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ABSTRACT

Our primary objective is to provide the clinical informatics community with an introductory tutorial on calibra-

tion measurements and calibration models for predictive models using existing R packages and custom imple-

mented code in R on real and simulated data. Clinical predictive model performance is commonly published

based on discrimination measures, but use of models for individualized predictions requires adequate model

calibration. This tutorial is intended for clinical researchers who want to evaluate predictive models in terms of

their applicability to a particular population. It is also for informaticians and for software engineers who want to

understand the role that calibration plays in the evaluation of a clinical predictive model, and to provide them

with a solid starting point to consider incorporating calibration evaluation and calibration models in their work.

Covered topics include (1) an introduction to the importance of calibration in the clinical setting, (2) an illustra-

tion of the distinct roles that discrimination and calibration play in the assessment of clinical predictive models,

(3) a tutorial and demonstration of selected calibration measurements, (4) a tutorial and demonstration of se-

lected calibration models, and (5) a brief discussion of limitations of these methods and practical suggestions

on how to use them in practice.
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INTRODUCTION

Most clinicians can recall seeing that inpatient who was listed as

50 years old but appeared decades older due to the effects of chronic

illness, a physical exam finding commonly described as “Appearing

older than stated age.” And yet, that patient’s stated age is used to

dictate much of their care, including the calculation of glomerular

filtration rate for medication dosing, risk of developing illnesses,

and risk of inpatient mortality. Experienced clinicians can

“calibrate” their mental models to account for the patients’ appear-

ance, but predictive models cannot do this without further instruc-

tions. When predictive models are built based on a population that

differs from the population in which they will be used, blind applica-

tion of these models could result in large “residuals” (ie, a large dif-

ference between a model’s estimate and the true outcome) because

of factors that are difficult to account for. This deficiency could lead

to catastrophic decisions for a single patient, even when the average

residual for the overall population is very low. The analysis of such

residuals can serve as a proxy for measuring the “calibration” of the

model. While calibration-in-the-large is concerned with gross meas-

urements of calibration, such as whether the model’s overall

expected number of cases exceeds the observed number, or whether
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the proportion of expected over observed cases departs significantly

from “1,” other measurements of calibration are based on popula-

tion stratifications, which can include anything from analyzing

residuals on a few large subgroups, all the way to analyzing resid-

uals for each individual. Calibration is an essential component of

the evaluation of computational models for medical decision mak-

ing, diagnosis, and prognosis.1,2 In contrast to discrimination, which

refers to the ability of a model to rank patients according to risk, cal-

ibration refers to the agreement between the estimated and the

“true” risk of an outcome.3 A well-calibrated model is one that min-

imizes residuals, which is equivalent to saying that the model fits the

test data well. Note that observing small residuals on the training set

does not necessarily mean that it is a good model, as “overfit” mod-

els are known not to generalize well to previously unseen data.

There are a number of cases that illustrate the omnipresence and

importance of calibration and its critical role in model evaluation. If

individualized predictions are used for clinical decision making,

well-calibrated estimates are paramount. Take the case of dementia,

a neurodegenerative disorder that affects at least 14% of Americans

and recently cost the U.S. healthcare system over $150 billion/y.4

One recent study evaluated the calibration-in-the-large of several

models for predicting the risk of developing dementia in the general

community and found that models drastically overestimated the

expected incidence of dementia.5 At a predicted risk of 40%, the ob-

served incidence was still only 10%, so the test overestimated inci-

dence by 30%. For an individual patient, and for the healthcare

provider, an overestimation of this magnitude could lead to different

decisions. For example, it is recommended by the American College

of Cardiology and the American Heart Association that patients

with a cardiovascular risk over 7.5% be prescribed statins, and

those between 5% and 7.5% be considered.6 Even risk calculators

that are not based on percentages may benefit from calibration. An

example is the Model for End-Stage Liver Disease,7 which provides

a risk score that is used to prioritize cases for liver transplantation.

When score thresholds are used (eg, to determine the frequency in

which a patient’s score is recalculated for sorting the waiting list),

calibration becomes critical. Accurate, well-calibrated estimates are

necessary to allocate resources appropriately. Additionally, even

when the models are well calibrated-in-the-large (eg, the average

predicted risk was 40% and the observed incidence was also 40%),

there could be severe discrepancies to particular groups of individu-

als. Thus, it is critical to understand how a model will be employed

in order to emphasize certain performance measures.

This tutorial covers some techniques to assess and correct model

calibration in the context of employing clinical predictive models to

estimate individualized risk. It is by no means comprehensive and is

not intended to replace the extensive body of literature on the topic

of calibration. We present issues with measures of calibration that

go beyond calibration-in-the-large, and we include examples of

some calibration models that have been recently used in the biomed-

ical literature. This tutorial does not include all available measure-

ment methods and calibration models, is complementary to book

chapters and articles that serve as references to this topic, and will

be of interest to those who want to deepen their understanding of

model calibration.3,8–10 We provide here some simple and interpret-

able calibration measures and calibration models that can illustrate

the concepts and have appeared in the recent biomedical predictive

modeling literature so that clinical researchers and informaticians

may familiarize themselves with this topic. Despite its importance to

understanding the utility of a model, calibration is vastly underre-

ported: one systematic review noted that although 63% of published

models included a measure of discrimination, only 36% of models

provided a measure of calibration.11 Precision medicine involves

individualized prevention, diagnosis, and treatment. Thus, it needs

to rely on predictive models that are well calibrated. We describe, in

a didactic manner, key steps for measuring calibration and applying

calibration models to a predictive model.

RANKING PATIENTS VS ESTIMATING
INDIVIDUAL RISK

Initial comparison and selection of appropriate models are often

done through the evaluation of discrimination, which is measured

with the area under the receiver-operating characteristic curve

(AUROC), but the AUROC says nothing about the calibration of

the model. Figure 1 shows how relying on AUROC overlooks cali-

bration. Figures 1A–1C contain 3 models’ predicted estimates,

sorted in ascending order, for 2 groups (Alive ¼ “0” and Deceased

¼ “1”). The 3 models’ estimates are

1. original estimates,

2. original estimates divided by 10, and

3. original estimates after applying calibration model to have the

estimates be closer to the actual outcomes.

The AUROC, which is equivalent to the concordance index,12,13

can be easily calculated by counting the arrows in Figure 1.

The nonparametric AUROC can be calculated by the concor-

dance index as follows:

concordance index

¼ total pairs � 1� ðdiscordant pairsÞ � 0:5 � ðtiesÞ
total pairs

(1)

where total # pairs is the number of pairs of Alive and Deceased esti-

mates; # discordant pairs is the number of pairs composed of 1 Alive

and 1 Deceased patient, in which the estimate for the Deceased (coded

as 1) is lower than the estimate for the Alive (coded as 0) patient; and

the # ties is for such a pair in which the estimates are equal. As illus-

trated in Figure 1, there is no need for the actual values of the estimates:

only the ranks (ie, the order of the estimates) are necessary to calculate

the concordance index or the AUROC. Therefore, when equation 1 is

applied to estimates in Figures 1A–1C, the resulting receiver-operating

characteristic (ROC) curves for all 3 models are the same, and their

corresponding AUROCs are also identical, as shown in Figure 1D.

However, the 3 models’ estimates are vastly different. Such differences

are reflected in the absolute errors between the estimates and actual

outcomes, as well as in the average estimates for Alive and Deceased

(Table 1). These values help give an idea of the models’ calibration but

still do not reveal whether there is gross under- or overestimation of the

probability of Deceased for particular groups or individuals. Without a

means for measuring calibration and for choosing appropriate models

accordingly, erroneous decisions could be made in processes that rely

on the values of the estimates. For example, if a clinical practice guide-

line recommends that all individuals at >20% risk receive a certain in-

tervention, a noncalibrated model such as the one in Figure 1B could

result in no one receiving the intervention. In this tutorial, we illustrate

methods that measure calibration in different ways. For models that

have improper calibration, we show how calibration models can miti-

gate the problem of poorly calibrated models.

SIMULATED DATA

We used simulated data to demonstrate the forthcoming calibration

measures and calibration models. The code can be found on GitHub
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(https://github.com/easonfg/cali_tutorial). To create artificial data,

we utilized the method from Zimmerman et al.14 Twenty-three arti-

ficial features were constructed with 20 binary and 3 continuous in-

dependent variables. A uniform distribution was then used to decide

the dependent variable, mortality, where 0 indicates Alive and 1

indicates Deceased. The observed mortality frequency was 15%. To

compare models, a logistic regression (LR) model and a support vec-

tor machine (SVM) model with a linear kernel were built using the

23 variables. SVM uses the hinge loss function as its objective func-

tion, so it often produces improperly calibrated estimates.15 We pre-

sent different measures of calibration and the results of calibration

models.

Five thousand samples were created. The entire simulated data

were separated into 3 parts: (1) training set part 1 (2500 samples),

(2) training set part 2 (1250 samples), and (3) test set (1250 sam-

ples). We used hold-out validation: we train the classifier on training

set part 1, we train the calibration models on training set part 2, and

we use the test set to “validate” (ie, to assess performance when the

Figure 1. Illustration of a receiver-operating characteristic curve and corresponding area under the receiver-operating characteristic curve (AUC) derived from

predictive model estimates. (A) Original estimates. (B) Original estimates divided by 10. (C) Original estimates after the application of a calibration model to have

the estimates be closer to the actual outcomes. The blue arrows, showing discordant pairs, indicate pairs of estimates in which the estimates for the Alive

patients (coded as 0) are greater than the estimates for the Deceased patients (coded as 1), while the orange arrows indicate pairs of estimates where estimates

for Alive and Deceased patients are equal (ties). The AUC is equivalent to the concordance index, which can be calculated here by the number of concordant pairs

(ie, total number of pairs minus the discordant and half of the tied pairs) over the total number of pairs, shown in the text as equation 1. (D) Identical receiver-op-

erating characteristic curve and AUC (0.785) for the 3 models.
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model is used in previously unseen cases). A comparison of sampling

strategies for model building and evaluation (eg, cross-validation,

bootstrap) is beyond the scope of this tutorial on calibration. The in-

terested reader is referred to Zou et al16 for an introduction to

(re)sampling techniques.

For this tutorial, 2 classification models (LR and SVM) were

trained on the training set part 1, and a calibration model was built

based on the resulting model applied to training set part 2. Then, the

classifier and calibration models were applied to the test set and eval-

uation of calibration and discrimination were calculated on the test

set’s predicted estimates. We compared discrimination and calibration

on the original test set estimates (ie, preapplication of the calibration

model) and on the calibrated estimates. By separating the entire data

into 3 parts and training the classification model and calibration

model on different datasets, we aimed to avoid overfitting.

MEASURING CALIBRATION

There is no best method to measure the calibration of predictive

models. While some methods are frequently used and have specific

strengths, all have limitations. Here, we present these calibration as-

sessment methods and the scenarios in which each can be used ap-

propriately. Additionally, some methods combine implicit measures

of calibration with other components such as discrimination, which

may be difficult to separate.

BRIER SCORE AND SPIEGELHALTER’S Z TEST

The Brier score is the mean squared error between the actual out-

come and the estimated probabilities, as shown in equation 2:

Brier Score ¼
PN

i¼1 ðEi � OiÞ2

N
(2)

where N is the number of patients, Ei is the predicted estimate for

patient i, and Oi is the actual outcome for patient i. The Brier score

should be interpreted carefully. Without understanding whether the

error is caused by a relatively small number of estimates with high

error or a large number of estimates with a smaller error, it is diffi-

cult to say whether this model could be used in practice. Note that,

by squaring errors that are in the [0,1] range, large errors “count

less” to the overall score, when compared numerically with smaller

errors. The Brier score includes components of discrimination and

calibration, so a lower Brier score does not necessarily imply higher

calibration.17 However, it can be shown that, from the decomposi-

tion of Brier score, a formal measurement that can serve as a proxy

for calibration can be calculated: the Spiegelhalter z test.18 The z sta-

tistic can be calculated with equation 3.

Z E;Oð Þ
PN

i¼1ðOi � EiÞð1 � 2EiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ð1 � 2EiÞ2Eið1 � EiÞ

q (3)

If ZðE; OÞ > q1 � a=2, where qa is the a-quantile of the stan-

dard normal distribution (0.05), the result is significant, suggesting

an improperly calibrated model.

The discrimination (AUROC), Brier scores, and Spiegelhalter’s

z-test results for the LR and SVM models are shown in Table 2, as

are other measures described in subsequent sections of this article.

The AUROCs of the 2 models are the same, but there is a difference

in Brier scores. Also, P values for the Spiegelhalter’s z test indicate

that the SVM classifier is not well calibrated.

Calculation of the Brier score is relatively simple. A line of code

is sufficient or use of packages that calculate the Brier score in R (R

Foundation for Statistical Computing, Vienna, Austria), such as the

“rms” package with the function “val.prob” and the “DescTools”

package with the function “BrierScore” (packages that implement

the Brier scores and all subsequent calibration methods conducted

with the simulated data are listed in Supplementary Table). Spiegel-

halter’s z statistic can also be calculated with function “val.prob”

from the “rms” package.

AVERAGE ABSOLUTE ERROR

Another easily implemented measure is the average absolute error,

which is calculated in equation 4.

Average Absolute Error ¼
PN

i¼1 Ei � Oi

N
(4)

The average absolute error is very similar to the Brier score, but

small and large errors contribute in the same way to the sum (ie, un-

like the Brier score, both contribute in the same way to the sum).

The results for LR and the SVM are shown in Table 2. Examples are

given in the GitHub folder.19

HOSMER-LEMESHOW TEST

The Hosmer-Lemeshow (H-L) test has been a popular measure of

goodness of fit for predictive models of binary outcomes, and is

sometimes used as a proxy for calibration20 despite its shortcomings,

which we describe in the Discussion section. A PubMed search

returns hundreds of articles per year mentioning the H-L goodness-

of-fit test. Despite its age and known shortcomings, this test has

been frequently used in health sciences research. Because the way in

which it groups observations is also used in reliability diagrams and

calibration curves, we explain some details here.

Grouping of Observations to Calculate a Proxy for the “Gold

Standard”. There is no ideal method to assess calibration of models.

A calibration measure could ideally compare the predicted estimate

with the “true” probability for each patient, but the measurement of

actual probability for a single individual is challenging. That is, in

the data, we can only ascertain the binary outcome, and not actual

or “true” probabilities; therefore, a proxy for this probability is

used. Forming groups of individuals and calculating the proportion

of positive outcomes is a way to achieve such proxy. For example,

we can say that the actual probability of death is 10% for a patient

if 10 of 100 patients “just like” this patient died. For the H-L test

and some other calibration methods, patients who are “just like”

each other are patients whose predictive model’s estimates belong to

the same group (ie, patients who received similar estimates once a

Table 1. Average estimates and observed outcomes

Figure 1A Figure 1B Figure 1C

AUROC 0.785 0.785 0.785

Average true outcomes 0.5 0.5 0.5

Average absolute error 0.439 0.499 0.367

Average estimates: 0.180 0.002 0.500

Average estimates (alive) 0.115 0.001 0.349

Average estimates (deceased) 0.241 0.002 0.633

AUROC: area under the receiver-operating characteristic curve.
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model is applied), and the ratio of event and nonevent within each

group is the proxy for the “true” probability for the patients in that

group. There are 2 ways by which the H-L test assigns individuals to

the same group, resulting in H-L C- or H-statistics, as shown in Fig-

ure 2.

H-L test statistic and P value. The total estimates of the

“similar” patients are then compared with total observed outcomes

within each group. The H-L C-statistic or H-L H-statistic can be cal-

culated using equation 5:

test static ¼
Xg

i¼1

ðOs;i � Es;iÞ2

Es;i
þ
ðOf ;i � Ef ; iÞ2

Ef ; i

" #
(5)

where Os;i is the number of patients with outcome “1” within each

group and Es;i is the sum of the estimates of patients with outcome

“1” within each group, Of ;i is the number of patients with outcome

“0” within each group, and Ef ;i is the sum of the estimates of

patients with outcome “0” within each group. Finally, g is the num-

ber of groups. The distribution of the test statistics follows a chi-

square distribution with (g – 2) degrees of freedom. The P value can

be subsequently calculated. A P value of .1 or higher is considered

appropriate, a P value <.1 and >.05 indicates that the model is nei-

ther well calibrated nor grossly miscalibrated, and a P value <.05

indicates miscalibrated estimates.21

The ideal number of groups and the method to determine mem-

bership in a group are often points of contention when performing

an H-L test. With H-L C-statistics, where an approximate equal

number of samples are in each group, the range of the estimates

could differ wildly, as shown in Figure 2.

H-L statistics and P values results are calculated and shown in

Table 2. Results shown in Table 2 used 10 groups or “bins.” The P

values for the SVM model (P ¼0) are significant, indicating im-

proper calibration, while LR is properly calibrated (P> .1). Pack-

ages and functions that implement the H-L test are listed in the

Supplementary Table. The package “ResourceSelection” from R

with function “hoslem.test” and the package “generalhoslem” with

function “logitgof” both provide the same calculation of the H-L

test.22 However, these packages are only capable of calculating the

H-L C-statistics. A modified method is presented in the GitHub file

that allows calculations for both H-L C- and H-statistics.19

RELIABILITY DIAGRAM

The reliability diagram is a visualization technique that uses obser-

vation groupings such as the ones formed for the H-L test.15 How-

ever, instead of the sum, the mean of actual outcomes of each group

is plotted against the mean of estimates of each group. While the

points are typically connected to help with visualization, it is obvi-

ously not a true curve. No information can be derived between the

points on the diagram. A perfectly calibrated model would result in

a 45-degree line. Figure 3 shows the reliability diagrams for the LR

and SVM models using the H-L C- and H-statistics in Figures 3A

and 3B, respectively. The actual data are also plotted for reference.

While the reliability diagram of LR follows the diagonal line, we can

see that the reliability diagram for the SVM model deviates from the

diagonal, trending upward. This indicates improper calibration and

underestimation of actual number of Deceased (outcome ¼ 1) in

some groups.

The Supplementary Table shows R packages and commands for

the calibration measures discussed in this article. A package from

“PresenceAbsence” in R is able to draw reliability diagram with the

function “calibration.plot.”23 This method groups the estimates

according to the H-L H-statistics and plots the average of the actual

number of positive outcomes against the midpoint of each group’s

interval. R packages for the H-L test use the H-L C-statistics group-

ing method, whereas the reliability diagram typically uses the H-L

H-statistics grouping method. We implemented the H-L test and re-

liability diagrams in both grouping methods for completeness (see

GitHub for the code).19

Table 2. Discrimination and calibration results of the LR and SVM models applied to the test set

LR LR Platt

scaling

LR isotonic

regression

LR BBQ SVM SVM Platt

scaling

SVM isotonic

regression

SVM BBQ

AUROC 0.870 0.870 0.870 0.867 0.870 0.870 0.870 0.862

Brier score 0.087 0.088 0.088 0.089 0.111 0.086 0.088 0.090

Spiegelhalter z score 0.762 0.417 0.087 0.748 2.21 0.826 0.693 0.731

Spiegelhalter P value .223 .338 .465 .227 .013a .204 .244 .232

Average absolute error 0.177 0.177 0.177 0.182 0.236 0.177 0.177 0.185

H-L C-statistics 5.88 24.6 11.7 16.0 176 4.75 12.7 28.0

H-L C-statistic P value .661 .002a .167 .042a <1 � 10–22a .784 .122 4.71 � 10–4a

H-L H-statistics 9.18 16.6 10.1 11.5 160 11.2 8.15 1.86

H-L H-statistic P value .327 .030a .259 .174 <1 � 10–22a .188 .419 .984

MCE 0.038 0.072 0.033 0.042 0.403 0.028 0.034 0.052

ECE 0.014 0.035 0.012 0.022 0.109 0.011 0.018 0.027

Cox’s slope 1.070 1.074 0.953 1.020 5.014a 1.087 1.023 1.008

Cox’s intercept 0.080 0.072 –0.092 –0.007 6.193a 0.081 –0.001 –0.02

ICI 0.010 0.034 0.012 0.012 0.104 0.008 0.013 0.020

Discrimination is measured by the AUROC. The Brier score is a combined measure of discrimination and calibration. Calibration is measured by the Spiegel-

halter z test, average absolute error, H-L test, MCE, ECE, Cox slope and intercept, and ICI. SVM estimates for the test set produced were improperly calibrated.

Application of Platt scaling, isotonic regression, or BBQ was performed.

AUROC: area under the receiver-operating characteristic curve; BBQ: Bayesian Binning into Quantiles; ECE: expected calibration error; H-L, Hosmer-Leme-

show; ICI: integrated calibration index; LR: logistic regression; MCE: maximum calibration error; NIS: Nationwide Inpatient Sample; SVM: support vector ma-

chine.
ashows significance.
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EXPECTED CALIBRATION ERROR AND
MAXIMUM CALIBRATION ERROR

Aside from the H-L test and the reliability diagram, binning was

also used in recent papers to calculate the expected calibration error

(ECE) and the maximum calibration error (MCE).24–26 To compute

the ECE and the MCE, predictions or estimates are sorted and di-

vided into K bins with an approximately equal number of patients in

each bin. The ECE calculates the average calibration error over the

bins, whereas the MCE calculates the maximum calibration error

for the bins:

ECE ¼
Xk

i ¼ 1

PðiÞ � oi � ei; MCE ¼ max
i¼1;...;K

oi � eið Þ (6)

where PðiÞ is the fraction of all patients who fall into bin i, oi is the

fraction of positive instances in group i, and ei is the average of the

probabilities for the instances in group. The number of groups used

is 10. Results for simulated data are shown in Table 2: LR has

smaller ECEs and MCEs than the SVM does, confirming what we

already knew via the H-L C and H-L H tests.

COX INTERCEPT AND SLOPE

Unlike the previous methods, Cox’s intercept and slope do not

group estimates into bins. The Cox method assesses calibration by

regressing the observed binary outcome to the log odds of the esti-

mates with a general linear model, as shown in equation 727:

logit PðO ¼ 1Þf g ¼ a þ b logitðEÞ (7)

where b is the regression slope and a is the intercept. The estimated

regression slope dictates the direction of miscalibration, where 1

denotes perfect calibration (usually achieved by overfitting the

model), >1 denotes underestimation of high risk and overestimation

of low risk, and <1 denotes underestimation of low risk and overes-

timation of high risk. The estimated regression intercept represents

the overall miscalibration, where 0 indicates good calibration, >0

denotes an average underestimation, and <0 denotes an average

overestimation. An example is given in the GitHub folder.19 Results

of Cox’s slope and intercept are shown in Table 2. The slope and in-

tercept for LR are close to 1 and 0, respectively, indicating a proper

calibration. The SVM, on the other hand, exhibits an underestima-

tion of high risk and overestimation of low risk given its slope >1,

and exhibits overall underestimation given its intercept >0.

INTEGRATED CALIBRATION INDEX

Similar to Cox’s method, the integrated calibration index (ICI)

assessed calibration by first regressing the binary response to the

estimates. However, the ICI uses a locally weighted least squares re-

gression smoother (ie, the Loess algorithm).29 Cox’s slope and inter-

cept can equal to 1 and 0, respectively, while deviations from perfect

calibration can still occur (eg, when these deviations “cancel” each

other in terms of the linear regression). However, these deviations

can be captured by the Loess smoother, and a subsequent numerical

Figure 2. Grouping methods for Hosmer-Lemeshow (H-L) C- and H-statistics. The small number of observations would not warrant a test, but serves to illustrate

the contrast between 2 different ways of forming groups for the H-L test: (1) for H-L C-statistics, patients are divided into g groups, where each group contains ap-

proximately the same number of patients, typically grouped by deciles of risk (g ¼ 10); and (2) for H-L H-statistics, groups are divided based on equal increment

thresholds for the estimates (eg, if there are 10 groups, estimates in the interval [0, 0.1] belong to one group, estimates in the interval [0.1, 0.2] belong to the sec-

ond group, and so on). Numbers shown in a blue background correspond to Figure 1A estimates, green corresponds to Figure 1B, and red corresponds to

Figure 1C estimates. (A–C) Groups of estimates using deciles of samples utilized for the H-L C-statistics. (D–F) Groups of estimates using equal interval groups uti-

lized for the H-L H-statistics. As the degrees of freedom are equal to (g – 2), the degrees of freedom for groups in panels A–F are 8, 8, 8, 3, 0, and 6, respectively.
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summary is the ICI. Other functions such as splines and polynomials

can also be used. ICI takes the average of the absolute difference be-

tween the estimates and the predicted estimates based on the Loess

calibration curve. The results for LR and SVM are shown in Table 2.

The ICI of the SVM is higher than the ICI of LR, and particularly

for estimates before application of calibration models, as expected.

CALIBRATING MODELS

Calibration models can be applied to improve calibration perfor-

mance, and there are 2 ways to attempt to obtain calibrated esti-

mates. The first approach is to include measures and terms in the

objective function that specifically cater to calibration during model

development.30 When retraining a model to emphasize that calibra-

tion is not feasible, it is sensible to improve calibration by applying

calibration models to the estimates produced by the classifiers. The

advantage of applying calibration models to estimates is that the

method can be used in addition to any existing classification method

and adjusted to the local patient population.

In a relatively recent article from the biomedical informatics lit-

erature, Walsh et al31,32 re-emphasize the calls from Van Calster et

al33 and Riley et al34 on the importance of calibration in addition to

discrimination when evaluating predictive models. Walsh et al31,32

select the following calibration models for their experiments: logistic

calibration, Platt scaling, and prevalence adjustment. We utilize the

Platt scaling,35 isotonic regression,36 and the Bayesian Binning into

Quantiles (BBQ)26 calibration models to illustrate differences in cali-

bration.

PLATT SCALING

Platt scaling transforms model estimates by passing the estimates

through a trained sigmoid function.35 The sigmoid function is

shown in equation 8:

P y ¼ 1fð Þ ¼ 1

1 þ exp � ðAf þ BÞ (8)

where f is the predicted estimate and parameters A and B are derived

using gradient descent. Figure 4A shows the fitted sigmoid function

derived using training set part 2. Platt scaling trains a sigmoid func-

tion with the codomain constrained to the interval [0,1], using the

built-in function “glm” in R, with link function “logit.” It is a uni-

variate LR model that uses the model estimates as independent vari-

ables and the binary outcomes as dependent variables. An example

is shown in the GitHub folder.28

ISOTONIC REGRESSION

Isotonic regression uses a step function with monotonically increas-

ing values on the estimates.36 There are 2 algorithms to find the

stepwise function. One is the pair-adjacent violator algorithm and

the second is the active set algorithm.36 Both minimize residuals un-

der the assumption that there is no change in the ranking of esti-

mates derived from equation 9:

byiso ¼ argminby2RN

XN
i¼1

ðOi � byiÞ
2 subject to by1 � . . . � byN (9)

where Oi is the sorted actual outcome and byi is the fitted value (ie,

precalibration estimate). Figure 4B shows an example of a fitted iso-

tonic curve derived using training set part 2. R has a built-in function,

“isoreg,” that fits the best monotonically increasing step function us-

ing model estimates as independent variable and the binary outcomes

as dependent variable. An example is shown in the GitHub folder.19

BAYESIAN BINNING INTO QUANTILES

In addition to Platt scaling and isotonic regression, an ensemble

method called BBQ has been recently proposed to improve

Figure 3. Reliability diagrams of test set estimates produced by logistic regression (LR) and support vector machine (SVM) models grouped for the Hosmer-Leme-

show (H-L) C-statistics and the H-L H-statistics. Data points of estimates produced by the models and their actual binary outcomes are plotted to show the distri-

bution of the actual data. The Alive outcome is indicated as 0 and the Deceased outcome is indicated as 1. Corresponding H-L statistics and P values are shown in

the graphs. (A) LR and SVM estimates grouped for the calculation of the H-L C-statistic. The number of patients within each bin is the same (n ¼ 125). (B) Esti-

mates grouped for the calculation of the H-L H-statistic. The number of patients in each group is shown in the graph. Both graphs show that the SVM underesti-

mates the actual number of deaths, as shown by the red line deviating from the diagonal line. LR is relatively well calibrated (blue line).
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calibration.26 BBQ is based on quantile binning developed by

Zadrozny and Elkan.37 In quantile binning, estimates are partitioned

into K bins of equal numbers of patients. For every estimate within

each bin, an estimate is calibrated to be equal to the fraction of posi-

tive samples in that bin. One drawback of quantile binning is the ar-

bitrariness of K. BBQ takes an ensemble approach, calculating

multiple binning size models and combining them. Individual cali-

bration functions calculated with different-sized bins are combined

with a weighted sum.38 The MATLAB (The MathWorks, Natick,

MA) implementation of BBQ can be accessed in the original article.

Note that this approach, unlike monotonic (ie, order-preserving)

transformations such as Platt scaling and isotonic regression, does

not require or guarantee that the order of estimates to remain the

same after the application of the calibration model, so a decrease or

increase in discrimination after the application of such calibration

models can occur.

By applying Platt scaling, isotonic regression, and BBQ to test set

estimates produced by the SVM model, the estimates became better

calibrated, as shown by the Spiegelhalter’s z test and H-L test results

in Table 2. The corresponding reliability diagrams are shown in Fig-

ure 5. Application of the calibration models also showed lowering

of the ECE, MCE, and ICI. Furthermore, Cox’s slope and intercept

became closer to 1 and 0, respectively. That is, there was consistency

among most calibration measures, in that estimates obtained by cali-

bration models resulted in smaller errors than the ones calculated

for the original SVM estimates.

An unintended consequence of applying calibration models can

be the worsening of calibration for models that are already well cali-

brated. Table 2 also shows results after applying calibration models

to the test set estimates produced by the LR model, which were al-

ready well calibrated, as shown previously in Figures 3A and 3B. Af-

ter applying Platt scaling, H-L C- or H-statistics returned significant

P values, while the Spiegelhalter z test did not. Looking at the corre-

sponding reliability diagrams in Figure 6, the lines with applications

of Platt scaling show more deviation from the diagonal line than the

original LR line. Such phenomenon sometimes happens with Platt

scaling, as its underlying assumption is that the estimates’ distribu-

tion is sigmoidal in shape.39 When the logistic parametric assump-

tions are not met, properly calibrated estimates could suffer and

become improperly calibrated. Application of isotonic regression

and BBQ on the LR model also raised the H-L C- and H-statistics,

indicating worsened calibration. This result is consistent with the in-

crease in ECE, MCE, and ICI for LR calibrated with BBQ, and con-

sistent with the increase in ICI for LR calibrated with isotonic

regression.

REAL CLINICAL DATA

The simulated experiments were repeated with real data set from the

Nationwide Inpatient Sample.40 We picked 10 000 random patients

from Nationwide Inpatient Sample 2014 dataset and predicted

whether patients would need a major therapeutic procedure during

their stay (20% did). The predictors were preadmission features

(age, sex, race, admission month, elective or nonelective admission,

expected primary payer, median household income quartile range,

and presence or absence of 30 chronic conditions). Experiments

were done with LR and SVM with radial kernel.

The results are shown in Table 3. H-L C- and H-statistics and

the Spiegelhalter z test showed significance for both LR and SVM.

For LR, Platt scaling was not able to produce calibrated estimates,

as shown by the H-L test, ECE, MCE, and ICI. However, Cox’s

slope and intercept suggest that calibration improved. For the SVM,

Platt scaling produced statistically significant H-L C-statistics and

H-L H-statistics, and elevated ECE, MCE, and ICI. Cox’s slope and

intercept also suggest worse calibration. Isotonic regression and

BBQ were able to improve calibration in both LR and SVM, result-

ing in nonsignificant P values for the Spiegelhalter z and H-L tests.

They also lowered the MCE, ECE, and ICI. Cox’s slope and inter-

cept became closer to 1 and 0, respectively, for both LR and SVM.

All related reliability diagrams are shown in the Supplementary Fig-

ures.

Figure 4. Calibration models functions. (A) Example of fitted sigmoid function on support vector machine training set part 2 estimates (Platt scaling). (B) Example

of a fitted isotonic regression on the training set part 2 estimates.
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DISCUSSION

Calibration and discrimination measurements are just a part of what

needs to be considered when evaluating a model: the specific

development-validation strategy is equally important and deserves

its own tutorial. In our demonstrations we utilized hold-out valida-

tion, but results could differ if other validation techniques were

used, such as 10-fold cross-validation, bootstrap techniques, jack-

knife, etc.

The H-L test continues to be a very well-known proxy for a cali-

bration measure. In the past 5 years, there have been more than 874

mentions on PubMed. The H-L test is a starting point to measuring

calibration and needs to be considered. It has shortcomings, how-

ever, including the susceptibility to increase in power as sample size

increases and the arbitrariness of number of bins to use. The H-L

test’s probability of rejecting a poorly fitted model increases as the

sample size increases. To remedy the problem, Paul et al41 created a

function to calculate the number of bins according to sample size.

The formula was able to keep the power consistent as sample size in-

creased, but it could only handle sample sizes <25 000. For larger

sample sizes, more complex techniques have been proposed.42,43 As

for the arbitrariness of the number of bins, it is a problem shared by

other measures. The MCE, ECE, and reliability diagrams all require

binning. The Loess function in the ICI also requires an adjustable

window parameter in order to calculate calibration. In model com-

parison, this is not a huge problem, as one can use the same test set

and the same number of bins when comparing calibration of differ-

ent models. However, it is a problem when asserting whether model

estimates are well calibrated, as changing the number of bins can al-

ter the P value.

Calibration measurements can be categorized into 2 groups in

this tutorial. The H-L test, ECE, and MCE take an approach that

requires binning based on estimates. The Cox intercept and slope

and ICI regress the estimates to the true outcomes. In terms of inter-

Figure 5. Reliability diagrams of test set estimates produced by support vector machine (SVM) models after application of Platt scaling, isotonic regression, or

Bayesian Binning into Quantiles (BBQ), grouped for the Hosmer-Lemeshow (H-L) C-statistics and the H-L H-statistics. Estimates produced by the models and their

actual binary outcomes are plotted to show the distribution of the actual data. The Alive outcome is indicated as 0 and Deceased outcome is indicated as 1. Corre-

sponding H-L statistics and P values are shown in the graphs. (A) Platt scaling and (B) isotonic regression and BBQ are grouped for the calculation of the H-L C-

statistic. The number of patients within each bin is the same (n ¼ 125). Panels C and D are grouped for the calculation of the H-L H-statistic. After applying calibra-

tion models, the SVM estimates show proper calibration.
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pretability, the binning methods are more readily understandable by

the medical community. More recent methods to measure calibra-

tion are increasingly being used, and new guidelines on how to as-

sess whether they are adequate for a particular use case will develop

over time. We summarize the pros and cons of the methods we have

presented in this article in Table 4. The references refer to studies

that used these measures.

In our simple example, application of Platt scaling and isotonic

regression on the SVM-derived estimates had good results. While

there are other methods that were built on such techniques, and

more are being created for modern deep learning,24–26,39,57–59 Platt

scaling and isotonic regression are relatively easy to understand and

implement. They can act as the benchmark that subsequent calibra-

tion models are compared with. With ease of interpretability as the

main advantage of these 2 techniques, they are not without faults.

As illustrated in our example, Platt scaling may fail when model is

already well calibrated. It performs best under the assumption that

the estimates are close to the midpoint and away from the

extremes.39 Therefore, Platt scaling may not be suitable for esti-

mates produced by naive Bayes or AdaBoost models, which tend to

produce extreme estimates close to 0 and 1. In terms of isotonic re-

gression, the criticism is that it lacks continuousness. Because the fit-

ted regression function is a piecewise function, a slight change in the

uncalibrated estimates can result in dramatic difference in the esti-

mates (ie, a change in step). Also, owing to the stepwise nature of

the function, uncalibrated estimates that fall on the same “step” re-

sult in having the same calibrated value, eliminating any distinction

between those patient estimates (similarly to quantile binning).

However, there are smoothing techniques to make the estimates

continuous.60

Finally, the available packages currently used to measure calibra-

tion are sparse and missing some key documentation. There is a

need for better descriptions of how such techniques were imple-

mented.

Figure 6. Reliability diagrams of test set estimates produced by logistic regression (LR) models after application of Platt scaling, isotonic regression, or Bayesian

Binning into Quantiles (BBQ), grouped for the Hosmer-Lemeshow (H-L) C-statistics and the H-L H-statistics. Data points of estimates produced by the models and

their actual binary outcomes are plotted to show the distribution of the actual data. The Alive outcome is indicated as 0 and Deceased outcome is indicated as 1.

Corresponding H-L statistics and P values are shown in the graphs. Panels A and B are grouped for the calculation of the H-L C-statistic. The number of patients

within each bin is the same (n ¼ 125). Panels C and D are grouped for the calculation of the H-L H-statistic.
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CONCLUSION

While discrimination is the most commonly used measure of how

well a predictive model performs, calibration of estimates is also im-

portant. With the help of R packages, it is not difficult to measure

calibration alongside discrimination when reporting on a model’s

predictive performance. Also, there are simple techniques that can

improve calibration without the need to retrain a model. To improve

discrimination, parameters will need to be tuned or a completely dif-

ferent model may be required, whereas to improve calibration, there

are techniques that do not require retraining. In this tutorial, we

Table 3. Discrimination and calibration results of the LR and SVM models applied to the Nationwide Inpatient Sample test dataset

LR LR Platt

scaling

LR isotonic

regression

LR BBQ SVM SVM Platt

scaling

SVM isotonic

regression

SVM BBQ

AUROC 0.785 0.785 0.785 0.787 0.817 0.817 0.817 0.817

Brier score 0.119 0.121 0.118 0.120 0.109 0.110 0.104 0.105

Spiegelhalter z score 1.895 –0.081 0.316 –0.246 –1.698 –0.064 0.175 –0.383

Spiegelhalter P value .029a .468 .376 .402 .044a .542 .351 .313

Average absolute error 0.230 0.241 0.234 0.240 0.221 0.227 0.213 0.217

H-L C-statistics 39.473 43.439 13.744 12.351 50.540 67.228 10.760 10.865

H-L C-statistic P value 4.01 � 10–6a 7.26 � 10–7a .111 .136 3.21 � 10–8a 1.746 � 10–11a .215 .209

H-L H-statistics 38.084 61.353 10.456 6.683 146.129 69.947 9.556 8.804

H-L H-statistic P value 7.26 x 10–6a 2.527 � 10–10a .234 .571 <1 � 10–22a 5.036 � 10–12a .297 .359

MCE 0.119 0.124 0.061 0.069 0.096 0.133 0.061 0.060

ECE 0.031 0.043 0.025 0.022 0.044 0.050 0.016 0.017

Cox’s slope 0.560 0.946 0.889 0.923 0.863 1.001 0.902 1.019

Cox’s intercept –0.601 –0.177 –0.230 –0.203 –0.374 –0.149 –0.257 –0.123

ICI 0.027 0.038 0.018 0.025 0.052 0.061 0.015 0.015

Discrimination is measured by the AUROC, while calibration is measured by the Spiegelhalter z test, H-L test, MCE, ECE, Cox slope and intercept, and ICI.

Estimates of the test set produced by both LR and SVM were improperly calibrated. Application of Platt scaling, isotonic regression, or BBQ was performed.

AUROC: area under the receiver-operating characteristic curve; BBQ: Bayesian Binning into Quantiles; ECE: expected calibration error; H-L, Hosmer-Leme-

show; ICI: integrated calibration index; LR: logistic regression; MCE: maximum calibration error; NIS: Nationwide Inpatient Sample; SVM: support vector ma-

chine.
ashows significance.

Table 4. Summary of advantages and disadvantages of calibration measurement methods presented in this tutorial

Calibration measure (examples of

studies in which the measure was

used)

Pros Cons

Brier score44–46 < id="1124" data-dummy="list" list-type="none">

Easy calculation.

Measures a combination of discrimination and cali-

bration.

/

The contribution of each component (discrimina-

tion, calibration) is not easy to calculate or inter-

pret.

Spiegelhalter’s z test47,48 Extension of Brier score that measures calibration

only. P value can serve as a guide for how cali-

brated a model is.

Not intuitive.

Average absolute error Easy calculation. Intuitive. Same problems as Brier score. Rarely used.

H-L test28,49 Widely used in the biomedical literature. P value can

serve as a guide for how calibrated a model is.

< id="1155" data-dummy="list" list-type="none">

Not designed to handle sample sizes >25 000.

Use of H-L C-statistic and H-L H-statistic can result

in different significance.

/
Reliability diagram25,26,50,51 Allows for visualization of regions of miscalibration

and the “direction” of miscalibration (ie, underes-

timation, overestimation)

Not a continuous graph. Hard to see when estimates

are clustered in certain regions (zoom into a por-

tion of the graph may be needed).

Expected calibration error and

maximum calibration er-

ror25,52,53

Intuitive. No statistical test to help determine whether a model

is adequately calibrated or not.

Cox’s slope and intercept54–56 Summarizes direction of miscalibration (ie, overall

underestimation or overestimation).

Can still result in perfect calibration of 0 and 1 even

if regions are miscalibrated.

Integrated calibration index Can capture regions of miscalibration that Cox’s

slope and intercept cannot.

Requires Loess to build calibration model. Not intui-

tive.

H-L: Hosmer-Lemeshow.
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raise the awareness of the importance and meaning of calibration in

clinical predictive modeling by providing simple and readily repro-

ducible examples.
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