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Abstract

The strains of inbred laboratory mice are isogenic and homogeneous for over 98.6% of their

genomes. However, geometric morphometric studies have demonstrated clear differences

among the skull shapes of various mice strains. The question now arises: why are skull

shapes different among the mice strains? Epigenetic processes, such as morphological

interaction between the muscles and bones, may cause differences in the skull shapes

among various mice strains. To test these predictions, the objective of this study is to exam-

ine the morphological association between a specific part of the skull and its adjacent mus-

cle. We examined C57BL6J, BALB/cA, and ICR mice on embryonic days (E) 12.5 and 16.5

as well as on postnatal days (P) 0, 10, and 90. As a result, we found morphological differ-

ences between C57BL6J and BALB/cA mice with respect to the inferior spine of the hypo-

physeal cartilage or basisphenoid (SP) and the tensor veli palatini muscle (TVP) during the

prenatal and postnatal periods. There was a morphological correlation between the SP and

the TVP in the C57BL6J, BALB/cA, and ICR mice during E15 and P0. However, there were

not correlation between the TVP and the SP during P10. After discectomy, bone deforma-

tion was associated with a change in the shape of the adjacent muscle. Therefore, epige-

netic modifications linked to the interaction between the muscles and bones might occur

easily during the prenatal period, and inflammation seems to allow epigenetic modifications

between the two to occur.

Introduction

To date, over 450 inbred mouse strains have been described and developed, hence providing

abundant phenotypes and genomic backgrounds for genetic studies. Most inbred laboratory

strains have originated from a limited founder population of Mus musculus and M. m. domesti-
cus housed within a few research facilities and laboratories [1]. Most of these strains have been

bred for over 150 generations and are isogenic and homogeneous for over 98.6% of their

genomes [2]. Nevertheless, geometric morphometric studies have revealed clear differences
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with respect to the skull shapes of various mice strains [3, 4]. However, the underlying reasons

for the differences in the skull shapes among various mice strains remain unclear.

Ever since Charles Darwin published his theory of evolution in the book titled On the Origin of
Species in 1859, researchers in the field of evolutionary developmental biology have sought to

unravel the mechanisms of evolution of phenotypic variations. By the end of the 20th century, the

researchers had identified the specific genes and allelic variants that adapt to phenotypic variations

[5]. However, genotypic characterization alone does not explain all the phenotypic variations in

natural populations. In 1940–1950, before the golden age of evolutionary genetics, Conrad Wad-

dington had already described the extragenetic factors that contribute to phenotypic variations [6,

7]. He demonstrated that embryo fruit flies reared in a high-temperature environment have differ-

ent wing structures than their counterparts in the control group. Subsequently, he selectively bred

the fruit flies that displayed the new characteristics for several generations. Consequently, the

progeny displayed the new characteristics even in the absence of the environmental stimulus. He

defined this phenomenon as “Epigenetics,” which refers to the effect of internal and external inter-

actions between the environment and genes on the evolution of the phenotype [6, 7].

The term epigenetics encompasses the tissue–tissue interactions, such as the effect of the

muscle on the bone during their development and maintenance periods. The biomechanical

interaction between the muscle and bone has typically been investigated in three types of stud-

ies, i.e., analyses of the correlation between muscle volume and bone size [8–11], comparisons

of skull shapes between mice feeding on hard and soft diets [12, 13], and study of the effects of

muscle atrophy on bone shapes [13, 14]. As with the muscle–bone interaction in adults, the

bone shape is associated with the muscle-induced loading during the embryonic development

period. Sharir et al. [15] showed that mice paralyzed due to muscular dysgenesis exhibit abnor-

mal circular-shaped long bone diaphysis, which indicated the effect of in utero muscle load on

bone development. Similar aberrant development of the shape of long bones was also observed

in the studies of mice without muscles [16–18]. Particularly, Rot-Nikcevic et al. [19] described

that muscle defects had a noticeable effect on the morphology of the mandible. However, few

studies have focused on the morphological interaction between the muscle and bone.

Illustrations and photographs in the anatomical textbooks show that skeletal muscles properly

fit onto the surfaces of adjacent bone and other skeletal muscles. This is clearly observed in the

cross-sectional images of the arm, thigh, head, or neck [20]. Moreover, our previous studies have

suggested that muscle anlagen are already fitted onto the surface of the adjacent bone or cartilage

analgen during the prenatal development [21–27]. Therefore, the interaction between the muscle

and bone may affect their shape during the developmental period because the skeletal muscles

properly fit onto the surfaces of adjacent bone for a lifetime, including in the fetal period [21–27].

Our findings showed differences between C57BL6J and BALB/cA mice with respect to the

shape of a specific part of the skull and its adjacent muscle during the prenatal and postnatal

periods. Differences in the shape of the skull and its surrounding muscles among the mice

strains may result from epigenetic processes linked to the interaction between their adjacent

parts. To test these predictions, we examined the morphological associations between the skull

and its adjacent muscles.

Materials and methods

Ethics statement

All experiments related to mice were performed in accordance with the National Institutes of

Health guidelines for care and use of animals. In addition, these experiments were also approved

by the Tokyo Dental College Institutional Animal Care and Use Committee (IACUC) (protocol

#240106).
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Study design

We employed C57BL6J and BALB/cA mice on the embryonic days (E) 12.5 and 15.5 and on

the postnatal days (P) 0, and 10, respectively. In total, 40 C57BL6J and BALB/cA mice were

used in this study. To examine the morphological association between a specific part of the

skull and its adjacent muscle in detail, we also used not only 40 C57BL6J and BALB/cA mice

but 10 ICR mice (E15.5, P0 and P10). In all timed pregnancies, the date of development of the

vaginal plug was defined as E0.5. For the harvesting of embryos, timed-pregnant females were

sacrificed by CO2 intoxication. The gravid uterus was dissected out and suspended in a bath of

cold phosphate-buffered saline, and the embryos were harvested after amnionectomy and

removal of placenta. The postnatal mice were also euthanatized by using CO2 intoxication. All

experiments involving mice were approved by the IACUC Committee at the Tokyo Dental

College.

Histological analysis and three-dimensional reconstruction

Before being subjected to demineralization with 10% ethylenediaminetetraacetic acid, all the

mice were fixed in 4% phosphate-buffered paraformaldehyde. Next, the paraffin blocks were

prepared by using standard methods, and a series of 5- to 10-μm-thick tissue sections were cut

by a sliding microtome. Then, we prepared the frontal sections, followed by staining with

hematoxylin and eosin (H&E). For the morphometric analysis of the middle cranial base and

its surrounding muscles, the frontal sections, which included this area, were prepared, and the

parameters were calculated (Fig 1A). These parameters were measured by using the ImageJ

software (National Institutes of Health).

For three-dimensional (3D) reconstruction, we loaded the digital images of the H&E

stained serial sections into Amira (Visage Imaging, Inc.) by using a voxel size that was appro-

priate for the section thickness.

Immunohistochemical analysis

Sections were incubated overnight at 4˚C with the following primary antibodies: mouse anti-

desmin antibody (1:1000, Merck Millipore) and rabbit anti-sox9 antibody (1:1000, Merck

Millipore). Afterwards, they were stained at the room temperature for 1.5 h with the following

secondary antibodies: donkey anti-mouse IgG Alexa Fluor 488 (1:1000, Thermo Fisher Scien-

tific) and donkey anti-goat IgG Alexa Fluor 555 (1:1000, Thermo Fisher Scientific).

Partial discectomy of the temporomandibular joint

Four C57BL6J mice (age, 3 months) were used. Each mouse was anesthetized with intra-peri-

toneal 70 μg ketamine and 15 μg xylazine per microgram of bodyweight. Incisions were made

over the right temporomandibular joint and through the subcutaneous and masseter muscle

layers to allow the removal of a part of the disk (Fig 1B) [28, 29]. The left temporomandibular

joint, which did not undergo surgery, was used as a control. At 70 days after discectomy, the

mice were sacrificed by CO2 intoxication. Before demineralization with 10% ethylenediamine-

tetraacetic acid, all the mice were fixed in 4% phosphate-buffered paraformaldehyde. Paraffin

blocks were prepared by using standard methods, and a series of 5- to 10-μm-thick tissue sec-

tions were cut by a sliding microtome. Finally, we prepared the frontal sections that were

stained with safranin O/fast green [28, 29].

We measured the distance between the condylar neck and the temporalis muscle. We deter-

mined a 1.3-mm inferior point from the top of the condylar head as the measurement point of

the condylar neck (Fig 1B). The vertical line to the squamous part of the temporal bone was
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determined as the reference line (Fig 1B). These parameters were measured by using the Ima-

geJ software (National Institutes of Health).

The observation of osseous morphology by 3-D reconstruction

Four C57BL6J mice (age, 3 months) were used. The materials were imaged by using a micro-

CT system (HMX-225Actis4; Tesco Co, Tokyo, Japan) and following the basic conditions:

tube voltage, 100 kV; tube current, 120 μA; slice width, 50 μm; matrix size, 512 × 512; and slice

voxel size, 52.7 × 52.7 × 50 μm. The 3D reconstructions were obtained from the slice images

Fig 1. Study design. Panel A: Schema of frontal sections for morphometric analysis of the middle cranial base. The parameters are shown in the schema.

Panel B: A schematic illustration of discectomy. The measurement point of the condylar neck as 1.3 mm inferior to the top of the condylar head. The

distance between the condylar neck and the temporalis muscle (yellow arrow). Panels C and D: The mean gestation in C57BL6J and BALB/cA mice was

18.5 days. Panel E: Crown-rump length (CRL) at E12.5, E15.5, and P0. There is no significant difference between the two strains in this respect (Table 1).

https://doi.org/10.1371/journal.pone.0227301.g001
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by using the 3D reconstruction software (VG Studio, Volume Graphics, Heidelberg, Germany)

for the observation of osseous morphology.

Statistical analysis

P-values were calculated by using the Student’s t-test. Between-group differences associated

with the p-values of<0.05 were considered statistically significant (�p< 0.05, ��p< 0.01, and
���p< 0.001 are used throughout the paper). Error bars show the standard deviation of the

mean. All statistical analyses were performed by using SPSS 21.0 (IBM, Armonk, NY, USA).

The Spearman correlation coefficient (r) was calculated to determine the linear association

between the cross-sectional area (CSA) of the tensor veli palatini muscle (TVP) or the TVP

angle and aspect ratio of the inferior spine of the hypophyseal cartilage or basisphenoid (SP).

The outcomes were interpreted according to the degree of association as strong (0.7–1), mod-

erate (0.5–0.7), or low (0.3–0.5) after considering the significant correlation (p< 0.05) values.

Results

Comparative anatomy of two mice strains (C57BL6J vs Balb/cA)

The gestations of the C57BL6J and BALB/cA mice averaged 18.5 days (Fig 1C and 1D). We

compared the crown-rump lengths of both C57BL6J mice and BALB/cA. There was no signifi-

cant difference between the two strains (Table 1 and Fig 1E).

The middle cranial base comprised the trabecular, hypophyseal, and ala temporalis carti-

lages at E15.5 [30]. The hypophyseal cartilage (1) was narrower in the BALB/cA mice than that

in the C57BL6J mice (P< 0.001) (Fig 2A–2F and 2M). The ala temporalis did not differ

between the C57BL6J and BALB/cA mice (medial part (2), P = 0.36; lateral part (3), P = 0.42)

(Fig 2A–2F and 2M). The SP (4) was longer in the BALB/cA mice than in the C57BL6J mice

(P< 0.01) (Fig 2G, 2J and 2M). The CSAs of the masseter, medial pterygoid, and lateral ptery-

goid were found to be comparable between the two mice strains (Fig 2C, 2F and 2N). The CSA

of the anterior part of the TVP was smaller in the BALB/cA mice than that in the C57BL6J

mice (P< 0.01) (Fig 2H, 2K and 2N). The CSA of the posterior part did not differ between the

strains (P = 0.77) (Fig 2I, 2L and 2O).

On P0, longer SPs (4) were identified in the BALB/cA mice, whereas the C57BL6J mice had

shorter SPs (4) (P< 0.001) (Fig 2P, 2S and 2V). The anterior TVP in the C57BL6J mice had a

larger CSA than that in the BALB/cA mice (P< 0.05) (Fig 2Q, 2T and 2V). A newly formed

muscle bundle was only identified inferior to the posterior part of the TVP in the C57BL6J

mice (Fig 2R), and the two muscles were in contact with each other. Differences in CSAs were

apparent in the posterior TVPs of each strain (P< 0.001) (Fig 2R, 2U and 2V).

On P10, we observed the lateral curvature of the medial pterygoid processes in both strains.

However, these were more curved in the C57BL6J mice than in the BALB/cA mice (Fig 3B and

3E). The TVP angles between a line connecting the most inferior point with the superomedial

point and a horizontal line were significantly different between the C57BL6J mice (74.3˚ ±
3.0˚) and BALB/cA mice (105.2˚ ± 5.2˚) (P< 0.01) (Fig 3G). The shapes of the SP still showed

differences between the two strains (P< 0.05) (Fig 3A, 3D and 3H). Although the CSAs of the

Table 1. Crown-rump length of mice (mean ± SD).

C57BL6J BALB/cA P-value
E12.5 (mm) 6.12±0.34 6.21±0.31 P = 0.18
E15.5 (mm) 12.69±0.64 12.25±0.66 P = 0.45
P0 (mm) 22.97±0.95 23.18±1.06 P = 0.62

https://doi.org/10.1371/journal.pone.0227301.t001
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Fig 2. Comparative anatomy of two mice strains at E15 and P0. Panels A and D show the superior view of the middle cranial base, and the lower side of the figures

correspond to the anterior side of the head. Panels B and E show the anterior view of the middle cranial base. Panels C and F are frontal sections. Panels G-L and P-U

show high magnification views, including the inferior part of the hypophyseal cartilage (4) and tensor veli palatini (T). Morphological differences are apparent in the

middle cranial base of the two mouse strains at E15.5 and P0 (panels A-L, P-U). The inferior part of the hypophyseal cartilage (4) has a small spine that is longer in

BALB/cA mice than that in C57BL6J (panels G, J, M, P, S, and V). The anterior part of the tensor veli palatini (T) in BALB/cA mice is smaller than that in C57BL6J

(panels H, K, N, Q, T, and V).1. Anterior part of the hypophyseal cartilage; 2, 3. ala temporalis cartilage; 4. Inferior part of the hypophyseal cartilage. M, masseter; MA,

medial pterygoid; L, lateral ptergoid; T, tensor veli palatine; TG, trigeminal ganglion; asterisk. newly formed muscle. Scale bar = 500 μm (panels C, F), 100 μm (panels H,

I, K, L, Q, R, T, U).

https://doi.org/10.1371/journal.pone.0227301.g002
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anterior TVPs showed no differences (P = 0.44) (Fig 3B, 3E and 3H), the CSAs of the posterior

TVPs showed a considerable difference (P< 0.05) (Fig 3C, 3F and 3H). A muscle bundle was

only identified inferior to the posterior TVP in the C57BL6J mice (Fig 3C).

Comparable primordial muscles in the C57BL6J and BALB/cA mice

The muscle-specific protein desmin was expressed in all muscle primordia, and Sox9 was

expressed in most of the cartilage primordia (Fig 4). The desmin-positive TVP was located lat-

eral to the Sox9-positive SP in this period. The anterior TVP in the C57BL6J mice had a larger

CSA than that in the BALB/cA mice (P< 0.05) (Fig 4C, 4D and 4M). There were no differ-

ences in the primordial muscle size between the C57BL6J and BALB/cA mice in the middle

(P = 0.79) or posterior (P = 0.24) parts of the TVP (Fig 4G, 4H, 4K, 4L, 4N and 4O).

Development and growth of the TVP and age changes

In the C57BL6J mice, the anterior TVP significantly increased between E12.5 and E15.5 and

subsequently showed a tendency to reduce between E15.5 and P10, whereas in the BALB/cA

mice, it gradually increased between E12.5 and P10. Finally, both mice showed almost the

same value at P10 (Fig 5A and 5B). Therefore, the anterior TVP in the C57BL6J mice exhibited

a different growth curve than that in the BALB/cA mice (Fig 5B).

The growth curve of the posterior TVP was almost identical in the two strains, thereby

showing a gradual increase between E12.5 and P0 (Fig 5C and 5D).

Morphological association between the muscle and bone

We examined a morphological correlation between the TVP and the SP in the C57BL6J,

BALB/cA, and ICR mice. There were significant correlations between the CSA of the anterior

TVP and the aspect ratio of the SP during E15 and P0 (R = 0.719, P = 0.008) (Fig 6A). How-

ever, there were not correlations between the TVP angle and the aspect ratio of the SP during

P10 (R = 0.357, P = 0.254) (Fig 6B).

Impact of bone deformation on muscle shape

At 70 days after discectomy, the size of the mandibular condyle on the discectomy side was

greater than that on the non-surgical side (Fig 7A and 7D). The perimeter of the top of the

condyle on the discectomy side was larger than that on the non-surgical side (surgery side,

6479.21 μm; sham side, 5189.89 μm; P< 0.05) (Fig 7G). The posterior torus of the condyle was

clearly observed on the sides subjected to discectomy (Fig 7D, 7E and 7F). The shape of the

temporalis muscle had changed by discectomy (Fig 7B, 7C, 7E and 7F). The muscle on the dis-

cectomy side was not only in contact with the condylar head but also with the condylar neck

(Fig 7F, oval). However, the muscle on the non-surgical side was separated from the condylar

neck (Fig 7C, oval). The distance between the condylar neck and temporalis muscle on the

non-surgical sides was larger than that on the discectomy sides (discectomy, 92.92 μm; sham

surgery, 560.22 μm; P< 0.05) (Fig 7H).

Discussion

Hallgrı́msson et al. [3] reported differences between the skull shapes of A/WySnJ and

aC57BL6J mice. A study by Kawakami and Yamamura [4] found that M. spretus mice have

much thinner skulls than the C57BL6J, BALB/cA, C3H/HeJ, CBA/JNCr, ICR, or MSM/Ms

mice. However, the underlying reasons for the differences in the skull shapes of different mice

strains are not well characterized. Noden and Trainor [31] have described muscle–bone

Morphological association between the muscles and bones
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interactions during the embryonic period to cause different skull shapes. The neural crest cells,

precursors of the skull, were shown to be located in the superficial layer of each pharyngeal

arch and eventually wrap around the mesoderm-derived cells, which are the precursors of the

Fig 3. Comparative anatomy of two mice strains at P10. All panels show high magnification views including the inferior part of the hypophyseal

cartilage (S) and the tensor veli palatini (T). Panels B and E (C and F) show the anterior (posterior) part of the TVP. The TVP angle between the line

connecting the most inferior point with the superomedial point and a horizontal line are different between the C57BL6J mice (74.3˚ ± 3.0˚) and BALB/

cA mice (105.2˚ ± 5.2˚) (panels A, B, D, E, and G; arrow heads). The shapes of the inferior spine (S) show differences (panels B, E, and H). Although the

cross-sectional areas (CSAs) of the anterior TVPs show no differences (panels B, E, and H), the CSAs of the posterior TVPs differed significantly (panel

C, F, and H).M. medial pterygoid; MP. medial pterygoid process; S. inferior spine of the hypophyseal cartilage; T. tensor veli palatini, asterisk. newly

formed muscle. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0227301.g003
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head muscles. Although these cells are in close proximity to each other, few studies have investi-

gated their intercellular interactions during the early developmental stages [32]. However, several

studies have revealed the intercellular interactions between the skull and muscle anlagen after the

fate of the cells is determined [33–35]. In this comparative anatomical study of C57BL6J with

BALB/cA, we demonstrated the association between the shape of the muscles and bones in the

craniofacial region. The effect of muscle development on the bone shape may represent an under-

lying mechanism of the evolution of skull phenotypic variations over several generations.

Several studies have investigated the mechanisms involved in the regulation of muscle

mass. Denervation induces an immediate loss of skeletal muscle mass [36]. Although reinner-

vation after long-term denervation may result in the partial recovery of muscle mass, it is typi-

cally not restored to the original state [37]. A recent study showed that signaling by bone

morphogenetic proteins (BMPs) strongly exacerbated the effects of denervation and fasting

[38]. In addition, the authors concluded that BMP signaling, particularly Gdf5 (BMP14), was

critical for the maintenance of muscle mass. Another study showed that BMP signaling path-

way promoted skeletal muscle mass development and inhibited the wasting of denervated

muscle [39]. In addition, the combined inactivation of Spry1 and Spry2 in the temporoman-

dibular joint was shown to promote muscle mass growth and hinder bone formation, thereby

suggesting that Spry1 and Spry2 may regulate the muscle size [40]. We showed that the ante-

rior TVP in the C57BL6J mice was larger than that in the BALB/cA mice at E15.5 and P0. It is

Fig 4. Comparable primordial muscles in C57BL6J and BALB/cA mice. Panels A, B, E, F, I, J show the frontal

sections at E12.5. Panels C and D (G and H, K and L) show high magnification view of panels A and B (E and F, I and

J). Yellow dots indicate anlage of the TVP (panels C, D, G, H, K, and L). Panels A, B, E, F, I, J (C, D, G, H, K, and L)

show same magnification level. The TVP first appears medial to the medial pterygoid (M) at E12.5 (panels A, B, E, F, I,

and J). The desmin-positive TVP (FITC) is located lateral to the Sox9-positive inferior spine (S) (Rhodamine) (panels

A, B, E, F, I, J). The anterior TVP in the C57BL6J mice had a larger CSA than that in the BALB/cA mice (P< 0.05)

(panel M). There were no differences in the primordial muscle size between the C57BL6J and BALB/cA mice in the

middle (P = 0.79) or posterior (P = 0.24) parts of the TVP (panels N and O). L. lateral pterygoid; M. medial pterygoid;

MA. masseter; S. inferior spine of the hypophyseal cartilage; T. tensor veli palatini; Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0227301.g004
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possible that BMP signaling and the activities of Spry1 and Spry2 may regulate muscle mass in

these strains.

Epigenetics means modification in gene expression that does not involve alteration in the

underlying DNA sequence. The control mechanisms have been grouped in three classes: (1)

DNA methylation, (2) histone modification, and (3) ncRNA interaction [41]. DNA methyla-

tion is associated with the pluripotency and naive characteristics of stem cells [42], whereas

DNA demethylation is the removal process of a methyl group from nucleotides, which is

essential for cell fate decisions [43]. During the development of muscle stem cells, specific-

myogenic factors are activated in a demethylation-dependent manner [44–46]. Histone acety-

lation, which is one of the histone modifications, is also a major change that affects gene tran-

scription. Histone acetylation and deacetylation regulate many steps of myogenesis [47].

Histone deacetylases (HDAC) contribute to the molecular pathways and chromatin changes

that regulate the tissue-specific gene expression during chondrocyte and osteoblast specifica-

tion [48]. In this study, we demonstrated a morphological correlation between the muscles

and bones during E15 and P0. If the bone volume reduces in size, then DNA demethylation

Fig 5. Development and growth of the TVP and age changes. Panel A (C) shows the cross sections of the anterior (posterior) TVPs form Figs 2–4. Panel B and D show

the growth curve of the TVP. (Anterior part) The growth curve of the anterior TVP in C57BL6J mice is different from that in BALB/cA (panel B). (Posterior part) The

posterior TVPs showed almost the same growth curve in the two strains between E12.5 and P10 (panel D). Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0227301.g005
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seems to promote the expression of specific-myogenic factors. On the contrary, if muscle vol-

ume reduces in size, then HDACs might control the chondrocyte maturation by regulating the

expression of matrix genes. Since epigenetic information can be inherited across multiple gen-

erations [41], there might be differences in the TVP shapes between two mice strains at E12.5.

In addition, we demonstrated that there were not correlations between the TVP and the SP at

P10. Therefore, epigenetic modification between the muscles and bones seem to rarely happen

during postnatal period.

Unilateral partial discectomy induces dramatic changes in the condylar cartilage in the sur-

gical TMJ [28]. A study by Xu et al. [28] showed chondrocyte clusters to be appearing at 8

weeks after discectomy. Afterwards, fibrillation was observed at 12 weeks. In contrast, unilat-

eral partial discectomy was shown to trigger the degeneration of the articular cartilage in the

contralateral sham-surgical TMJ of mice. Choen et al. [29] reported that contralateral sham-

surgical TMJs remained the same at 4 weeks after surgery, whereas the increased proteoglycan

straining was observed at 8 weeks after the surgery. An incision was made in the subcutaneous

and muscle layers on the contralateral side (sham surgery) [28, 29]. However, we did not

Fig 6. Morphological association between the muscle and bone in the C57BL6J, BALB/cA, and ICR mice. There

are morphological correlations between the anterior TVP and the SP at E15 and P0 (R = 0.719, p = 0.008; panel A).

However, there are not correlations between the TVP angle and the SP at P10 (R = 0.357, p = 0.254; panel B).

https://doi.org/10.1371/journal.pone.0227301.g006
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perform the sham-surgical operation in the contralateral TMJ. This study retarded the pro-

gression of articular cartilage degeneration in the non-surgical contralateral side. Therefore,

we used the contralateral TMJ as the control.

After discectomy, the size of the mandibular condyle on the discectomy side was greater

than that on the non-surgical side, and the shape of the temporalis muscle on discectomy side

had changed. Therefore, inflammation seems to allow epigenetic modifications between the

muscles and bones to occur. Recently, reduced skeletal muscle mass and function, namely sar-

copenia, is related to low areal bone mineral density, osteoporosis [49]. A combined diagnosis

of sarcopenia and osteoporosis has been defined, namely osteosarcopenia, that is associated

with increased risks of gait and balance disturbances and of fracture in elderly men. However,

it is not clear whether one condition has more of a causal influence than the other or if both

conditions have an equal impact. Hence, there is growing interest in the interaction between

muscle and bone.

The effect of muscle loading on the skull shape depends on the tendon–bone interactions

[50]. To observe pure muscle–bone interactions without any tendon effects, we selected the

area, wherein the muscle is in direct contact with the bone.
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