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ABSTRACT
Objective  To develop a prognostic tool to predict the 
progression of age-related eye disease progression using 
longitudinal colour fundus imaging.
Methods and analysis  Previous prognostic models 
using deep learning with imaging data require annotation 
during training or only use a single time point. We propose 
a novel deep learning method to predict the progression 
of diseases using longitudinal imaging data with uneven 
time intervals, which requires no prior feature extraction. 
Given previous images from a patient, our method aims 
to predict whether the patient will progress onto the 
next stage of the disease. The proposed method uses 
InceptionV3 to produce feature vectors for each image. 
In order to account for uneven intervals, a novel interval 
scaling is proposed. Finally, a recurrent neural network is 
used to prognosticate the disease. We demonstrate our 
method on a longitudinal dataset of colour fundus images 
from 4903 eyes with age-related macular degeneration 
(AMD), taken from the Age-Related Eye Disease Study, to 
predict progression to late AMD.
Results  Our method attains a testing sensitivity of 0.878, 
a specificity of 0.887 and an area under the receiver 
operating characteristic of 0.950. We compare our method 
to previous methods, displaying superior performance in 
our model. Class activation maps display how the network 
reaches the final decision.
Conclusion  The proposed method can be used to 
predict progression to advanced AMD at some future visit. 
Using multiple images at different time points improves 
predictive performance.

INTRODUCTION
Prognostic models are an essential compo-
nent of personalised medicine, allowing 
health experts to predict the future course 
of disease in individual patients.1 Advances in 
computing power and an abundance of data 
have allowed for increasingly sophisticated 
models to be developed. Most developed prog-
nostic models use statistical methods such 
as logistic regression; these models require 
prior feature extraction, either manual or 
automatic,2 and are limited in the number 
of included variables. Feature extraction can 
be costly and time consuming, especially in 

imaging data. Deep learning offers the ability 
to avoid explicit feature extraction, allowing 
us to develop models without the need for 
handcrafted features. For this reason, deep 
learning is especially useful in imaging data. 
Prognostic deep learning models have been 
developed in several fields, primarily ophthal-
mology,3 cardiology4 and neurology,5 and 
several modalities, including MRI, optical 
coherence tomography (OCT), colour 
fundus photography and X-ray.

Current prognostic models that use deep 
learning to analyse imaging data, either use 
automatic feature extraction algorithms to 
extract known features or only consider a 
single time point. Models developed using 
feature extraction, train algorithms on anno-
tated images to extract relevant features such 
as volumes in OCT data; those features are 
then fed into a traditional statistical model, 
see Refs. 3 6 7 for examples. Manual feature 
extraction is time consuming and requires 
expert readers. Yim et al8 proposed a method 
which automatically segments OCT layers 
before classification. This method outper-
formed human experts; however, automatic 
feature extraction requires annotations 
during training, which is not always available 

Key messages

What is already known about this subject?
►► Previous studies showed that deep learning has 
great predictive capability for AMD progression 
when using a single colour fundus image.

What are the new findings?
►► Using multiple time points allows us to model the 
temporal aspect of the disease and improves pre-
dictive performance.

How might these results change the focus of 
research or clinical practice?

►► Future studies should greater consider the rate of 
disease progression in different patients.
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in situations when the features are unknown or difficult 
to quantify, such as is the case when using colour fundus 
imaging.

An alternative to explicit feature extraction is to use 
deep learning to extract features implicitly, such as used 
by Arcadu et al9 and Babenko et al.10 Many models take 
the previous available image and fit a pretrained convolu-
tional neural network (CNN), with Inception V311 being 
a popular choice due to its generalisability and high 
performance in a variety of tasks. This method, unlike the 
feature extraction method, may be applied to any image 
even when features are not explicitly known; however, 
this creates a separate issue, by using only one image, 
these models may fail to capture the temporal pattern 
across time points. Most recently, Yan et al12 used Incep-
tion V3 to classify single images combined with genetic 
factors to predict progression to AMD. They found that 
images alone provided reasonable performance, and the 
inclusion of multiple genetic factors increased predictive 
performance; however, this work still only considered a 
single time point.

Here, we develop a prognostic model to predict the 
progression of disease, from longitudinal images. The 
proposed method is demonstrated on a dataset consisting 
of 4903 eyes with age-related macular degeneration 
(AMD), taken from the Age-Related Eye Disease Study 
(AREDS) dataset.13 The method is generalisable to any 
longitudinal imaging data. We show that by considering 
the time interval between images and adopting a method 
from time series analysis, we can provide significantly 
improved prediction performance.

Our contributions are as follows:
►► Propose a novel method to predict the future prog-

nosis of a patient from longitudinal images.
►► Introduce interval scaling which allows for uneven 

time intervals between visits.
►► Demonstrate on the largest longitudinal dataset and 

attain state-of-the-art performance outperforming 
other state-of-the-art methods.

MATERIALS AND METHODS
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wish to predict the diagnosis ﻿‍ yN+1‍ at time ﻿‍ tN+1‍, where 
‍ti+1 − ti = ti − ti−1‍ does not necessarily hold, which is 
common in a clinical setting.

The proposed method consists of three stages, first, 
we use a pretrained CNN, namely Inception V3, with 
shared weights, to reduce each image to a single feature 
vector. Then, the feature vectors are combined, and an 
interval scaling is applied to account for the uneven 
time intervals, this weights the most recent time points 
as being more important in making the final prediction. 
Finally, a recurrent neural network classifies the images 
as progressing or non-progressing. An overview of the 
proposed framework is shown in figure 1.

Inception V3
We begin by fine-tuning a pretrained CNN on each 
image, with shared weights, to extract feature vectors. 

CNNs are commonly used on imaging data and use 
multiple convolutional layers to produce feature maps 
which represent the original image. These feature maps 
are smaller than the original image which allows a fully 
connected layer to classify the features, with reason-
able computational requirements. In our work, we 
chose Incpetion V311 pretrained on ImageNet.14 Incep-
tionV3 increases accuracy over previous networks while 
remaining computationally efficient, through the use of 
factorised kernels, batch normalisation and regularisa-
tion. InceptionV3 is considered highly generalisable with 
a greater than 78.1% accuracy on the ImageNet dataset. 
The Inception V3 network results in a feature vector of 
length F=2048 for each image at each time point. This 
network has previously been used to provide state of the 
art results in single time point methods,9 10 12 and is used 
here as a feature extractor.

Interval scaling
To account for uneven time intervals, we implement a 
triangular window function to create a smoothing model. 
Whereas in a simple moving average model, the time 
points are weighted equally, smoothing models weight 
values closer to ﻿‍tN+1‍ as being more useful in the prediction. 
For each sequence of images at times, ﻿‍ t0, . . . , ti, . . . , tN+1,‍ 
where ﻿‍ tN+1‍ is the time point that we want to predict at, 
we rescale each time such that ﻿‍ t

∗
i = 1/

(
tN+1 − ti

)
‍. The 

feature vectors for each image are then multiplied by 
their corresponding time interval scale. This scaling 
weights the images such that images closer to the time 
point of interest are considered more important than 
those observed at further time points, thus allowing the 
network to account for uneven time intervals.

GRU prediction
To predict whether the patient will progress to advanced 
AMD or not, we combine the interval corrected vectors 

Figure 1  Overview of the proposed method. For each of 
the T time points, we fit a convolutional neural network (CNN) 
with shared weights, resulting in a vector of length F, per 
image. Each vector is multiplied by a corresponding interval 
scaling. The scaled vectors are combined into a single 
T×F matrix, and a gated recurrent unit (GRU) with sigmoid 
activation gives a probability of progression. For simplicity, 
three time points are shown; this method is extendable to 
any number of time points.
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into a ﻿‍T× F‍ matrix, where ﻿‍T ‍ corresponds to the number 
of time points and ﻿‍F‍ is the number of features. We apply 
a gated recurrent unit (GRU)15 with a filter size of 1, 
resulting in a single value. GRU was chosen as opposed to 
long short-term memory (LSTM)16 units, as GRU is more 
computationally efficient. LSTM units perform better 
on longer sequences; however, in this case, we only have 
three time points.17 The sigmoid activation function then 
scales the value between 0 and 1.

Data
Data consist of colour fundus images taken from the 
AREDS,13 the most extensive clinical study into AMD. 
All data used are available from dbGap (accession: 
phs000001.v3.p1). This was a retrospective study. Patients 
or the public were not involved in the design, or conduct, 
or reporting, or dissemination plans of our research. 
Patient consent is detailed in AREDS report no. 1.13

AMD is a leading cause of vision loss worldwide.18 There 
are two main stages of AMD, early/intermediate, defined 
by small-sized to medium-sized drusen, and advanced, 
defined by geographic atrophy (GA) or neovascularisa-
tion (nAMD).13 Drusen can be observed as yellow-white 
lipid deposits under the retina, varying greatly in size and 
morphology.19 The exact causes of AMD are unknown; 
however, studies have shown that smoking and genetics 
are significant risk factors.20 Risk factors for progres-
sion from early/intermediate to advanced AMD are also 
unknown; however, there is evidence that drusen and 
optic disk characteristics are important.21 22 Vision loss 
can be avoided with interventions such as anti–vascular 
endothelial growth factor (anti-VEGF) treatment; 
however, disease progression and the need for treatment 
are often hard to predict.23 This highlights the need for 
accurate prognostic models.

We extracted 4903 eyes, from 2702 patients, which 
had a minimum of four visits, complete with images and 
diagnoses at each visit, with no diagnosis of advanced 
AMD during the first three visits. The most recent visits 
meeting these criteria were always used. Advanced AMD 
was defined as either Central GA, nAMD, or both GA and 
nAMD. We used the last visit as ground truth to make 
our prediction based on the first three visits. Of the 4903 
included eyes, 453 (9.2%) progressed to advanced AMD.

We randomly split the data into 60% training (2942 
eyes, 272 progressing), 20% validation (981 eyes, 91 
progressing), and 20% testing (980 eyes, 90 progressing) 
datasets. To reduce the possibility of data leakage, patients 
with both eyes included were kept within the same data 
split. Example images are given in figure 2.

Preprocessing
Any images in the dataset where the patient had already 
progressed to advanced AMD, or without the required 
three previous images plus a fourth prediction image 
for prediction, were excluded. The images were auto-
matically cropped by first calculating the difference 
between the original image and the background colour, 

an offset was added to the difference, and the bounding 
box was calculated from this. Image values were rescaled 
from between 0 and 255 to between 0 and 1. All images 
were resized to 256×256 pixels to reduce computational 
requirements. Right eye images were flipped, such that 
the optic disc on all images was located on the left. No 
prior feature extraction or segmentation/registration 
is required, such that our method is as generalisable to 
other diseases and modalities as possible. All prepro-
cessing was automated, with no subjective human input 
required.

Computing
All analyses were carried out on a Linux machine with a 
Titan X 12 GB GPU and 32 GB of memory. Deep learning 
was conducted in Python V.3.7 using the Keras V.2.2.4 
library24 with TensorFlow25 as the base library. Code is 
available on request. CIs were calculated using R V.3.4.4,26 
with the pROC package.27

Optimisation was carried out with the Adam opti-
mizer28 with an initial learning rate of 0.0001. We used 
binary cross-entropy as the loss function. If the loss did 
not improve after 10 epochs, then the learning rate was 
reduced to two-thirds. Model checkpoints and early stop-
ping prevented overfitting, with the best model being 
picked according to the validation loss.

Metrics
We evaluate model performance using the commonly 
used area under the receiver operating characteristic 
curve (AUC),29 optimal sensitivity and optimal specificity, 
determined by Youden’s index. To assess whether the 
difference in these measures between models is signif-
icant, we construct CIs. De Long’s method30 is used to 
construct CIs for AUC, and bootstrapping with 2000 
samples is used for sensitivity and specificity to calculate 
95% CIs. Results from De Long’s test30 are also reported.

Figure 2  Sample images from a progressing patient (top) 
and non-progressing patient (bottom). The first three images 
show early/intermediate age-related macular degeneration 
(AMD), while the fourth image shows whether they 
progressed to advanced AMD or not.
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RESULTS
In order to evaluate the performance, the proposed 
method is demonstrated on a dataset of AMD images 
with two and three time points and compared with a 
single time point method. For comparisons, the most 
recent visits were used.

Results are reported using two and three time points 
with our method, to assess the benefit of adding addi-
tional time points. We compare our results with the 
image only method used by Yan et al12 using a single 
time point. Taking the last available image, we fine-tune 
InceptionV311 pretrained on ImageNet14 to classify as 
progression or no progression.

The proposed method using three time points achieves 
an AUC, optimal sensitivity and optimal specificity of 0.950 
(0.923 to 0.977), 0.878 (0.810 to 0.945), and 0.887 (0.866 
to 0.907), respectively; this is a significant improvement 
over the single time point method which had AUC, sensi-
tivity and specificity of 0.857 (0.823 to 0.890), 0.867 (0.796 
to 0.937) and 0.760 (0.731 to 0.788). These results show 
a statistically significant increase in AUC and specificity 
and a non-significant increase in sensitivity when using the 
proposed three time point method over the previous single 
time point methods. De Long’s test gave a p value<0.0001, 
indicating a significant difference in AUCs. This significant 
increase in specificity without a loss in sensitivity shows our 
model can reduce false positives without increasing false 
negatives, over the previous model.

The method using two time points gave an AUC, sensi-
tivity and specificity of 0.932 (0.905 to 0.958), 0.811 (0.730 
to 0.892) and 0.892 (0.872 to 0.913). The three time point 
method had a non-significant increase over two time 
points. This may indicate that in this example, using more 
than two time points does not add any significant predic-
tive value. Results are presented in table 1, and the receiver 
operating characteristic is shown in figure 3. Experiments 
without interval scaling were also conducted and showed a 
significant decrease in performance.

Class activation maps
To determine if our network is identifying the correct 
features and to reduce the blackbox nature of deep 
learning, we create class activation maps31 for each time 
point. We altered the top of the network slightly to achieve 
this, adding a dense layer after the GRU layer. While this 
altered network showed no significant change in predictive 
performance, it increased the network size by around a 

factor of 2. The class activation maps are shown in figure 4, 
alongside original images for comparison.

The class activation maps show that areas with high 
concentrations of drusen are considered relevant by the 
network; this is expected and shows that our network 
is identifying the correct features. In some images, the 
optic disk is also highlighted, confirming that optic disk 
characteristics are indeed important factors in AMD 
progression, as observed previously.21 22 In images where 
drusen are challenging to see, the network appears to 
use the optic disk solely in making a prediction. It is also 
interesting to note that the network seems to be surer of 
the area of interest in images that are closer to the predic-
tion time point. In a clinical setting, these maps may are 
useful when justifying the prediction.

DISCUSSION
In this work, we proposed a novel deep learning prog-
nostic model to predict the future onset of disease. The 
proposed method addresses the challenge of analysing 
multiple longitudinal images with uneven time points, 
without the need for prior image annotation. Introducing 
an interval scaling was shown to improve performance over 
a single time point method significantly. We show that by 
taking into account the varying times between observed 
images, we can significantly improve the performance of 
a longitudinal prognostic model. Our method provides 

Table 1  Area under the receiver operating characteristic (AUC) with 95% CIs constructed by De Long’s method

AUC Sensitivity Specificity

Yan et al12 0.857 (0.823 to 0.890) 0.867 (0.796 to 0.937) 0.760 (0.731 to 0.788)

Proposed method (two time points) 0.932 (0.905 to 0.958) 0.811 (0.730 to 0.892) 0.892 (0.872 to 0.913)

Proposed method (three time points) 0.950 (0.923 to 0.977) 0.878 (0.810 to 0.945) 0.887 (0.866 to 0.907)

Area Under the Receiver Operating Charteristic Curve (AUC) with 95% confidence intervals (CIs) constructed using De Long's method. 
Sensitivity and specificity with 95% CIs constructed by bootstrapping with 2000 samples.

Figure 3  Receiver operating characteristic curve for the 
single time point InceptionV3 method, the proposed method 
with two time points and the proposed time point with three 
time points. Increasing the number of time points appears to 
increase the area under the curve. Faded bands show 95% 
CIs.
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a statistically significant increase in specificity, which is 
critical in contexts such as screening. Our method uses 
time intervals meaning we can extend the interval to the 
observed outcome to predict further into the future; this 
is useful in a screening context. Future work is required 
to assess the generalisability of the proposed method 
to other diseases and to extend its use to a screening 
context. The disciform changes highlighted by the class 
activations maps may be similar to glaucoma; patients 
with glaucoma could potentially be wrongly classified. 
Glaucoma diagnosis was not available in this study, but 
could be used as a covariate in future work to prevent 
a wrong prognosis and to improve model performance. 
The proposed method is applicable to many other retinal 
diseases such as glaucoma and diabetic retinopathy, and 
could even be used outside of ophthalmology. Our work 
aims to predict progression at a future visit, whenever 
that is; future work is needed to assess the models use for 
dynamic prediction.
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