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This paper describes the application of the alternating Kernel mixture (AKM) segmentation algorithm to high resolution MRI
subvolumes acquired from a 1.5T scanner (hippocampus, n = 10 and prefrontal cortex, n = 9) and a 3T scanner (hippocampus,
n = 10 and occipital lobe, n = 10). Segmentation of the subvolumes into cerebrospinal fluid, gray matter, and white matter tissue
is validated by comparison with manual segmentation. When compared with other segmentation methods that use traditional
Bayesian segmentation, AKM yields smaller errors (P < .005, exact Wilcoxon signed rank test) demonstrating the robustness and
wide applicability of AKM across different structures. By generating multiple mixtures for each tissue compartment, AKM mimics
the increased variation of manual segmentation in partial volumes due to the highly folded tissues. AKM’s superior performance
makes it useful for tissue segmentation of subcortical and cortical structures in large-scale neuroimaging studies.

Copyright © 2008 Nayoung A. Lee et al. This is an open access article distributed under the Creative Commons Attribution
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1. INTRODUCTION

Current magnetic resonance image (MRI) studies investi-
gate abnormalities of cortical and subcortical structures in
neurodevelopmental and neurodegenerative disorders.These
studies require a delineation of a region of interest (ROI) by
manual segmentation by an expert rater. For example, stud-
ies on Alzheimer’s disease and mild cognitive impairment
examine the hippocampus [1] while those in schizophrenia
have studied the occipital lobe and prefrontal cortex [2, 3].
Once the ROI is defined, segmentation into tissue types such
as gray matter (GM), white matter (WM), or cerebrospinal
fluid (CSF) can assess subtle volume changes caused by
disease [4, 5]. While manual segmentation would provide
gold standard, it is labor intensive limiting the number of
subjects in any study [6]. Also, the rater needs to be trained
to ensure small inter- or intrarater variation. Therefore, it
is necessary to develop a method that allows for efficient
processing of large number of subjects with high inter-
or intrarater reliability, thereby increasing statistical power.
Such a method will facilitate greater understanding of shape
change in networks of cortical structures implicated in
neuropsychiatric diseases [7, 8].

A variety of methods have been proposed for the seg-
mentation of subcortical tissue such as the hippocampus [9–
11] and cortical tissues such as prefrontal cortex, cingulate
cortex, and planum temporale [12–16]. However, even
though tissue classification methods have been improving in
their performance, relatively low accuracy (comparing with
expert-rater standards) has prevented accurate structural
segmentation, for example, distinguishing the hippocampus
from surrounding structures in the medial temporal lobe.

Partial volume voxels containing multiple tissue types
present challenges to traditional Bayesian tissue classification
methods [17–24] that model each tissue type as a fixed-
bandwidth, single Gaussian in mixture-of-Gaussian models.
Priebe et al. [25] proposed an alternating Kernel mixture
(AKM) method which allowed for the flexibility of a
Gaussian mixture model, with bandwidth, and the number
of Gaussians selected adaptively from the data for each
tissue type. The purpose of our study was to compare the
performance of AKM and traditional Bayesian methods. The
two methods were compared by determining which method
was closer to the manual segmentation (ground truth)
of cortical and subcortical structures in MRI subvolumes
acquired from 1.5T and 3T scanners.
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The manuscript is organized as follows. Section 2
describes the AKM mixture modeling methodology in detail
and other Bayesian-based segmentation methods. Section 3
describes the dataset being investigated and image analysis
employed. Section 4 reports the results.

2. METHOD

2.1. Alternating Kernel mixture method

Priebe and Marchette [26] and James et al. [27] introduced
a semiparametric solution to the problem of estimating
the common probability density function for multiple
identically distributed random variables. Their solution is an
iterative one that combines parametric and nonparametric
estimates with a resulting model that incorporates both the
complexity and the smoothness of the data.

We applied this method to the problem of MR segmenta-
tion. Gaussian mixture modeling is a popular segmentation
technique. The marginal probability density function for the
observations is

f =
∑

c∈C
πc fc, (1)

where C := {C, G, W} is the set of tissue types (CSF, GM,
and WM), fc are the class-conditional marginals, and πc are
class-conditional mixing coefficients. These coefficients are
nonnegative and sum to unity. Thus, the image is the sum
of the three tissue types. Each class-conditional marginal is a
mixture of normals given by

fc =
kc∑

t=1

πctϕct , (2)

where πct are the strictly positive, class-specific mixing
coefficients, which sum to one, and ϕct are the Gaussian
probabilities with a mean of μct and a variance of σ2

ct.
Combining these equations we see that the marginals are
given by

f =
∑

c∈C
πc

kc∑

t=1

πctϕct. (3)

The method estimates the class-conditional mixture
complexities kc, the mixing coefficients πc, and the mix-
ture components ϕct. The Expectation-Maximization (EM)
algorithm is used to estimate the means and variances of
the components [18, 19]. The mixture complexities are
estimated from the data.

The method alternates between parametric finite mixture
estimates and nonparametric Kernel estimates. Each estimate
is based on the previous one of the opposite type. The first
step of the algorithm is to find a parametric estimate and a
nonparametric estimate of the data. Then, at each iteration,
a parametric estimate that minimizes the distance between
the two previous estimates is computed. Using the parameter
estimates thus derived, a nonparametric estimate is found.
This continues until the distance between two consecutive
parametric estimates is smaller than a desired constant.

Table 1: Voxel classification based on likelihood ratio test.

Case Classification

r1(x) > 1 Voxel labeled C

r2(x) < 1 Voxel labeled W

r1(x) < 1 and r2(x) > 1 Voxel labeled G

r1(x) > 1 and r2(x) < 1 Should not occur

Tie Determined arbitrarily

The filtered Kernel estimate (i.e., the nonparametric
estimate), with bandwidth b, is

f̃ (x;X) = 1
n

n∑

i=1

k∑

t=1

πtϕt
(
Xi
)

f
(
Xi
)
bσt

ϕ0

(
x − Xi
bσt

)
, (4)

where X = {X1, . . . ,Xn} is the subject’s MR voxel observa-
tion, σ2

t is the variance of the tth component of the mixture,
and ϕ0 is the standard normal with zero mean and unit
variance. The nonparametric estimates are each based on
the parametric estimate from the previous iteration and are
given by

f̂ k = arg min
f∈Fk

∥∥ f − f̃ k−1
∥∥2

2, (5)

where Fk is the class of k-component Gaussian mixtures, and

‖ f − g‖2
2 :=

∫∞

−∞

(
f (x)− g(x)

)2
dx (6)

is the integrated squared error.
To actually classify voxels, the Bayes plug-in classifier is

used:

g(x) = arg max
c∈C

πc fc(x), (7)

where x is the voxel to be labeled. The label is assigned to a
class based on which one maximizes posterior probability of
class membership. This can also be seen as a likelihood ratio
test procedure given by

LRTC/G(x) = πC fC(x)
πG fG(x)

=: r1(x),

LRTG/W(x) = πG fG(x)
πW fW (x)

=: r2(x).

(8)

Tissues are then classified according to Table 1.
This method results in the voxels being classified into

three categories. Priebe et al. [25] showed how a training set
could be used to determine the number of components for
each tissue. However, the focus of this paper is on how this
could be done on a case-by-case basis using visual inspection.
It was found that two or three components of CSF, GM,
and WM produced the best result; in a couple of cases the
complexity was better modeled with four components.
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2.2. Bayesian segmentation

For comparison, voxels are classified into three tissue types
by Bayesian segmentation:

p
(
In | μn(hn), σ2

n(hn)
) =

N∏

n=1

1√
2πσ2

n(hn)
e(−(In−μn(hn))2/2σ2

n (hn)),

(9)

where In is the image intensity, hn is the anatomical label, μn
is the mean, and σ2

n is the variance of the Gaussian density.
The algorithm is

hn = arg max
hn∈H

N∑

n=1

(
− 1

2
log 2πσ2

n(hn)− 1
2

(
In − μn(hn)

)2

σ2
n(hn)

+ logπ(hn)
)

,

(10)

where π(hn) is the prior distribution that represents the
relative amount of each of the tissue types and H :=
{C, G, W}. As with AKM, the EM algorithm is used to
estimate the means and variances of the three tissues [18, 19].

2.3. Neyman-Pearson recalibration

Bayesian segmentation can be extended to two additional
classes forC/G andG/W partial volumes which are optimally
determined by [28]

p
(
In | hn = G

)

p
(
In | hn = CSF

)
G�
≺
C

θC/G,
p
(
In | hn =W

)

p
(
In | hn = G

)
W�
≺
G

θG/W

(11)

at each voxel. Here, the four thresholds (θ1, . . . , θ4) are
determined by the five Gaussians. Thresholds are selected to
minimize the misclassification error (Section 3.5) such that
θC/G = θ1 +tC/G(θ2−θ1) and θG/W = θ3 +tG/W (θ4−θ3), where
tC/G ∈ [0, 1] and tG/W ∈ [0, 1]. The means then are used to
recalibrate the segmentations yielding new thresholds. This
is referred to as Neyman-Pearson recalibration.

3. VALIDATION

3.1. Data acquisition

Four different sets of ROIs were extracted from subjects
scanned via the magnetization prepared rapid gradient
echo sequence on different scanners. Two came from a 3T
scanner (10 hippocampi [29] and 5 pairs of left and right
occipital lobes [30]); two came from a 1.5T scanner (10
hippocampi [31] and 9 prefrontal cortices [31]). Processed
datasets were reformatted to 8 bit and interpolated to 1 ×
1 × 1 mm3 isotropic voxels except for the prefrontal set with

Figure 1: Hippocampus ROI mask delineated in red.

a resolution of 0.5 × 0.5 × 0.5 mm3, and are available at
http://www.cis.jhu.edu/data.sets/index.html.

3.2. MRI subvolumes

To obtain a smaller ROI around a hippocampus, we manually
outlined hippocampus and dilated it by 3 × 3 × 3 mm3

cubes with three iterations to generate a mask via BLOX
(http://sourceforge.net/projects/blox/). Figure 1 shows an
example of the mask generated for a left hippocampus. The
prefrontal cortex [31] and occipital lobe [30] subvolumes
were defined by an expert neuroanatomist.

3.3. Manual tissue segmentation

The 39 subvolumes were hand segmented into CSF, GM,
and WM tissue compartments by three different raters in
independent studies (e.g., [30, 31]) and blind to the autoseg-
mentation. Segmentation was done by visual inspection on
contiguous sagittal slices on Analyze software [32] and saved
as Analyze image data with labels for CSF, GM, and WM.

3.4. Automated tissue segmentation

AKM and Bayesian segmentation were applied to the 39
subvolumes. For comparison, FreeSurfer [33] and Brain-
Voyager [34] were used to segment the hippocampi and
occipital lobes, respectively. Neyman-Pearson segmentation
was applied to prefrontal cortex. The EM algorithm [18]
ensured that computations were done in real time.

The 10 hippocampus subvolumes from the 1.5T scanner
were processed by FreeSurfer [33] to segment and label
the volume by its anatomical structure. Each voxel was
classified by a given anatomical label (i.e., hippocampus,
ventricles). Then we group the structures into WM, GM,
and CSF to create WM, GM, and CSF masks. Lateral
ventricle and left inferior lateral ventricle were categorized as
CSF. Cerebellum-exterior, hippocampus and amygdala were
grouped as GM and cerebral white matter, thalamus proper,
putamen, ventral diencephalon, and WM hypointensities
were grouped as WM.

http://www.cis.jhu.edu/data.sets/index.html
http://sourceforge.net/projects/blox/
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Table 2: Classification error for Bayesian and AKM for hippocampi
(3T).

Bayesian AKM

1 0.106 0.099

2 0.124 0.107

3 0.234 0.183

4 0.133 0.120

5 0.283 0.114

6 0.186 0.103

7 0.153 0.131

8 0.133 0.126

9 0.273 0.172

10 0.163 0.153

Table 3: Classification error for Bayesian, AKM, and Neyman-
Pearson for prefrontal cortices (1.5T).

Bayesian Neyman-Pearson AKM

1 0.138 0.144 0.093

2 0.103 0.103 0.101

3 0.087 0.088 0.081

4 0.091 0.097 0.081

5 0.135 0.135 0.097

6 0.093 0.098 0.088

7 0.095 0.103 0.093

8 0.127 0.127 0.106

9 0.091 0.091 0.085

3.5. Quantification of segmentation accuracy

Segmentations were compared via the L1 distance between
two distributions as a measure of misclassification error.
A cost is assigned to each labeled voxel. If it was labeled
correctly, that cost is 0, and if labeled incorrectly, that cost
is generally 1. This cost, called the L1 distance, is

L1 = 1
2N

N∑

n=1

m∑

i=1

∣∣pA
(
hn = Hi | In

)− pM
(
hn = Hi | In

)∣∣,

(12)

where pA(hn | In) is the posteriori probability of hypothesis
hn at voxel n for the automated, pM(hn | In) is the same
for the manual segmentation, and m is the number of tissue
types [18, 19, 28, 35]. The distance measures agreement
between segmentations based on distance between prob-
ability distributions [36]. The standard overlap measures
penalize small objects assuming that most of the error
occurs at the boundary of objects thus L1 distance is more
appropriate for assessing 3D segmentation [37]. Another
standard measure, the Dice measure, was also used [38].
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Figure 2: Classification error for Bayesian (blue) and AKM (red)
for hippocampi (3T).

Table 4: Classification error for Bayesian, BrainVoyager, and AKM
for occipital lobes (3T).

Bayesian BrainVoyager AKM

1 0.170 0.199 0.119

2 0.149 0.202 0.093

3 0.243 0.221 0.099

4 0.210 0.202 0.096

5 0.236 0.244 0.112

6 0.224 0.237 0.128

7 0.165 0.111 0.099

8 0.224 0.117 0.104

9 0.157 0.248 0.119

10 0.146 0.237 0.121

Table 5: Classification error for Bayesian, FreeSurfer and AKM for
ten hippocampi (1.5T).

Bayesian FreeSurfer AKM

1 0.121 0.145 0.113

2 0.162 0.225 0.161

3 0.110 0.144 0.096

4 0.131 0.178 0.109

5 0.175 0.191 0.146

6 0.129 0.169 0.119

7 0.121 0.190 0.121

8 0.121 0.165 0.121

9 0.155 0.196 0.139

10 0.128 0.143 0.120

4. RESULTS

Tables 2, 3, 4, and 5 and Figures 2, 3, 4, and 5 show
that L1 distances for AKM method are lower than those
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Figure 3: Classification error for Bayesian (blue), Neyman-Pearson
(green), and AKM (red) for prefrontal cortices (1.5T).
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Figure 4: Classification error for Bayesian (blue), BrainVoyager
(green), and AKM (red) for occipital lobes (3T).

for Bayesian and other segmentation methods (P < .005,
Exact Wilcoxon signed rank test). Lower L1 distances mean
that AKM segmentation have more overlap with manual
segmentation than other methods. Dice measures for AKM
were consistently smaller than other methods.

Figures 6 and 7 explain the reason for low classification
errors of AKM. Green, red, and blue curves show the
intensity profile of voxels labeled as CSF, GM, and WM,
respectively. The figures show how intensity histograms
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Figure 5: Classification error for Bayesian (blue), FreeSurfer
(green), and AKM (red) for ten hippocampi (1.5T).

for manual segmentation voxels are similar to those for
AKM segmentation. Vertical lines are threshold intensity
values calculated from AKM method. Manual segmentation
histograms show that each tissue type has wide range of
intensities thus resulting in large overlaps between tissue
types due to partial volume problems where the boundaries
between tissue types are not obvious. Figure 7 shows how
the large tails for each tissue types is captured by AKM
yielding more accurate threshold values compared with the
single Gaussian approach. Further, Table 3 and Figure 3
shows that AKM models the partial volume better than
Neyman-Pearson; note that Neyman-Pearson yielded larger
errors than Bayesian since the recalibration was based on
the averaged thresholds. Finally, Figures 8, 9, and 10 show
views of the AKM segmentation of hippocampus, prefrontal
cortex, and occipital lobe subvolumes.

5. CONCLUSION

This paper describes an algorithm that models each tissue
type in brain MRI subvolumes as a semiparametric mixture
of Gaussians. The classification method which uses this
algorithm results in better segmentation than a traditional,
single-component Bayesian method especially when there is
not enough CSF or WM in the subvolume. Human raters
are good at segmenting partial volume voxels by adapting
to the high variance of intensities in these regions. AKM is
also able to adaptively select the bandwidth and the number
of Gaussians for each tissue type. Thus, AKM approxi-
mated the manual segmentation more closely compared to
Bayesian methods. AKM can automatically delineate cortical
and subcortical structures which can be distinguished by
intensity information. However, there are structures that
cannot be segmented by intensity alone. For example,
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Figure 6: Intensity histogram for hippocampus: hand (a) and AKM
(b) segmentation with vertical lines from AKM threshold. Green,
blue, and red correspond to CSF, GM, and WM segmented voxels,
respectively.

anterior boundary of the hippocampus merges with the
amygdala which has similar intensity [39] or the anatomical
boundary of prefrontal cortex and occipital lobe has to be
defined with spatial information. For these structures, AKM
may be useful when combined with mapping and image
registration approach. Also, AKM can be applied to other
imaging modalities of other anatomical structures, such as
segmenting myocardium, blood, and bone in a cardiac CT
scan.
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(a) (b)

Figure 8: Sagittal view of left hippocampus. (a) MRI. (b) AKM
segmentation (blue-GM, white-WM, red-CSF).

(a) (b)

Figure 9: Axial view of prefrontal cortex. (a) MRI. (b) AKM
segmentation (blue-GM, green-WM, red-CSF).

(a) (b)

Figure 10: Axial view of left occipital lobe. (a) MRI. (b) AKM
segmentation (blue-GM, white-WM, red-CSF).
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