficiaries 
of ICI therapy and elucidate possible mechanisms based 
on an exploration of mutation patterns between EGFR and 
its downstream pathway genesets. This study investigated 
the characteristics of the immune microenvironment in 
EGFR-mutant patients by analyzing PD-L1 protein level, 
TMB, and tumor immune infiltrate. Based on the analysis 
above, we investigated whether patients with EGFR muta-
tions might benefit from immunotherapy.

Materials and Methods
Lung Adenocarcinoma Somatic Variants 
Data Acquisition
In the TCGA database (https://portal.gdc.cancer.gov/), 
somatic mutation data of 567 lung adenocarcinoma (TCGA- 
LUAD) were downloaded in the “mutect2” pipeline by 
TCGAbiolinks (October 2019). It was worth mentation that 
mutations classification with “silent”, “3ʹUTR”, “3ʹFlank”, 
“5ʹUTR”, “5ʹFlank”, “intron”, “IGR (intergenic region)”, 
“RNA”, and “Target_region” were not described as mutant 
type (https://bioconductor.org/packages/release/bioc/vign 
ettes/ELMER/inst/doc/pipe.html). Since “Splice_Region” 
can occur in an exon region, “Splice_Region” was treated 
as a mutant type. TCGA somatic variants were identified by 
whole-exome sequencing (WES) and whole-genome 
sequencing (WGS) data.

In cBioPortal,19,20 Broad-Lung Adenocarcinoma 
(Broad, Cell 2012)24 somatic mutation data were obtained 
from 183 patients with a combination of whole-exome 
sequencing (WES) or whole-genome sequencing (WGS). 
TSP-Lung Adenocarcinoma (The Tumour Sequencing 
Project (TSP), Nature 2008)25 somatic mutation data 
were obtained from 163 lung adenocarcinoma using tar-
geted sequencing. MSKCC-Non-Small Cell Lung Cancer 
(Memorial Sloan Kettering Cancer Center (MSKCC), 
J Clin Oncol 2018)26 somatic mutation data were obtained 
from 240 NSCLC patients using IMPACT sequencing, and 
186 lung adenocarcinoma patients were selected for fol-
low-up analysis.

In the COSMIC database,21 EGFR, GRB2, SOS1, 
SOS2, HRAS, KRAS, NRAS, ARAF, RAF1, BRAF, 
MAP2K1, MAP2K2, MAPK1, MAPK3, and CCND1 
somatic mutation data of lung cancer, including negative 
and positive mutation results, were downloaded (COSMIC 
v90, released 05-SEP-19) (https://cancer.sanger.ac.uk/cos 
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mic). And 188 patients with mutation data of these fifteen 
genes were used to follow-up analysis.

The Cancer Genome Atlas Lung 
Adenocarcinoma Data Acquisition
The Cancer Genome Atlas Lung Adenocarcinoma (TCGA- 
LUAD) RNA-seq data (including read counts and frag-
ments per kilobase of exon model per million reads mapped 
(FPKM)) of 533 primary tumors were downloaded from 
The Cancer Genome Atlas (TCGA) (https://portal.gdc.can 
cer.gov/) by TCGAbiolinks27 in R (October 2019). 
Moreover, RNA-seq data were annotated by GENCODE 
v22 (https://www.gencodegenes.org/human/release_22. 
html). Lung adenocarcinoma (LUAD) Level 4 Reverse 
phase protein array (RPPA) data of 362 primary tumors 
were downloaded from the Cancer Proteome Atlas 
(TCPA)18 (https://www.tcpaportal.org/tcpa/download. 
html). Only 529 LUAD RNA-seq data and 358 LUAD 
RPPA data with mutation data were used to follow-up 
analysis. The corresponding LUAD clinical data were also 
downloaded by TCGAbiolinks27 in R (October 2019).

Estimation of Tumor Mutation Burden
For this study, TCGA-LUAD mutation data were then pro-
cessed by “maftools”28 in R. By using “variants.per.sample” 
function in “maftools” R package, the total number of non-
synonymous mutations for each sample can be roughly cal-
culated. TCGA used the Genome Reference Consortium 
(GRCh38) reference genome, so we used 35 Mb as the 
estimate of the exome size. Lung Adenocarcinoma (Broad, 
Cell 2012)24 somatic data was used 36.6 Mb as the estimate 
of the exome size. TMB = variants.per.sample/exome size 
(mut/MB). Data from the MSKCC cohort included 
a calculated “mutation rate” that was used to measure the 
TMB levels of each sample. Via “maftools” R package, the 
TSP cohort data used the number of variants per sample to 
represent the TMB level of each sample.

Estimation of Tumor Immune Infiltrates
Tumor IMmune Estimation Resource (TIMER, https://cis 
trome.shinyapps.io/timer/)29,30 was a comprehensive data-
base of immune infiltrates. Via TIMER, we obtained 
a relationship between EGFR mutation and the abundance 
of immune infiltrates (B Cell, CD8+ T Cell, CD4+ T Cell, 
Macrophage, Neutrophil, Dendritic Cell).

Single sample gene set enrichment analysis (ssGSEA) 
could also estimate tumor immune infiltrates. Via the 

“GSVA” R package,31 we estimated the tumor immune 
infiltrates of TCGA-LUAD using the markers of 24 kinds 
of immune cells (Dendritic cell [DC], activated DCs 
[aDC], plasmacytoid DCs [pDC], immature DCs [iDC], 
B cells, CD8 T cells, cytotoxic cells, Eosinophils, 
Macrophages, Mast cells, Neutrophils, NK CD56bright 
cells, NK CD56dim cells, NK cells, T cells, T helper 
[Th] cells, Th1 cells, Th17 cells, Th2 cells, T central 
memory cell (Tcm), T effector memory cell [Tem], 
T follicular helper cell [TFH], T gamma delta [Tgd], 
regulatory T cell [TReg]) in Bindea et al study.32 For 
ssGSEA analysis, we converted the TCGA-LUAD counts 
data to transcripts per million (TPM) data.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) could determine 
whether the two physiological states showed statistically 
consistent differences.33,34 GSEA analysis was performed 
using 529 LUAD-FPKM data in GSEA_4.0.2. Pathways in 
Reactome22 or Kyoto Encyclopedia of Genes and 
Genomes (KEGG)23 database with p-value<0.05, the 
false discovery rate (FDR)<0.25, and the normalized 
enrichment score (NES)>1.5 were considered as the criti-
cal pathways. In the EGFR mutation group, the key genes 
of the significant pathways were defined as the contribu-
tion genes before the enrichment score (ES) reached the 
peak.

EGFR Mutation Subgroup Analysis
Based on the KEGG database, the NSCLC pathway 
(hsa05223 Non-small cell lung cancer) was used to iden-
tify EGFR-related downstream pathways (https://www.gen 
ome.jp/dbget-bin/www_bget?hsa05223). There were three 
pathways (29 genes): 1) MAPK signaling pathway (14 
genes), 2) Calcium signaling pathway (5 genes), 3) the 
PI3K-Akt signaling pathway (10 genes). In this study, co- 
mutation group was defined as an EGFR mutation with at 
least one gene mutation of EGFR-related downstream 
pathways. Patients with EGFR mutations not accompanied 
by gene mutations of the downstream pathway were 
assigned to the EGFR-mutated group, and other patients 
were assigned to the wild-type group (WT). According to 
the above grouping, both three EGFR-related downstream 
genesets and all genesets were analyzed. Then, the best 
grouping criteria were selected for follow-up analysis. 
Both EGFR mutation traits and co-mutation distributions 
were plotted as snake graphs by “ggalluvial” R package.
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Upset Plot for Five Cohorts
To demonstrate the distribution of 15 gene mutations in 
the EGFR and downstream MAPK signaling pathways, 
“UpSetR” was used to plot upset diagrams.

Progression-Free Survival Analysis in 
Checkpoint Inhibitor Treatment
Clinical data from the MSKCC cohort26 treated with anti- 
PD-(L)1-based therapy was analyzed to investigate 
whether co-mutated patients could benefit from ICI treat-
ment. To reduce the effect of combination therapy as well 
as a history of multiple lines of therapy, only patients (108/ 
186) who were in the first- and second-line monotherapy 
group were included in this analysis. Furthermore, the 
Kaplan-Meier plot of progression-free survival was plotted 
by “survival” and “survminer” R packages.

Statistical Analysis
The violin diagrams were plotted by “ggstatsplot” in 
R. For all statistical analysis, the p-value<0.05 was deter-
mined to be significant. Mann–Whitney U-test was used 
when the number of groups compared = 2. Kruskal–Wallis 
one-way ANOVA was used when the number of groups 
compared > 2, and the Dwass-Steel-Crichtlow-Fligner test 
was used for pairwise comparisons. The holm test was 
used to correct for p-values of multiple comparisons.

Results
Generally Lower TMB and PD-L1 Protein 
Expression in Patients with EGFR 
Mutations
The TCGA-LUAD patients included 67 EGFR-mutated 
patients, corresponding to a total EGFR mutation site 
frequency of 79. The most common sites of EGFR muta-
tion were on exons 18–21 (64/79), mainly L858R mutation 
and exon 19 deletions (Figure S1). The results showed that 
TMB (EGFR-mutated vs wild-type [WT] [mean] [mut/ 
Mb]: 5.1 vs 6.88, p=<0.001) and PD-L1 protein (EGFR- 
mutated vs WT [mean]: 0.01 vs 0.17, p=0.009) levels in 
EGFR-mutated patients were significantly lower than 
those in EGFR-WT patients (Figure 1A and B). The 
Broad’s dataset also showed lower TMB levels in patients 
with EGFR mutations (EGFR-mutated vs WT [mean] 
[mut/Mb]: 3.44 vs 7.7, p=0.001) (Figure S2A). Although 
the result of two large panel next-generation sequencing 
(NGS) (MSK and TSP cohort) did not show significant 

differences, the median TMB was lower in patients with 
EGFR mutations (Figure S2B, S2C).

The Immunosuppressive 
Microenvironment of LUAD Patients with 
EGFR Mutation
To investigate the effect of EGFR mutations on the immune 
microenvironment of LUAD, we used TIMER and ssGSEA 
to estimate the tissue’s immune infiltrates. A higher degree of 
dendritic cells (DC) (0.001 ≤ p-value < 0.01) and B cells 
(0.01 ≤ p-value < 0.05) infiltrating in EGFR-mutated patients 
were identified in the TIMER database (Figure S3). ssGSEA 
analysis showed that DC (p-value = 0.026), mast cells 
(p-value = 0.048), and T follicular helper (TFH) cells 
(p-value = 0.026) were significantly upregulated in patients 
with EGFR mutations. In particular, immature dendritic cells 
(iDC) (p-value = 0.004) showed significantly infiltrated in 
the EGFR-mutated population whereas NK CD56dim 
(p-value = 0.009), T helper 2 (Th2) (p-value = 0.002), 
T gamma delta (Tgd) (p-value = 0.001), and cytotoxic cells 
(p-value = 0.017) were downregulated in patients with EGFR 
mutations (Figure S4).

Functional Enrichment of LUAD Patients 
with EGFR Mutation
We performed GSEA enrichment analysis to investigate the 
effect of EGFR mutations on signaling pathway. The results 
showed that the genes related to glycosaminoglycan metabo-
lism (“REACTOME HS GAG DEGRADATION”, 
“REACTOME HEPARAN SULFATE HEPARIN HS GAG 
METABOLISM”, “REACTOME A TETRASACCHARIDE 
LINKER SEQUENCE IS REQUIRED FOR GAG 
SYNTHESIS”, “REACTOME CHONDROITIN SULFATE 
DERMATAN SULFATE METABOLISM”, “REACTOME 
GLYCOSAMINOGLYCAN METABOLISM”), diseases of 
glycosylation (“REACTOME DISEASES ASSOCIATED 
WITH GLYCOSAMINOGLYCAN METABOLISM”, 
“REACTOME DEFECTIVE B4GALT7 CAUSES EDS 
PROGEROID TYPE”), and receptor tyrosine kinases signal-
ing (“REACTOME PHOSPHOLIPASE C MEDIATED 
CASCADE FGFR2”) were generally over-expressed in 
patients with EGFR-mutated LUAD (Figure 2A). Seven 
genes were identified by intersecting key genes in seven 
GAG-related pathways, with syndecan-2 (SDC2) showing 
significant downregulation in the EGFR-MAPK co-mutated 
patients (Figure S5A–G)
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Figure 1 TMB and PD-L1 Protein Levels in Different Subtypes of Lung Adenocarcinoma. (A) showed TMB levels in patients with EGFR-mutated and wild-type patients. (B) 
showed PD-L1 protein expression levels in patients with EGFR-mutated and wild-type patients. (C) showed TMB levels in different subtypes. (D) showed PD-L1 protein 
expression levels in different subtypes. 
Abbreviations: TMB, tumor mutation burden; PD-L1, programmed death-ligand 1; LUAD, lung adenocarcinoma; EGFR_Mut_all, all EGFR-mutated patients; Co_Mut, EGFR- 
MAPK co-mutated patients; EGFR_Mut, EGFR-mutated patients; WT, wild-type patients.
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Heterogeneity in Patients with EGFR 
Mutations
While the TMB level of EGFR-mutated patients was generally 
low, there was still heterogeneity in this population. To inves-
tigate the heterogeneity, we first chose the most common 
mutation sites (exon 18–21), which did not significantly differ 
from each other (TCGA: p=0.623; Broad: p=0.528) (Figure 
S6A and B); secondly, EGFR was involved in the develop-
ment of NSCLC through its downstream pathway (Figure S7). 
The TMB and PD-L1 protein levels of patients with MAPK 
signaling geneset mutations were similar to those of wild-type 

patients (Figure S8A and B). The results showed that patients 
with EGFR-MAPK co-mutations have high TMB and high 
PD-L1 protein levels compared to other EGFR co-mutated 
patterns (Figure 1C and D, Figure S9A – F). Meanwhile, data 
from the Broad (p=<0.001), MSKCC (p=0.043), and TSP 
(p=0.006) cohorts confirmed higher TMB levels in patients 
with EGFR-MAPK co-mutations (Figure S2D – F). 
Furthermore, patients with L858R mutation were more likely 
to have co-mutation compared to those with exon 19 deletions 
(Exon 19 deletion vs L858R: 4.76% [1/21] vs 19.05% [4/21]) 
(Figure 3).

Figure 2 Enrichment Analysis of Different EGFR Mutation Types. (A) showed Reactome pathways that are significantly related to EGFR mutations. (B) showed KEGG 
pathways that are significantly associated with EGFR-MAPK co-mutation. Pathways with p-value<0.05, FDR<0.25, and NES>1.5 were shown. Different colors represented 
different signal pathways. 
Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, the false discovery rate; NES, the normalized enrichment score.
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Probability of EGFR-MAPK Co-Mutation
Data from 1287 patients with LUAD from the TCGA, Broad, 
MSKCC, TSP, and COSMIC cohorts were used to assess the 
probability of EGFR-MAPK co-mutation. The basic charac-
teristics of the patients are shown in Table 1. These five 

datasets had similar EGFR mutation rates (11.82–18.40%). 
In the mutation data of TCGA-LUAD, Broad, MSKCC, 
TSP, and COSMIC, the probability of patients with EGFR- 
MAPK co-mutation was 16.42% (11/67), 9.38% (3/32), 
12.00% (3/25), 6.67% (2/30) and 6.67% (2/30), respectively 

Figure 3 Characteristics of EGFR Mutation Sites in Patients with EGFR-MAPK Co-mutation. On the left, barcodes for patients with EGFR-MAPK co-mutation in different 
cohorts (TCGA, Broad, MSKCC, TSP) was shown; the EGFR mutation sites were shown in the middle and the variant classification on the right. 
Abbreviations: TCGA, The Cancer Genome Atlas Program; MSKCC, Memorial Sloan Kettering Cancer Center; TSP, The Tumour Sequencing Project.
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(Figure 4A–E). The probability of EGFR-mutation was about 
14.30% (11.82–18.40%), and EGFR-MAPK co-mutated 
patients accounted for approximately 11.41% (6.67–16.42%) 
of EGFR-mutated patients (Table 1).

More Favorable Immune Microenvironment 
in Patients with EGFR-MAPK Co-Mutation
To further understand the changes in the immune microen-
vironment caused by EGFR-MAPK co-mutation, we com-
pared the abundance of immune infiltrates among different 
mutation types. The different mutation types had distinct 
distributions of DC (p-value = 0.043), iDC (p-value = 
0.012), NK CD56dim cells (p-value = 0.011), NK cells 
(p-value = 0.019), Th2 cells (p-value = 0.002), Tgd cells 
(p-value = 0.002), and cytotoxic cells (p-value = 0.017) 
(Figure 5A, Figure S10). Patients with EGFR mutations 
had higher iDC and DC infiltration and lower Th2, Tgd, 
Cytotoxic, and NK CD56dim cell infiltration (Figure 5B).

Functional Enrichment of LUAD Patients 
with EGFR-MAPK Co-Mutation
Compared with EGFR single-mutation group, two functions 
were generally upregulated in the EGFR-MAPK co-mutation 
group; namely, cancer phenotype (“KEGG_CHRONIC_ 

MYELOID_LEUKEMIA”, “KEGG_GLIOMA”, “KEGG_ 
NON_SMALL_CELL_LUNG_CANCER”, “KEGG_PAN 
CREATIC_CANCER”, “KEGG_RENAL_CELL_CARCI 
NOMA”) and immune-related pathway (“KEGG_B_CELL_ 
RECEPTOR_SIGNALING_PATHWAY”, “KEGG_FC_GA 
MMA_R_MEDIATED_PHAGOCYTOSIS”, “KEGG_T_ 
CELL_RECEPTOR_SIGNALING_PATHWAY”) (Figure 
2B).

Progression-Free Survival Analysis in 
Checkpoint Inhibitor Treatment
Compared with the EGFR-mutated group, the wild-type 
group and the co-mutated group had longer progression- 
free survival (PFS) (EGFR-Mut: WT: Co-Mut = 1.87: 
3.77: 7.82 [months], p-value = 0.03). (Figure S11).

Discussion
The present study investigated whether patients with 
EGFR mutations benefited from ICI therapy. The 
KEYNOTE-001 study results suggested that patients with 
EGFR mutations were not suitable for ICI treatment; how-
ever, nine EGFR-mutated patients (9/74) benefitted from 
this treatment.8 Via mutation relationships between EGFR 
and EGFR downstream pathway genesets, we isolated 

Table 1 Patient Baseline Disease Characteristics

Cohort TCGA Broad24 MSKCC26 TSP25 COSMIC Total****

Number of Samples (n=567) (n=183) (n=186) (n=163) (n=188) (n=1287)

Gender

Female 276 (48.68%) 88 (48.09%) 103 (55.38%) NA NA 467 (36.29%)

Male 239 (42.15%) 95 (51.91%) 83 (44.62%) NA NA 417 (32.40%)

Unknow 52 (9.17%) 0 (0.00%) 0 (0.00%) NA NA 52 (4.04%)

Age

Mean(±SD)* 65.32±10.01 65.36±10.79 64.35±11.64 NA NA 65.01±10.81

Stage

Non-advanced stage 476 (83.95%) 144 (78.69%) NA NA NA 620 (48.17%)

Advanced stage** 37 (6.53%) 14 (7.65%) NA NA NA 51 (3.96%)
Unknow 54 (9.52%) 25 (13.66%) NA NA NA 79 (6.14%)

EGFR status

Mutant 67 (11.82%) 32 (17.49%) 25 (13.44%) 30 (18.40%) 30 (15.96%) 184 (14.30%)
Wild-Type 500 (88.18%) 151 (82.51%) 161 (86.56%) 133 (81.60%) 158 (84.04%) 1103 (85.70%)

Co-mutated*** 11 (16.42%) 3 (9.38%) 3 (12.00%) 2 (6.67%) 2 (6.67%) 21 (11.41%)

Notes: *Age data loss: 71 patients in TCGA cohort, 14 patients in Broad cohort. **Non-advanced stage included Stage I- Stage IIIA. Advanced stage included Stage IIIB and 
IV. ***Co-mutation subgroups accounted for the proportion of patients with EGFR mutations. ****Computable data aggregation only. 
Abbreviations: TCGA, The Cancer Genome Atlas Program; MSKCC, Memorial Sloan Kettering Cancer Center; TSP, The Tumour Sequencing Project; COSMIC, 
Catalogue Of Somatic Mutations In Cancer.
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a subset of EGFR-MAPK co-mutated patients from 
patients with EGFR mutations. The co-mutated patients 
had higher TMB and PD-L1 protein levels and a more 
favorable immune microenvironment. The probability of 
co-mutation was about 11.41% of the EGFR mutation 

population. In the present study, L858R patients were 
more prone to co-mutation than those with exon 19 dele-
tion. TMB and PD-L1 protein levels were used to predict 
the therapeutic efficacy of ICI.35 Therefore, the EGFR- 
mutated label concealed that some EGFR-mutated patients 

Figure 4 Mutation Distribution of EGFR-MAPK Co-mutation in Each Cohort. (A–E) showed the mutation distribution of TCGA-LUAD, Broad, MSKCC, TSP, COSMIC, 
respectively. The upset plot showed that the distribution of combinations of EGFR-MAPK co-mutation. The bar chart above represented the number of mutation frequencies 
contained in each type. The pie chart showed the number of co-mutated, EGFR-mutated, and wild-type patients. 
Abbreviations: TCGA, The Cancer Genome Atlas Program; MSKCC, Memorial Sloan Kettering Cancer Center; TSP, The Tumour Sequencing Project; COSMIC, 
Catalogue Of Somatic Mutations In Cancer.
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benefit from ICI treatment. What’s more, in the first- 
or second-line ICI monotherapy group, the EGFR-MAPK 
co-mutated patients showed no less efficacy than the wild- 
type patients.

Firstly, we confirmed that the TMB or PD-L1 protein 
levels were lower in EGFR-mutated patients in the TCGA 
and Broad datasets. Previous studies focused on the impact 
of clinically-driven mutations on ICI treatment; thus, the 

link between these driving changes has not been clear. As 
a representation of cancer development, the driving muta-
tion was difficult to characterize systematically. However, 
signal transduction is required for EGFR to perform var-
ious functions. The NSCLC signaling pathway in the 
KEGG database showed that the executive role of EGFR 
was mainly through its three downstream pathways. Thus, 
it was feasible and meaningful to explore the EGFR 

Figure 5 Summary of Immune Infiltrates in Different Types of Lung Adenocarcinoma. (A) The green tag represented significant changes in the immune microenvironment 
compared to patients with EGFR mutations. Red represented 0<p-value<0.05, white represented p-value=0.05, blue represented 0.05<p-value<1.00. (B) Compared to the 
EGFR-mutated patients’ level of immune infiltration, red arrows represent increased infiltration of that cell within the group, and blue arrows represent decreased infiltration 
of that cell within the group. The yellow band indicates that the level of cell infiltration is similar to that of the EGFR-mutated patients. The trend of infiltration was compared 
according to the average values of infiltration in each group.
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mutation mode utilizing prior knowledge. Finally, we 
found that EGFR-MAPK co-mutated patients have both 
high TMB and high PD-L1 protein levels.

Furthermore, Zhang et al showed that the EGFR/ 
MAPK pathway is involved in immune evasion of pan-
creatic cancer.36 Previous studies had shown that patients 
with L858R mutations benefited more from ICI treatment 
than those with exon 19 deletions.15 A survey by 
Sutiman et al showed a longer PFS in patients with 
EGFR exon 19 deletions treated with EGFR-TKI than 
that in patients with the L858R mutation.37 Previous 
studies have shown an association between L858R and 
high TMB; however, whether this phenomenon is asso-
ciated with the co-mutation of downstream signaling 
pathways requires further analysis. Our results suggested 
that L858R is more likely to co-mutate than exon 19 
deletions to achieve better ICI efficacy. A study by 
Hong et al showed that patients with exon 21 mutations 
have more concomitant mutations than others, and con-
comitant mutations negatively affect response and survi-
val in patients treated with EGFR TKIs.38 Offin et al 
showed that high TMB levels were not conducive to 
EGFR-TKI treatment but were beneficial to ICI 
therapy.16 Therefore, most patients with EGFR mutations 
were suitable for EGFR-TKI therapy, and patients with 
EGFR- MAPK co-mutations were potential beneficiaries 
of ICI treatment.

Our results showed that a significant increase in iDC and 
a significant decrease in NK-CD56dim, T gamma delta 
(Tgd), cytotoxic, and Th2 cells were significantly decreased 
in EGFR-mutated patients. However, the immune micro-
environments of EGFR-MAPK co-mutated patients were 
similar to those seen in wild-type patients. iDCs could 
promote immune tolerance and reduce CD4+ T cells 
infiltration.39 Moreover, NK CD56dim cells, in addition to 
their cytolytic activity and target cell killing, were the 
primary sources of proinflammatory and chemokines.40 

Th2 cells enhance B cell activity and have complex regula-
tion of the immune environment.41,42 Tgd cells have an 
antitumor effect, and the number of Tgd could be used as 
a prognostic indicator of NSCLC.43

The functional changes in EGFR mutations were 
mainly in glycosaminoglycan (GAG) metabolism com-
pared to wild-type LUAD. GAG, as the main component 
of the extracellular matrix or the surface of cells, combines 
many kinds of cytokines and chemokines to regulate 
immune function. Heparin sulfate (HS) is the primary 
type of GAG, and the active degradation of HS can 

activate the immune system; HS on the surface of white 
blood cells could also regulate immune cell activation. 
Nishio et al showed that high serum HS concentrations 
were associated with shorter PFS and overall survival (OS) 
in EGFR-mutated NSCLC.44 iDCs, NK cells, and Tgd 
belong to the innate immune system activated by chemo-
kines. GAGs can protect chemokines from degradation, 
but it also interfered with the action of chemokines.45 

These results suggest that an inadequate immune response 
in EGFR-mutated patients might be due to the accumula-
tion of GAG, leading to an inhibitory immune microenvir-
onment. Compared to patients with only EGFR mutation, 
patients with co-mutations had lower Syndecan-2 (SDC2) 
expression levels. SDC2 could promote the clearance of 
TCR/CD3 complex on the surface of T cell46 and down-
regulate immune activity,47 suggesting that SDC2 is 
involved in the inhibitory microenvironment of patients 
with EGFR mutations.

Meanwhile, functional changes between co-mutated 
and EGFR-mutated patients were mainly concentrated on 
cancer phenotype and immune function. The cancer phe-
notypes of co-mutated patients were closer to NSCLC, 
pancreatic cancer, chronic myeloid leukemia, renal cell 
carcinoma, and gliomas, which shown promise and even 
improved survival in these cancers by treated with ICI. 
Immune-related pathways, including T cells, B cells, and 
FCγR-mediated phagocytosis, were upregulated in EGFR- 
MAPK co-mutated patients.

Our study had several limitations. Our results sug-
gested that enhanced FCγR-mediated phagocytosis in co- 
mutated patients. However, FCγR activation decreased the 
curative effect of the IgG4-based PD-1 antibody. While 
FCγR activation reduces ICI antibody utilization, techni-
ques have been developed to improve the impact of this 
effect.48 Meanwhile, FCγR activation enhanced the effi-
cacy of anti-PD-L1.49 Patients with EGFR mutations are 
excluded from most ICI studies because they generally do 
not benefit from ICI treatment.8 However, we note that 
there are still patients with EGFR mutations who benefit 
from ICI therapy. In limited data, patients with EGFR- 
MAPK co-mutations can benefit from ICI therapy. 
Although this study is an interesting result based on lim-
ited data, our results reveal why EGFR-mutated patients 
generally do not benefit from ICI treatment. What’s more, 
we have screened out EGFR-MAPK co-mutated patients 
who may benefit from ICI treatment, which will be of 
concern in further clinical studies.
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In conclusion, the results of our study showed that most 
of EGFR-mutated patients had higher GAGs and an inhibi-
tory immune microenvironment than EGFR wild-type 
patients. The EGFR-MAPK co-mutated patients, with higher 
TMB, PD-L1 protein levels, and favorable immune micro-
environment, were different from EGFR-mutated-only 
patients. Thus, the EGFR mutational labels might mask 
some patients, such as those with co-mutations, who missed 
out on ICI treatment. The results of this study are worth 
undertaking a larger cohort to validate and further reveal 
distinctive and heterogeneous EGFR mutational labels. 
Both targeted agents and ICI therapy have led to significant 
advances in cancer treatment, and our findings can contribute 
to clinical treatment decisions, which provide more precise 
treatment options for patients with EGFR mutations.
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