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ABSTRACT

Fluctuations in protein abundance among single
cells are primarily due to the inherent stochasticity
in transcription and translation processes, such
stochasticity can often confer phenotypic hetero-
geneity among isogenic cells. It has been
proposed that expression noise can be triggered
as an adaptation to environmental stresses and
genetic perturbations, and as a mechanism to facili-
tate gene expression evolution. Thus, elucidating
the relationship between expression noise,
measured at the single-cell level, and expression
variation, measured on population of cells, can
improve our understanding on the variability and
evolvability of gene expression. Here, we showed
that noise levels are significantly correlated with
conditional expression variations. We further
demonstrated that expression variations are highly
predictive for noise level, especially in TATA-box
containing genes. Our results suggest that expres-
sion variabilities can serve as a proxy for noise level,
suggesting that these two properties share the
same underlining mechanism, e.g. chromatin regu-
lation. Our work paves the way for the study of
stochastic noise in other single-cell organisms.

INTRODUCTION

Many biological systems or processes have stochastic
characteristics (1-5), among which the fluctuation in
gene expression is perhaps the most studied, where the
origin and behavior of such fluctuation have been

extensively characterized. In this particular setting, the
noise of gene expression is defined as the stochastic
fluctuation in transcription and/or translation processes
in isogenic cells and under identical experimental condi-
tion. Expression noise can contribute to remarkable
phenotypic diversities albeit within genetically identical
cells (5-7). Analytically, expression noise can be
decomposed into two components, i.e. ‘intrinsic’ and
‘extrinsic’ noises. The ‘intrinsic noise’ originates from the
fluctuations that are inherent in the system (e.g. fluctu-
ation in transcription initiation or mRNA degradation),
whereas ‘extrinsic noises’ originate from variabilities in
external factors (such as environment) (5,8). Expression
noises are usually experimentally determined by attaching
fluorescence reporters to the genes of interest and
measuring the cell-to-cell variation of the fluorescence
intensities (1,8-14). In this approach, the ‘extrinsic noise’
can usually be filtered out after controlling for cell size or
environmental condition, by using cell gating or orthog-
onal reporters. It has been described that expression noise
is influenced by numerous cellular processes, and the
intensity and characteristics of expression noise are
constrained by cellular networks (12,15,16). For
example, signals generated by long transcriptional
cascades are generally noisier than those generated by
short cascades; negative feedback regulation can reduce
the effects of noise (17,18), whereas noise can result in
dramatic behavior in the presence of positive feedback
regulation (19-22).

It is becoming appreciated that gene expression noise
can generate phenotypic variation and diversity among
single cells, which can mitigate environmental perturb-
ation or external stresses, and offer benefits to the
survival of the species (23-30). For example, expression
noise can keep organisms ‘on their toes’, i.e. allowing them
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to thrive under different environments and to survive
harsh conditions (13). Consistent with this proposition,
stress-induced genes tend to have noisier characteristics
than other genes, which is likely related to their biological
function. Furthermore, a growing body of evidences
highlighted the essential roles of noise in expression
evolvability, and it was even suggested that noise levels
could be tuned by the evolution to balance expression
divergence (16,31,32).

Parallel to the study of expression noise, extensive
research has been done to characterize expression vari-
ation of yeast strains. Here, we formally define ‘expression
noise’ as fluctuations in gene expression among isogenic
cells, and define ‘expression variation’ as changes in
expression level of a population of cells upon genetic or
environmental perturbations. In this study, utilizing the
large amount of yeast genetics and genomics data current-
ly available, we comprehensively studied the relationship
between expression noise and expression variation.
We attempted to address two major questions:
(i) whether stochastic noises are highly correlated with
expression variations? (ii) Can expression variations be
predictive for noise level? To answer these questions, we
compiled 12 budding yeast (Saccharomyces cerevisiae)
expression variation data measured under different condi-
tions, and found that noise levels are well correlated with
different types of expression variations. Furthermore, we
devised a machine learning approach, the support vector
regression (SVR), to fit a predictive model to take expres-
sion variation data as input and predict expression noise
for ~4000 genes for which expression noise was previously
not assayed. The results showed that our model faithfully
captured the measured noise level, suggesting that the
noise level and gene expression variation are highly
correlated and likely determined by common mechanisms.
Our method provides a new perspective on the study of
expression noises in other single-cell organisms.

MATERIALS AND METHODS
Data

Large-scale ‘expression noise’ data in rich media were
obtained from the study by Newman et al. (13), and
expression-level —adjusted measurements of noise
(Distance to median, DM) were used in this work.
‘Transcription plasticity’ was taken from Tirosh and
Barkai, which measured yeast transcription profiles
under different conditions (33,34). The general ‘respon-
siveness’ of each gene was calculated from the expression
data at different conditional perturbations (28). For ‘stress
response’, gene expression variation was measured from a
variety of stress conditions (35). The expression variation
of responsiveness and stress response data were calculated
by averaging the difference between expression level upon
environmental perturbation and the normal condition.
‘Mutational variance’ was obtained from mutation accu-
mulation experiments performed by Landry and col-
leagues (36). ‘Expression variations’ in two yeast strains,
BY4716 or RMIll-1a, and the ‘expression divergence’
between them were obtained from Brem er al. (23),

respectively. Measurements of ‘expression divergence’
between strains (S288c and YJM789) were taken from
Gagneur et al. (37). ‘Expression divergence’ among four
related species was taken from the measurement under the
controlled environmental perturbations (28), and ‘expres-
sion difference’ between S. cerevisiae and Saccharomyces
paradoxus was taken from Tirosh et al. (26). Changes in
expression companying the mutations or deletions of
chromatin regulators and transcription factors were
compiled from Steinfield et a/. (38) and Hu et al. (39),
respectively.

A much larger expression data set was used in predict-
ing expression noise using the SVR. We compiled
633 microarray data sets from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).
We used this expression compendium to calculate five
different types of expression variation: (i) expression vari-
ation under different environmental conditions; (ii) under
genetic perturbations; (iii) expression variations among
individuals; (iv) expression divergence between related
strains or (v) related species. For type (i), it was calculated
as the difference between normal conditions and other con-
ditions; for type (ii), it was calculated as the difference
between wild-type isolates and mutation isolates;
for type (iii), standard deviation among individuals were
measured. Types (iv) and (v) were calculated as Euclidian
distance (ED) among different stains and species. All these
data are available upon request.

A list of essential genes in S. cerevisiae was downloaded
from Mewes et al. (40), and the haploinsufficient genes
were taken from Deutschbauer ef al. (41). We compiled
protein—protein interactions from the BioGrid database in
April 2010 (42), which consisted of 4416 proteins and
31967 binary interactions. We calculated the ratios of
non-synonymous to synonymous substitutions (Ka/Ks)
to estimate the protein evolutionary rate, and codon-based
maximum likelihood method (YNO0O) nested in PAML
package (43) was used.

In vivo nucleosome occupancy for ~6000 yeast genes
(S. cerevisiae) were retrieved from Kaplan et al. (44).
In vivo nucleosome occupancy data in S. paradoxus and
Saccharomyces. mikatae were obtained from Tsankov
et al. (45), respectively. Average nucleosome occupancy
at the promoter region (500 bp upstream to 100 bp down-
stream of the transcription start site) was calculated at
every single base pair.

Determination of statistical significance of Gene Ontology
terms

We used hypergeometric distribution in calculating statis-
tical significance of Gene Ontology (GO) terms. GO
annotations were downloaded from Ensembl database.
We performed genome-wide analysis to ensure that it
had sufficient power to detect significant GO terms. We
use N to denote the total number of genes in yeast that
have any GO annotation, and m to denote the number of
‘noisy’ or ‘quiet’ genes. If there are n genes associated with
a specific GO term, among which k genes are considered
as ‘noisy’ or ‘quiet’, then the P-value is calculated as
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The P-values were then corrected for multiple testing
using the false discovery rate (FDR) method, which
provided an estimate of the fraction of false discoveries
among the significant GO terms. We used 0.05 as the
cutoff for FDR.

Support vector machine regression

Support vector machine (SVM) was initially introduced
for classification, and subsequently it was extended to
regression (SVR) after the introduction of an e-insensitive
loss function (46). Given a training data set
T = {(x1.01).(x2.02), . .. (X V), X€R", yeR}, where each
x; is labeled by the real-valued y;, and 7 is the dimension
of feature space. Linear SVR aims to find the function:

fix) = wix+b

which has at most ¢ deviation from the actually obtained
targets y and at the same time being as flat as possible (46).
It leads to the following convex quadratic programming:
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where w is the weighted vector for each feature, and b is a
bias or offset. The regularization parameter C determines
the trade-off between the empirical risk and the regular-
ization term %WTW'LE()/, f(x)) is the e-insensitive loss
function and is defined as:

0,1 fIx) -yl <¢

Ls()/,f(x)) = { |f(x) — y| — &, otherwise.

A nonlinear SVR projects feature vectors into a high
dimensional feature space by using a kernel function,
such as a Gaussian kernel:

K(x1,x;) = exp{—||x; — x;]|*/207)

The linear SVR procedure is then applied to the feature
vectors in this feature space. In this work, all SVRs were
implemented by LibSVM (47). All the features were
normalized by rescaling each feature into [-1,1], and all
parameters were selected by grid search (47). Pearson cor-
relation coefficient was used as the measurement to assess
the performance of the regression model while the area
under receiver operating characteristic (ROC) curve
(AUC) was used as the performance measurement of the
classification. The scores used in the ROC analysis are the
modeled DM values of the optimal SVR models.

Feature selection

Mutual information based minimum redundancy—
maximum relevance (mRMR) feature selection method
(48) was used to select the most informative features for
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noise level prediction. This method has been successfully
used for gene subset selection from microarray gene
expression data (49). Briefly, this method selects features
that have the highest relevance with the target class
(‘noisy’ and ‘quiet’ genes) and are also minimally redun-
dant, i.e. features that are maximally dissimilar to each
other. Thus, we could investigate the contribution of the
combination of different features for classification by
incrementally using the top m features.

Given f; (representing the feature i) and the class label y,
their mutual information is defined in terms of their prob-
abilistic density p(f;), p(v), and p(f;, y) as follows:

p(fi,y)
p(fp(y)

To measure the contribution of each feature to discrim-
inate the noise level (‘noisy’ or ‘quiet’ genes), we used the
maximum-relevance method to select the top m features in
the descent order of I(f; y), i.e. the best m individual
features correlated to the target class:

i) = f p(fi)log dfidy.

max D= I(fi)

$ 151 €S

where S denotes the subset of the features we are seeking.

Although we can choose the top individual features
using maximum-relevance algorithm, it was frequently
observed that ‘the m best features are not necessarily the
best m features’ because the correlations among those top
features might also be high (50). In order to remove the
redundancy among features, we used the following
minimum-redundancy criteria:

> IS

Jili€S

min R = e
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where mutual information between each pair of features
was taken into consideration. Minimal redundancy will
make feature set a better representation of the entire
data set.

We simultaneously considered optimization criteria for
both of the above two equations, and obtained the
mRMR feature selection framework (48). A sequential
incremental algorithm to solve the simultaneous optimiza-
tions of optimization criteria of the above objects (D and
R) is given. Briefly, suppose that set F represents the set of
features and we already have S,, i, the feature set with
m—1 features. Then, the task is to select the m-th feature
from the set {F — S,,;}. This feature is sclected by

maximizing max [D — R].
Si€F=Sm—1

RESULTS

Expression noise is significantly correlated with expression
variations

To gain insight into the relationship between expression
noise and expression variation, we considered five
categories of gene expression variations in this study:
(1) variation of expression level under different environ-
mental conditions; (ii) variation of expression level under



406 Nucleic Acids Research, 2011, Vol. 39, No. 2

genetic perturbation of trams-acting factors; (iii) differ-
ences of gene expression among individuals, and among
isolates yielded by mutational accumulation; (iv) diver-
gence in expression level between orthologous genes in
related strains; and (v) divergence in expression level
between orthologous genes in related species. Next, we
describe the correlation of each of these five types of
expression variations with expression noise (Figure 1).

Variation under different environmental conditions. In this
category, three yeast expression compendiums were con-
sidered: expression changes under five different environ-
mental perturbations (28); expression changes under stress
response conditions (35); and transcription plasticity
calculated based on a variety of conditions (33,34). For
each of these data sets, we observed significant positive
correlation between noise level and expression changes
(Pearson correlation coefficients, R = 0.47, 0.3 and 0.4,
respectively, P < le-20, Figure 1). This is consistent with
previous findings that expression noise can allow cells to
thrive under different conditions (51,52).

Genetic perturbations. Next, we used the expression vari-
ations accompanied with mutation or deletion of chroma-
tin regulators (38) and transcription factors (39). It was
shown that the perturbation effects of both chromatin
regulator and transcription factor are positively correlated
with expression noise (R = 0.39 and 0.2, respectively,

Expression variation compendiums

Response to variaous conditions

Enviromental conditions

Transcription plasticity

Mutation/knockout of chromatin regulators

Genetic perturbations

Knockout of transcription factors

Variability among strain BY4716

Individuals

Variability among mutation accumulation lines

Variability between BY4716 and RM11-1a

Strains

Variability between $288¢ and YJM789

Species

Variability between 2 yeast species

—= Allgenes

Stress response

Variability among strain RM11-1a

Variability among 4 yeast species

P < 1e-20). Notably, noise level is more significantly
correlated with chromatin regulation effects than with
transcription factor regulation effect, indicating that chro-
matin regulation plays a more important role in
generating expression variation and noise.

Variation among individuals. We compiled two data sets
consisting of expression patterns (23) from a standard
laboratory strain (BY4716) and a wild isolate
(RM11-1a), respectively. The expression variations
among individuals are also well correlated with noise
level (R =0.37 for BY4716, and 0.15 for RMIll-1a,
respectively, P < le-20). Moreover, as previously noted,
expression variance among mutational accumulation
lines (36) is also highly correlated with noise level
(R =10.27, P<1e-20).

Variations between strains or species. Finally, we
investigated the relationships between noise level and
expression divergence in related strains or species. Two
expression divergences between related strains (23,37)
were measured (BY4716 versus RM11-1a; S288c versus
YJIM789), and they were both well correlated with noise
level (R=0.41 and 0.2, respectively, P < 1e-20).
In addition, we also concluded that the noise level is
highly correlated with the expression divergences
between yeast species (26,28) (R = 0.34 among four

Pearson correlation
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Figure 1. Correlation between noise level and gene expression variations under different conditions. Each bar represents the Pearson correlation
coefficient between noise level and expression variation observed in different types of conditions. The gray bars represent the relationships for all
genes, and the black bars represent the relationships for TATA-box containing genes.



yeast species, P <le-20, and R =0.37 Dbetween
S. cerevisiae and S. paradoxus, P < 1e-20) (Figure 1).

As TATA-box containing genes in yeast tend to have
greater expression variation (28,34), we next treated these
genes separately and repeated the above analysis. Figure 1
(dark bars) shows that the noise levels of TATA-box con-
taining genes are more significantly correlated with expres-
sion variations, which suggests that TATA-box presence is
an important signature to the overall expression variabil-
ity. In summary, our results further demonstrated that the
relationships between noise level and gene expression vari-
ations are highly interconnected with each other, especial-
ly in TATA-box containing genes.

Expression variations are predictive for noise level

To date, only half of the yeast genes have their expression
noise assayed from large-scale fluorescence microscopy
measurements (13). The observed significant correlation
between expression variation and expression noise
motivated us to ask whether expression variations can
be used to predict expression noise. In order to do this,
we compiled additional yeast gene expression data from
NCBI GEO database that were measured under various
environmental conditions, and calculated the expression
variation for each gene (see ‘Materials and Methods’
section). Using these expression variability measurements,
we were able to construct a predictive model to predict
expression noise of each gene, taking the previously
measured noise level (2126 genes) (13) as training set. In
this study, SVR model was used to predict expression
noise, taking 633 expression variation features as input;
each feature represents variations within an expression
data set. In order to evaluate the predictive power of the
SVR model, we implemented a 10-fold cross-validation on
the training dataset. We randomly divided the training set
(2126 genes with assayed noise level) into 10 disjoint sets
of equal size. For each run, one set of genes was used as
the testing set and the remaining nine data sets were used
as the training set. After evaluating different kernels and
parameters, we selected the final optimal SVR, which
achieved the highest correlation between the measured
and modeled noise values (R = 0.52, P ~ 0, Figure 2A).
As suggested by the original paper (13), we separated the
genes in the training set into ‘noisy’ genes (DM value > 1)
and ‘quiet’ genes (DM value <1), and regarded them as
the positive training data (‘noisy’) and the negative
training data (‘quiet’), respectively. Based on the
modeled noise DM values, we plotted the ROC curve
describing the relationship between the false positive rate
(FPR) and the true positive rate (TPR) to further verify
our performance of the SVR model. The final AUC was
0.72 (Figure 2B), demonstrating that expression variations
are predictive for noise level.

We further tested different cutoffs to ascertain potential
biases in the above described classification process, as we
redefined the positive training set (i.e. noisy genes) by in-
crementally selecting the genes in the top 60th to 95th
percentiles of DM values. We observed that the AUC
scores concertedly increasing when more stringent
cutoffs were used (Figure 2C), which indicates that our
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predictions were quite robust. This also shows that the
correlation between expression variation and expression
noise is more pronounced for noisy and variable genes.
As it is known that genes that have TATA-box present
in their promoter regions tend to have higher expression
variation (6), we next investigated the predictive power of
our SVR method on these special group of genes. Indeed,
our SVR approach had a higher predictive power for
TATA-box genes, as the AUC score is 0.76, higher than
the entire set of yeast genes (Figure 2D).

Given the good performance of the SVR method, we
next investigated which features (e.g. expression data sets)
had the highest predictive power. Mutual information is a
useful approach to measure the dependency between
multiple features, and features with higher mutual infor-
mation scores were considered to contribute independent-
ly to the prediction process. Here, we used mutual
information based maximum-relevance method (see
‘Materials and Methods™ section) to select the most
informative features. Table 1 lists the 20 most informative
features ranked by mutual information scores. Notably,
most of these informative features are environmental
effects on gene expression variations, such as heat shock,
genotoxic stress, stress response, etc. This suggested a
strong relationship between expression variation caused
by environmental perturbations and gene expression
noise. Furthermore, we found that genetic perturbations
of chromatin regulators also significantly contributed to
the noise prediction.

Although we selected informative features according to
the mutual information to the target class, simply
combining these top informative features might not form
a better feature sets. One possible reason is that some of
these features could be highly correlated, which raises the
issue of ‘redundancy’ of feature set. Here, we used mRMR
feature selection method (see ‘Materials and Methods’
section) to choose a comprehensive but non-redundant
representation of the characteristics of the noise. Briefly,
mRMR used mutual information to select the most
relevant features that are minimally redundant. At each
cycle, the mRMR method selects a feature which is
maximal relevant to the target class and also minimally
redundant to the selected features. To check whether all
the expression variation features were required to model
stochastic noise, we constructed a series of SVRs by incre-
mentally combining the most informative features accord-
ing to the minimum redundancy-maximum relevance
criteria. We added the mth best informative feature to
the previously selected m—1 features to run an SVR
model at each step. As the mRMR feature selection
method selected the non-redundant feature, the combin-
ation of the m individual best informative features could
be the top m features. We checked the performance of the
SVR with the top m features against the number of the
best features (m = 1,2,...). In Figure 2E, it was indicated
that not all features were equally important, and the
discrimination power of the SVR saturated after the top
20 features were used (the AUC = 0.71). Incorporating
additional features do not dramatically improve the
performance because of a high degree of redundancy.
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Figure 2. Prediction of expression noise using SVR. (A) Scatter plot of measured noise DM values (x-axis) versus modeled noise DM values (y-axis)
of the 2126 genes. (B) ROC curve is generated from the modeled noise values by SVR and the AUC is 0.72. The diagonal dash line represents the
ROC curve from randomly guessing. (C) AUC scores (y-axis) from the modeled noise values according to different thresholds for dissecting ‘noisy’
genes and ‘quiet’ genes. Different percentiles of the noise DM values (x-axis) were used as cutoffs when dissecting gene into ‘noisy’ and ‘quiet’
groups. (D) ROC curve is obtained from SVR predicted noise values on TATA-box containing genes, and the AUC is 0.76. (E) Performance of the
SVR model with incremental top m features. The selected top 20 features by mRMR method contribute mainly to the discrimination ability.

Validation of noise prediction by other features

In addition to cross-validation, we next sought to use
following lines of evidences to ascertain the predictive
power of our SVR method.

Dosage  sensitivity —and  essentiality. It has been
documented that noise levels are closely related to gene
dosage sensitivity, e.g. essential genes tend to have reduced
expression noise (4,31,53). We divided the 3909 yeast

genes for which there were no previously assayed noise
levels into two groups: the ‘quiet’ group (2065 genes,
DM < 1) and the ‘noisy’ group (1844 genes, DM > 1).
Indeed, the ‘quiet’ genes contained more haploinsufficient
genes and essential genes than the ‘noisy’ genes
(Wilcoxon rank sum test, P = 1.2e-5 and P = 4.1e-3 for
haploinsufficient genes and essential genes, respectively,
Figure S1), which is in agreement with what was
previously observed (31).



Table 1. Most informative features
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GEO id MI scores Description

GSE5608 0.043 Triterpenoid celastrol treatment and heat-shock comparison

GSE2224 0.039 Genotoxic stress

GSEI18 0.036 Hypo-osmotic shock time course

GSE15352 0.035 Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress
GSE14991 0.031 Time course of Saccharomyces cerevisiae exposed to arsenic under phosphate-limited conditions
GSE14761 0.031 Accumulation of sumoylated Rad52 in checkpoint mutants perturbed in DNA replication
GSE4709 0.03 Gendp-mediated transcriptional stress response

GSE9%463 0.029 Chemical toxicity of thorium in Saccharomyces cerevisiae

GSE2263 0.029 Ocxidative stress

GSE3406 0.029 Expression patterns in stress conditions

GSE3729 0.028 Oxidative stress in stationary-phase cultures

GSE1639 0.027 Rpd3 and histone H3 and H4 deletions/mutations

GSE1554 0.027 Time course of glycine addition or withdrawal

GSE1404 0.027 Exploration of essential gene functions via titratable promoter alleles

GSE959 0.027 Global transcriptional response to transient cell wall damage

GSE21 0.026 snf/swi mutants

GSE20590 0.026 Effects of ethanol stress

GSE18456 0.025 Expression patterns in response to zymolyase treatment

GSE20749 0.025 Natural selection on cis- and trans-regulation in yeasts

GSE2096 0.025 fhil and ifhl deletion mutants

The 20 most informative features ranked by mutual information scores (MI scores).
For each feature, we list its MI score which represents the relevance of the feature to the classification task (i.e. classifying noisy and quiet genes)

Protein—protein interactions. It is known that proteins
with more interacting partners have lower noise level,
and ‘quiet’ genes are more conserved than ‘noisy’ genes
at the sequence level (4,16,31). It was shown that hub
proteins (degree >10) are highly enriched in the ‘quiet’
genes (Wilcoxon rank sum test, P = 4.2e-4, Figure S1).

GO enrichment. As reported in the original paper by
Newman et al. (13), the ‘noisy’ genes are enriched in the
following GO categories: ‘heat shock’, ‘stress response’,
‘amino-acid biosynthesis’ and ‘oxidative phosphoryl-
ation’, whereas ‘quiet’ genes are enriched in ‘translation
initiation’, ‘ribosomal proteins’ and ‘protein degradation’,
etc. As now we have made noise predictions on all the
yeast genes, we next sought to determine the enriched
GO categories for the ‘noise’ and ‘quiet’ genes predicted
by our SVR method. Indeed, our results are consistent
with previous findings, as ‘noisy’ genes are highly
enriched in ‘metabolic process’, ‘stress response’ and ‘bio-
synthesis process’, and ‘quiet’ genes are mainly involved in
‘protein transport’ and ‘translation proteins’ (Table S1).
In terms of cellular component, the protein products of
noise genes are enriched in the mitochondria, whereas the
protein products of ‘quiet’ genes tend to locate to
ribosome and Golgi apparatus. As to our predicted
‘noisy’ and ‘quiet’ groups of genes, most of enriched GO
categories are in accordance with previous characteriza-
tions, which showed that our genome-wide prediction is
of high accuracy.

Nucleosome positioning. A recent study reported a close
association between gene expression variation and the
nucleosome positioning in the promoter regions (51).
It is known that local nucleosome occupancy in the
promoter region affects transcription regulation by
modulating the accessibility of transcription factors to

their binding sites, and influences the ability of genes to
modulate their expression (54). Given these insights, we
next examined nucleosome organization over the
promoter regions of the noisier genes (genes with top
5% of predicted and measured DM values). As shown
in Figure 3, when plotting the average nucleosome occu-
pancy measured by experimental method in vivo (44), we
found the measured and predicted noisier genes had
significantly higher nucleosome occupancy than the rest
of the genes, i.e. their promoters are in a more ‘closed
state’. To further quantify the difference in nucleosome
occupancy at the nucleosome free regions (—200 to
—50bp upstream of translation start site, TSS) between
noisier genes and other genes, we calculated the lowest
average nucleosome occupancy (LANO) score in 100-bp
sliding windows from the 200 bp upstream of the transla-
tion start site, and found that the promoter region of
noisier genes reflect a closed (nucleosome-occupied)
nucleosome organization (Wilcoxon rank sum test,
P = 2.3e-5 for measured noisier genes, and P = 3.8e-4
for modeled noisier genes, respectively). Our results
further demonstrated that nucleosome organization in
the promoter region plays a dominant role in differential
noise pattern (51).

In the above discussion, we confirmed that the noise
predicted genes share the same characteristics as noise
measured genes. We took this as indirect evidences that
our predicted noise levels are of sufficient accuracy.
However, we must point out that these validations are
indirect ways and might result from the strong associ-
ations between expression variations and some features.
Recently, Li et al. measured the expression noise levels of
40 genes by quantifying fluorescence intensities using
high-content screening microscopy (16). We found that
our modeled noise values are significantly positive
correlated with the variations of fluorescence intensities
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Figure 3. Nucleosome organizations in the promoter region of noisier genes. Both the measured noisier genes (A, black curve) and predicted noisier
genes (B, black curve) have higher nucleosome occupancy in the promoters than the rest of the genes.

(R=0.58, P =0.005), which further
accuracy of our noise prediction.

highlights  the

Predict noise in other single-cell organisms

We have shown in the above that models incorporating
expression variations after environmental perturbations
can accurately predict expression noise levels in
S. cerevisiae. Next, we asked whether we could apply
this model to other single-cell organisms and predict
noise level from expression variations in these organisms.
We obtained expression variation data (28) under the heat
shock, oxidative stress, nitrogen starvation, DNA damage
and carbon source switch in three closely related yeast
species (S. cerevisiae, S. paradoxus and S. mikatae).
We first re-trained our SVR model in S. cerevisiae using
only expression data measured under these conditions,
under which expression data are available for all three
species. We next applied the model to the expression
data in the other two yeast species to make noise predic-
tions. Due to the scarcity of measured noise data in other
yeast species, the predicted accuracy of noise values
cannot be directly validated. To circumvent this, we
attempted to use nucleosome occupancy in the promoter
regions as a proxy for expression noise, because in
S. cerevisiae such occupancy is highly correlated with the
measured expression noise (51), and examined whether
these genes have distinct nucleosome positioning pattern
compared to other genes (45). We found significant differ-
ences of LANO scores between noisier genes and other
genes (Wilcoxon rank sum test, P =0.004 for
S. paradoxus, and P = 0.01 for S. mikatae, respectively).
The result suggests that genes with higher noise levels also
have nucleosome-occupied region in their promoter
regions (Figure 4A and B). Thus, we indirectly showed
that our noise prediction method is also meaningful in
other species. One caveat of the above analysis is that
expression variation is also correlated with nucleosome
occupancy. We therefore sought to compare the evolu-
tionary rate of encoded proteins between the ‘noisy’
genes and the ‘quiet’ genes as no significant relationship
between environmental expression variation and

evolutionary rate was found (28,55). Consistent with the
result in S. cerevisiae (16), we found that noisier genes
have lower Ka/Ks ratios than the rest of genes
(Wilcoxon rank sum test, P = 1.4e-3 for S. paradoxus,
P = 3.8e-4 for S. mikatae).

With our predicted noise data, we can examine the
difference in noise levels between orthologous genes in
three yeast species. The result showed that noise levels in
multiple yeast species are highly correlated with each other
(Figure 4C), especially between S. paradoxus and
S. mikatae (R = 0.75, P ~0). This indicates that expres-
sion noise and expression variation of fungi genes are
highly conserved during evolution, at least in the fungi
lineage. To detect how nucleosome occupancy influences
the variation of noise level among these yeast species, we
compared the changes in LANO score with the divergence
of noise level among these three species (defined as the
standard deviation). Specifically, we first sorted genes by
their differences in noise levels among these three species
(x-axis in Figure 4D), and then for 300 genes in a sliding
window, we calculated the average LANO score differ-
ences between the orthologous genes. Figure 4D shows
that the genes with diverged noise levels showed much
higher changes in LANOs score than genes whose noise
levels are conserved among the species, suggesting that the
divergence of expression noise is correlated with the diver-
gence in nucleosome organization in the promoter regions
(R = 0.35, P<le-6). We next investigated the functional
enrichments of genes that have divergent expression noise
(the top 20% genes sorted by noise differences) and genes
that have conserved expression noise (the lowest 50%
sorted by noise differences). The noise diverged genes
are enriched for ‘protein kinase cascade’ (FDR = 0.017),
‘oxidoreductase activity’ (FDR = 0.008), ‘sterol biosyn-
thetic process’ (FDR = 0.04), etc. In contrast, noise
conserved genes are enriched for ‘ubiquitin-dependent
protein catabolic process’ (FDR = 0.03) and ‘endopeptid-
ase activity” (FDR = 0.008) (Supplementaey Table S2).
Taken together, we predicted noise level in other species
based on the notion of intrinsic expression variation
ability. Our work therefore sheds light on the intrinsic
expression ability, and can provide a preliminary
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overview of stochastic noise of gene expression in other
single-cell organisms. However, further experimental
works need to be done in order to reveal the real
patterns of stochastic noise in other taxa.

DISCUSSION AND CONCLUSION

Our aim in this paper is to establish the relationships
between stochastic expression noise and expression vari-
ations. To this end, we have shown that expression noise
in yeast is well correlated with gene expression variation
measured under different genetic and environmental per-
turbations. Gene expression in single-cellular organisms
such as S. cerevisiae is highly dynamic (plastic), as the
cells are able to adjust their expression program in
response to external or internal perturbations (56).
In addition to changes in expression program at the popu-
lation level, isogenic cells also exhibit stochastic expression
level (noises) at the single-cell level. It was suggested pre-
viously that such stochasticity is an important biological
trait that offers adaptive advantages to the organisms, as it
provides sufficient phenotypic heterogeneity to survive

fluctuating environments (13,31,32). Our findings
provided evidences that these two adaptive mechanisms
at two population levels are intrinsically linked.

Prior to our work, it was reported that noisy genes are
sensitive to the perturbation of chromatin regulators
(34,57), suggesting that chromatin regulation plays a
pivotal role in generating expression noise during tran-
scription. By investigating nucleosome occupancy in the
promoter region, Choi and Kim (51) found that the genes
with higher expression variation tend to have higher
nucleosome occupancy (i.e. in a more closed state) in a
crucial region 50-200 bp upstream from TSS. They further
proposed that the plastic nature of gene expression is an
intrinsic property of the gene, and nucleosome occupancy
plays a dominant role for tuning gene expression to adapt
to changing conditions. This is consistent with what was
observed experimentally, i.e. the competition between
chromatin regulators and transcription factors can influ-
ence how a gene response to external stimuli (58). What
we showed in this work provided an analytical framework
that connected the observations and insights gained from
the study of ‘expression variation’ and ‘expression noise’,
two related but distinct cell properties. Such connections
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were captured and represented in our SVR model. TATA
box is regarded as one of the most important mechanisms
of transcriptional tuning, and presents in ~20% of
S. cerevisiae genes (6). They are characterized as noisy
transcription and gene expression evolution control.
Furthermore, TATA-box can promote short-term regula-
tory tuning to environmental changes (6). Our result
indicated that TATA-box containing genes tend to have
higher variation and noise than the rest of the genes, and
are more sensitive to chromatin remodeling.

In summary, we observed that noise levels are highly
correlated with expression variations in S. cerevisiae, and
we developed a computational model that can be used to
predict expression noise, which is a property of individual
cells, from expression variation, which is a property
associated with populations of cells. Our work offers a
new perspective on the origin and behavior of stochastic
noise, and serves as a useful tool to study stochastic noise
in single-cell organisms.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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