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Abstract

Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmen-

tal pollutants originating mainly from oil and gas industries, which are toxic to human as well

as other living organisms in the ecosystem. Here we investigate photocatalytic degradation

of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on

glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were

characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/vis-

ible absorption and photoluminescence spectroscopy. Visible light photocatalytic degrada-

tion products of BTEX are studied for individual components using gas chromatograph/

mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect

states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited

efficient degradation of BTEX under visible light, degrading more than 80% of the individual

BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual com-

ponents is also probed and the photocatalytic activity of the ZnO nanorods in different condi-

tions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol,

benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due

to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an

increasing pattern over time indicating the mineralization process confirming the conversion

of toxic organic compounds into benign products.

Introduction

Petroleum industries are contributing largely in the global economy as well as in the develop-

ment of oil-producing countries. Millions of barrels of crude oil are produced worldwide

every day, which contains potentially toxic chemicals used in drilling, as well as natural
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contaminants ejected from the oil wells, including total dissolved solids (e.g., salts, barium,

strontium), organic compounds (mainly aliphatic and aromatic hydrocarbons) and normally

occurring radioactive material (NORM), such as Radium 226 [1–4]. Aromatic hydrocarbons

in crude oil is composed of trace amounts of polycyclic aromatic hydrocarbons (PAHs) that

are relatively less soluble in water and high concentrations of monoaromatic hydrocarbons

such as benzene, toluene, ethylbenzene and xylenes (BTEX) that are grouped as volatile

organic compounds (VOCs), some of which are relatively soluble in water. Both groups con-

tribute to environmental contamination when released into the environment finding their

way to water, soil and air [5]. Benzene, toluene, ethylbenzene, and xylene (i.e., BTEX), though

present in low percentages in crude oil are of high interest as they have been associated with

adverse human health effects [6]. Produced water from oilfields and refinery wastewater usu-

ally contain some amounts of monoaromatic hydrocarbons as well [7–9]. Lined holding ponds

that are constructed at well sites for temporary storage of the produced water are potential

sources of surface spills and leaks of BTEX-containing liquids and also have the potential to

leak into aquifers due to structural failure of casings and/or stray gas migrations [10]. Benzene

can threaten human health and is mutagenic and carcinogenic [5]. It has a high vapor pressure

that can rapidly contaminate the surrounding air, which can then lead to water and soil con-

tamination via rainfall. Other BTEX compounds are derivatives of benzene which also

show toxic effects. Benzene (5 ppb), toluene (1000 ppb), ethylbenzene (700 ppb) and xylene

(10,000 ppb) are the permissible limits of drinking water maximum contaminant level (MCL)

[11].

Different treatment technologies are in use for BTEX removal, such as biological treatment,

chemical adsorption and advanced oxidation processes (AOPs) [12–16]. Among these, AOPs

are a cluster of processes that produce high reactive hydroxyl radicals (OH•) leading to the

destruction of harmful organic contaminants present in test matrix [17–19]. Photocatalysis is

one of the popular AOPs for converting organic pollutants into harmless products, like CO2,

H2O and mineral acids [20,21]. Furthermore, it is cost-effective, safe, non-selective and com-

patible to treat a broad range of organic contaminants [22–24]. Semiconductor photocatalysis

lead to the mineralization of organic pollutants when it is irradiated with ultraviolet (UV) or

visible light [25]. Carbon nanotubes (CNTs) also have been reported as an active nanomaterial

for photocatalytic degradation of toxic organic contaminants and for sensing of heavy metals

such as chromium and aluminum (III) ions in water [26–28]. Zinc oxide (ZnO), titanium

dioxide (TiO2) and tin dioxide (SnO2) are the most widely used wide bandgap semiconductor

photocatalysts [29,30]. The use of UV lamps is expensive and not practical for large area appli-

cations. Sunlight in retrospect, can be a viable cost-effective solution for large scale use of

photocatalysis for the degradation of organic matters, but it contains only about 5% UV and

45% visible light [31]. Since ZnO is a wide bandgap semiconductor, modification of the mate-

rial is necessary to make it visible light active in order to harvest major part of the solar spectra.

Many studies are available in the literature offering different strategies to render ZnO materials

visible light active. For example, coupling of ZnO with plasmonic metals [32,33], metal and

non-metal doping [34,35], composites with another semiconductors [36–39], and self-doping

by inducing crystal defects [40–44].

Nanotechnological application using zinc oxide nanomaterial got much respective attention

and particularly in medical investigation and its applications, photocatalysis and material sci-

ence. Zinc oxide is applied as anticancer agents [45,46]. Zinc oxide is widely used for photoca-

talytic degradation of toxic contaminants in water [47–50]. It is also used as antibacterial

activity and antifouling [51,52], gas sensing [49,53] and for flame transport approach [48,54].

Photocatalytic degradation of BTEX, whether individually or as a group, in gaseous samples

using UV light have been intensively studied, while very little research has been done to

BTEX photocatalysis ZnO
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investigate BTEX degradation in aqueous solutions and that too with visible light [55–57]. Tol-

uene was reported to be more degradable than benzene when visible light photocatalysis is

used for aqueous solution [57]. Although BTEX is volatile, its presence is always detected in

the wastewater produced typically in oil and gas industries. In the present study, we therefore

probe the photocatalytic degradation of BTEX in aqueous medium using visible light active

defect engineered ZnO nanorods [58]. ZnO nanorods were hydrothermally grown on micro-

scopic glass substrates and used as supported photocatalyst. Degradation of BTEX in aqueous

solution as individual components was then investigated and discussed. Intermediate forma-

tion of byproducts was also evaluated using a mixed BTEX solution and evolution of carbon

dioxide as a result of complete mineralization of BTEX was probed by gas chromatograph

equipped with thermal conductivity detector (TCD).

Materials and methods

Synthesis of zinc oxide nanorods

Microwave assisted hydrothermal (MAH) process for the synthesis of ZnO nanorods is dis-

cussed in our previous reports [41,58,59]. Microscope glass substrates were successively

cleaned with soap water, ethanol, acetone and finally with deionized (DI) water in an ultra-

sonic water bath for 15 minutes respectively. The clean glass substrates were then placed on a

hotplate at 350˚C and a ZnO seed layer was deposited on them by direct spraying of 10 mM

zinc acetate dihydrate [Zn(CH3COO)2.2H2O; Merck] aqueous solution. The ZnO seeded glass

substrates were then dipped in an aqueous solution comprising of 20 mM zinc nitrate hexahy-

drate [Zn(NO3)2�6H2O; Sigma] and 20 mM hexamethylenetetramine (HMTA; Merck). The

reaction vessel was then heated in a commercial microwave oven (Samsung model# ME731K,

serial # J68C7WFC5015084Y) operated at 180 W (growth solution temperature: 90˚C) for 45

minutes and then allowed to cool down naturally for 15 minutes [58]. The growth solution

was then replenished with a fresh solution and the heating process was continued for another

4 similar cycles [60]. After the 5th cycle of microwave treatment, the glass substrates were

removed, rinsed with DI water and dried in an oven at 90˚C. The as prepared ZnO nanorod

coated glass substrates were then annealed at 350˚C in air for 1 hour in order to improve the

visible light photocatalytic (VLP) activity of the nanorods. The annealing temperature was

fixed based on our previous results where we have shown that the VLP activity of the ZnO

nanorods can be improved through temperature induced defect migration from the bulk to

the surface of ZnO nanorods [41].

ZnO nanorod characterization

Scanning electron microscopy (SEM, JEOL JSM-7600F) operated at 20 kV was used to investi-

gate the morphology of the synthesized ZnO nanorods. X-ray diffraction technique (XRD,

Rigaku miniflex 600) with Cu Kα radiation (λ = 0.154 nm) was used to study the crystal struc-

ture of the nanorods. XRD pattern was recorded in the 2θ range from 20˚ to 80˚ in 0.02˚/s

steps. The specific surface area was determined using nuclear magnetic resonance (NMR)

technology from Xigo Nanotools. Field emission transmission electron microscope (TEM,

JEOL JEM-2100F) was used for the morphological structure, crystal nature and the lattice

fringe spacing. A double beam UV-visible spectrometer (Perkin Elmer Lambda 25) was used

to measure the steady state optical absorption spectrum of the ZnO nanorods. Photolumines-

cence (PL) spectra were collected at room temperature using a fluorescence spectrometer (Per-

kin Elmer LS 55). ZnO nanorods were excited with 325 nm monochromatic wavelength in

order to obtain PL spectra at ambient conditions.

BTEX photocatalysis ZnO
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Photocatalytic degradation tests for BTEX

An aqueous benzene solution (10 ppm) was prepared and a 25-ml sealed glass bottle was filled

with the benzene solution following which the bottle was sealed with a septum cap. Prior to

the sealing, a ZnO nanorod coated glass slide (dimensions of 4 cm x 1.25 cm) was placed verti-

cally in the bottle. The sealed bottle was then stored in dark at room temperature for 2 hours

in order to obtain equilibrium between the benzene molecules adsorption and desorption at

the ZnO surface. After 2 hours, the bottle was illuminated with artificial solar irradiation (inci-

dent power: 1 kW/m2) using a Sciencetech solar simulator (SS1.6 kW). Another similar sealed

glass bottle filled with 10 ppm benzene aqueous solution in the absence of any photocatalyst

was used under similar conditions as control sample. Photocatalytic degradation of benzene

was continued up to 3 hours and at regular intervals 300 μl of benzene aliquots were collected

with a syringe to analyze the reduction in benzene concentration due to the photocatalytic

reactions. Similar steps were applied for photocatalytic degradation of toluene, ethylbenzene

and xylene under visible light irradiation. The initial concentration of the test contaminants

was then varied from 10 to 100 ppm by keeping all the other parameters same in order

to investigate the effect of initial concentration of the contaminants on the kinetics of the

photocatalytic reactions. Degradation kinetics was studied by analyzing the VOC contents

using gas chromatograph-mass spectrometer (GC/MS) technique. A mixture of BTEX solution

(25 ppm) was also used to test for intermediate byproduct formation and carbon dioxide evo-

lution during the photocatalytic degradation of BTEX. The experimental details were illus-

trated (Fig 1).

Analytical methods

Photocatalytic reduction of BTEX with time was monitored by gas chromatograph equipped

with mass spectrometer (GC/MS, Shimadzu model# QP2010 Ultra) along with an autosampler

Fig 1. Schematic representation of a photocatalytic process using zinc oxide nanorods for degrading the monoaromatic

hydrocarbons.

https://doi.org/10.1371/journal.pone.0189276.g001

BTEX photocatalysis ZnO

PLOS ONE | https://doi.org/10.1371/journal.pone.0189276 December 20, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0189276.g001
https://doi.org/10.1371/journal.pone.0189276


(Shimadzu model# AOC-20i) injecting 1 μl sample into the GC. A polar capillary column

(Rtx-Wax, 30 m length, 0.25 mm I.D., 0.25 μm film thicknesses, Restek) was used for BTEX

analysis. High purity helium was used as the carrier gas (99.9999%) with a flow rate of 1 ml/

min. The injector, MS interface and ion source temperatures were 250, 250 and 220˚C, respec-

tively. The initial oven temperature was set at 60˚C and increased to 150˚C by slowly heating

at 6˚C/min (15 minutes run time). The mass-spectroscopic (MS) fragments were scanned in

35–300 amu. Spectral library (NIST14 database) was used to identify the compounds of inter-

est. All results were then plotted as Ct/Co against time t, where Ct represents concentration of

each monoaromatic hydrocarbon at a given time interval and Co represents their starting

concentration.

The intermediate products formed during photocatalysis were evaluated by high perfor-

mance liquid chromatography (HPLC) equipped with an autosampler (SIL-30A, Shimadzu,

Tokyo, Japan) and an ODS hypersil column (particle size: 3 μm, internal diameter: 4.6 mm,

length: 80 mm) from Hewlett Packard, Santa Clara, CA, USA. The mobile phase was prepared

by mixing water and methanol in a ratio 50:50 and was degassed before use. The flow rate of

the mobile phase was 0.6 mL/min. 20 μl of samples were injected into the system each time

and the sample was scanned from 200 to 400 nm to probe the intermediates using a photodi-

ode array detector (SPD-M20A) from Shimadzu, Japan.

For detecting the carbon dioxide evolved as a result of complete mineralization of BTEX,

gas chromatograph with thermal conductivity detector (Agilent 6890N) was used. 250 μl of the

headspace gas, using gas-tight syringe, was injected every 30 minutes into a HP-PLOT Q col-

umn (HP-PLOT Q, 30 m length, 0.53 mm internal diameter, 40 μm film thicknesses, J&W Sci-

entific). The set flow rate of helium (99.9995%) was 4 ml/min in a split mode (split ratio 10:1).

The temperatures of the injection port and the detector were kept at 200˚C and 210˚C, respec-

tively. The initial oven temperature was set at 50˚C and slowly increased to 80˚C (holding for

3 minutes) at a rate of 20˚C/min. The total run time was 4.5 minutes.

Results and discussion

The morphology of the as prepared ZnO nanorods was studied using scanning electron micro-

scope (SEM) and vertically aligned ZnO nanorods growing from the glass substrates could be

observed, as shown in Fig 2(a). The ZnO nanorods have an average length of about 4.5 μm as

shown in the inset, with the characteristic hexagonal shape of ZnO nanorods being evident

with an average diameter of about 100 nm. Fig 2(b) shows the XRD pattern of the ZnO nanor-

ods where the diffraction peaks conform to the hexagonal crystal structure of ZnO nanorods

as confirmed with the Joint Committee on Powder Diffraction Standards (JCPDS card# 01-

070-8070). The preferential orientation of the ZnO nanorods along the (002) crystal plane is

indicated by the strongest XRD peak at θ = 34.35˚C representing the (002) plane of the wurt-

zite crystal structure [61,62]. The specific surface area of the synthesized zinc oxide nanorods

was determined by using Xigo nanotools system that works based on NMR technique and

found to be 4.2 ± 0.5 m2/g.

Fig 3 reveals that the low resolution TEM micrograph confirming the structural formation

of ZnO nanorods where the diameter is about 100 nm. The clear lattice fringe spacing (d-

spacing) is 0.26 nm confirming the hexagonal wurtzite structure and the presence of the domi-

nant (002) plane [63] was detected. The selected area electron diffraction (SAED) pattern is

assuring a single crystal formation of ZnO nanorods [64], synthesized by MAH process, as was

observed using high resolution TEM (HRTEM).

Fig 4(a) shows the UV/Visible optical absorption spectra of the zinc oxide nanorod coated

substrates. The nanorods exhibit strong absorption above 385 nm and show an extension of

BTEX photocatalysis ZnO
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Fig 2. (a) Top and cross-sectional (inset) SEM micrographs and (b) XRD pattern of ZnO nanorods. (a) SEM micrographs of ZnO

nanorods and (b) XRD pattern of the microwave assisted hydrothermally grown ZnO nanorods on glass substrate. Samples were annealed

at 350˚C for 1 h after the hydrothermal growth.

https://doi.org/10.1371/journal.pone.0189276.g002

Fig 3. TEM micrograph of a synthesized single nanorod. The top inset representing the lattice fringes in

the ZnO nanorods and the bottom inset is for the high resolution TEM showing the SAED pattern.

https://doi.org/10.1371/journal.pone.0189276.g003
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the absorption edge into the visible region. The bandgap (Eg) of ZnO was found to be around

3.23 eV obtained by using tauc plot [65] as shown in Fig 4 (inset). Similar values of bandgap

was also reported previously in literature [50,66]. The visible light absorption by ZnO nano-

structures have been attributed due to the presence of native point defects in the crystal lattice

of ZnO which reduce the energy required for exciton pair generation upon photo-excitation

[67,68]. The visible light activity of ZnO with respect to the concentration of defect states is

Fig 4. (a) Typical optical absorption spectrum and (b) room temperature photoluminescence (PL)

spectrum of ZnO nanorods. Inset in Fig 4a representing the tauc plot and inset in Fig 4b is showing the ZnO

surface defect mediated PL bands (excitation: 325 nm) deconvoluted into two Gaussian components

centered at 527 nm and 570 nm, respectively.

https://doi.org/10.1371/journal.pone.0189276.g004
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also reported by Tang et al. [69] where they have demonstrated reduction in the optical band-

gap of ZnO with increasing oxygen vacancy states.

In order to investigate the presence of defect states in the synthesized and annealed ZnO

nanorods, we measured the photoluminescence (PL) spectrum of the nanorods. Fig 4(b)

shows the room temperature steady state PL spectrum of ZnO nanorods measured with 325

nm monochromatic light. The PL spectrum exhibit three major peaks, where the absorption

around 385 nm that can be attributed to the direct recombination of excited electrons from

the conduction band (CB) to the valence band (VB) of the ZnO nanorods. The origin of the

violet emission (at 420 nm) is attributed to the deep-level zinc interstitial (Zni) defects that are

slightly below the CB of ZnO [70]. This emission occurs due to the capture of excited electrons

from the CB of ZnO by Zni defect states through non-radiative transition followed by a radia-

tive recombination of the electrons from the defect states to the VB. The broad emission in the

range from 490 nm to 635 nm, which is found to compose of two Gaussian components cen-

tered at 527 nm and 570 nm respectively is mainly due to the surface situated oxygen vacancy

states, where singly charged oxygen vacancies (VO
+) are responsible for the 527 nm emission

and the 570 nm emission originates from the oxygen vacancy states with doubly charged states

(VO
++) [67,71].

The VLP activity of the ZnO nanorods was then studied for BTEX removal in aqueous

medium and detected by GC/MS (Supporting information S1 Fig). Fig 5 shows the degrada-

tion profile of the individual monoaromatic hydrocarbons (initial concentration: 25 ppm) in

the presence and absence of ZnO nanorods under simulated solar irradiation. For 25 ppm ben-

zene, in the absence of ZnO nanorods, negligible amount of benzene was found to degrade

during 3 hours of visible light irradiation carried out in these experiments. On the contrary, in

Fig 5. Reduction in the concentrations of (a) benzene, (b) toluene, (c) ethylbenzene and (d) xylene.

Reduction in the concentration of (a) benzene, (b) toluene, (c) ethylbenzene and (d) xylene under simulated

solar light irradiation (incident power: 1 kW/m2) in the presence and absence of ZnO nanorods. The starting

concentration of all the monoaromatic hydrocarbons was 25 ppm.

https://doi.org/10.1371/journal.pone.0189276.g005
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the presence of ZnO nanorods, 50% degradation of benzene was observed in about 1 hour

exhibiting almost 1.75 times higher degradation. Other three monoaromatic hydrocarbons

(toluene, ethylbenzene and xylene) also showed similar degradation trends in the presence of

ZnO nanorods. Based on the percentage removal of each monoaromatic hydrocarbons upon 3

hours of photocatalytic treatment, we found that both toluene and xylene were degraded

almost equally by the ZnO nanorods exhibiting ~90% reduction in their concentrations within

3 hours, followed by ethylbenzene (~80%) and finally benzene (~65%). The instrumental

detection limits of benzene, toluene, ethylbenzene and xylene by using GC/MS were tested

and found 10, 5, 10 and 10 ppb (μg/L) respectively.

The photocatalytic degradation of BTEX as a function of initial concentration of the test

contaminants in the presence of ZnO nanorods was then investigated by using Langmuir-Hin-

shelwood (L-H) kinetics model. The L-H model has been previously used for heterogeneous

photocatalysis to explain the bimolecular reaction of two surface adsorbed species [72–74].

The model is mathematically given as:

1

kobs
¼

1

kcKLH
þ
Ao

kc
ð1Þ

where Ao is the initial concentration of the test contaminant (in mg.L−1), kobs is the apparent

pseudo-first-order rate constant, kc is the rate constant of surface reaction (in mg.L−1.min−1)

and KLH is the Langmuir–Hinshelwood adsorption equilibrium constant (in L.mg−1).

The initial concentration of each monoaromatic hydrocarbon of BTEX was varied from 10

to 100 ppm and the values of kobs was determined for each initial concentrations using a first

order exponential fitting to their photocatalytic degradation curves (as shown in Fig 5). In Fig

6 we have plotted 1/ kobs vs. initial concentration of each monoaromatic hydrocarbon of BTEX

Fig 6. Plots representing the rate constants vs. initial concentrations of (a) benzene, (b) toluene, (c)

ethylbenzene and (d) xylene.

https://doi.org/10.1371/journal.pone.0189276.g006
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which shows a linear relationship between the initial concentration and 1/ kobs confirming the

L-H kinetic relationship [75,76]. The values of kc and KLH were then determined from the

slope and Y-axis intersection of the linearly fitted line respectively, that are summarized in

Table 1. Amongst the individual BTEX components, toluene shown maximum kc value of

1.109 mg.L−1.min−1 with lowest KLH (0.0205 L.mg−1) indicating maximum adsorption on the

ZnO nanorod surface, followed by xylene, ethylbenzene and finally benzene. These observa-

tions clearly conform to our results on the photocatalytic degradation efficiency of the mono-

aromatic hydrocarbons of BTEX as shown in Fig 5.

The complete mineralization process of BTEX was investigated using a 25 ppm BTEX mix-

ture solution in DI water to better understand the mineralization of BTEX. Using the HPLC

technique, benzyl alcohol, benzaldehyde, phenol and benzoic acid were detected as intermedi-

ate byproducts that formed during the photocatalytic degradation of BTEX (Supporting infor-

mation S2 Fig). Detailed investigation of the formation of intermediates and visible light

Table 1. Langmuir-Hinshelwood adsorption equilibrium constant (KLH) and rate constant for surface

reaction (kc) values of BTEX obtained when individual BTEX molecules were photocatalytically

treated using supported zinc oxide nanorods under visible light irradiation.

Chemical kc KLH

(mg.L−1.min−1) (L.mg−1)

Benzene 0.189 0.1373

Toluene 1.109 0.0205

Ethylbenzene 0.339 0.0891

Xylene 0.706 0.0304

https://doi.org/10.1371/journal.pone.0189276.t001

Fig 7. Evolution of carbon dioxide over time during BTEX photocatalytic degradation. Evolution of

carbon dioxide over time degradation of 25 ppm BTEX mixture in DI water in the presence of ZnO nanorods

under the simulated solar light irradiation as determined by using GC fitted with thermal conductivity detector

(TCD). Inset shows the CO2 chromatogram detected at retention time 3.34 minutes.

https://doi.org/10.1371/journal.pone.0189276.g007
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photocatalytic degradation pathway of BTEX is currently on going. Similar intermediate

byproduct formation as a result of photocatalytic degradation of BTEX was also reported by

several other researchers [56,77–80]. Production of CO2 as a result of successive photo-oxida-

tion of BTEX and the intermediate byproducts was detected after 1 hour of continuous photo-

catalytic degradation of BTEX with ZnO nanorods as shown in Fig 7, where CO2 content was

observed to increase continuously after 1 hour indicating complete mineralization of BTEX

mainly into CO2 and water. Based on these observations, the VLP degradation of BTEX with

ZnO nanorods as a photocatalyst is schematically represented in Fig 8.

Conclusions

Microwave assisted hydrothermal process was used successfully to grow ZnO nanorods on

glass support and used as supported visible light photocatalyst to degrade BTEX in aqueous

medium. Presence of native point defects, mainly zinc interstitial and oxygen vacancy states

extend the absorption edge of the ZnO nanorods into the visible region. As a result, efficient

visible light photocatalytic (VLP) degradation of BTEX was observed in the presence of ZnO

nanorods, resulting in almost 90% reduction in toluene and xylene concentrations as well as

~80% reduction in ethylbenzene and ~65% reduction in benzene within 3 hours. Langmuir-

Hinshelwood kinetic model fits well with the experimental results showing a maximum reac-

tion and adsorption/desorption equilibrium constants for toluene with the ZnO nanorod sur-

face, followed by xylene, ethylbenzene and benzene, respectively. Further investigation of

photocatalytic degradation of BTEX by ZnO nanorods as visible light photocatalyst exhibited

formation of benzyl alcohol, benzaldehyde, phenol and benzoic acid as intermediate bypro-

ducts. CO2 evolution as a result of successive photo-oxidation of BTEX and its intermediate

Fig 8. Schematic representation of visible light photocatalytic degradation of BTEX. Visible light

photocatalytic degradation of BTEX in aqueous medium in the presence of ZnO nanorods as supported

photocatalyst. Upon photo excitation, BTEX molecules are photocatalytically degraded by the ZnO nanorods

resulting in various types of intermediate byproduct, which upon successive photo-oxidation produces CO2,

H2O and mineral acids leading to the complete mineralization of BTEX.

https://doi.org/10.1371/journal.pone.0189276.g008
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byproducts was also evaluated which was found to increase over time indicating the final min-

eralization of the BTEX molecules into benign products.
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Band Gap Estimation of ZnO Nanorods. Materials Research 19: 33–38.

67. Janotti A, Van de Walle CG (2007) Native point defects in ZnO. Phys Rev B: Condens Matter 76: 165202.

68. Appavoo K, Liu M., & Sfeir M. Y. (2014) Role of size and defects in ultrafast broadband emission

dynamics of ZnO nanostructures. Appl Phys Lett 104: 133101.

69. Tang Y, Zhou H, Zhang K, Ding J, Fan T, et al. (2015) Visible-light-active ZnO via oxygen vacancy

manipulation for efficient formaldehyde photodegradation. Chem Eng J 262: 260–267.

70. Kang D, Liu A, Bian J, Sang Y (2012) Optoelectronic characteristics of zinc oxide nanorods/P3HT hybrid

junctions investigated using surface photovoltage method. ECS Solid State Lett 1: 15–17.

71. Ye JD, Gu SL, Qin F, Zhu SM, Liu SM, et al. (2005) Correlation between green luminescence and mor-

phology evolution of ZnO films. Appl Phys A 81: 759–762.

72. Saien J, Khezrianjoo S (2008) Degradation of the fungicide carbendazim in aqueous solutions with UV/

TiO2 process: Optimization, kinetics and toxicity studies. J Hazard Mater 157: 269–276. https://doi.org/

10.1016/j.jhazmat.2007.12.094 PMID: 18243543

73. Vasanth Kumar K, Porkodi K, Selvaganapathi A (2007) Constrain in solving Langmuir–Hinshelwood

kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst.

Dyes Pigm 75: 246–249.

74. Krishnakumar B, Swaminathan M (2011) Influence of operational parameters on photocatalytic degra-

dation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. Spectrochim Acta, Part A 81:

739–744.

75. Khezrianjoo S, Revanasiddappa HD (2012) Langmuir-Hinshelwood kinetic expression for the photoca-

talytic degradation of Metanil Yellow aqueous solutions by ZnO catalyst. Chem Sci J 3: 1–7.

76. Kumar KV, Porkodi K, Rocha F (2008) Langmuir–Hinshelwood kinetics—A theoretical study. Catal

Commun 9: 82–84.

77. Park J-H, Seo Y-S, Kim H-S, Kim I-K (2011) Photodegradation of benzene, toluene, ethylbenzene and

xylene by fluidized bed gaseous reactor with TiO2/SiO2 photocatalysts. Korean J Chem Eng 28: 1693–

1697.

78. Ardizzone S, Bianchi CL, Cappelletti G, Naldoni A, Pirola C (2008) Photocatalytic Degradation of Tolu-

ene in the Gas Phase: Relationship between Surface Species and Catalyst Features. Environ Sci Tech-

nol 42: 6671–6676. PMID: 18800547

BTEX photocatalysis ZnO

PLOS ONE | https://doi.org/10.1371/journal.pone.0189276 December 20, 2017 15 / 16

https://doi.org/10.3762/bjnano.1.3
https://doi.org/10.3762/bjnano.1.3
http://www.ncbi.nlm.nih.gov/pubmed/21977391
https://doi.org/10.1088/1468-6996/10/1/013001
http://www.ncbi.nlm.nih.gov/pubmed/27877250
https://doi.org/10.1186/1556-276X-9-429
http://www.ncbi.nlm.nih.gov/pubmed/25221458
https://doi.org/10.1186/1556-276X-8-503
https://doi.org/10.1186/1556-276X-8-503
http://www.ncbi.nlm.nih.gov/pubmed/24289214
https://doi.org/10.1016/j.jhazmat.2007.12.094
https://doi.org/10.1016/j.jhazmat.2007.12.094
http://www.ncbi.nlm.nih.gov/pubmed/18243543
http://www.ncbi.nlm.nih.gov/pubmed/18800547
https://doi.org/10.1371/journal.pone.0189276


79. Mao Y, Bakac A (1996) Photocatalytic Oxidation of Toluene to Benzaldehyde by Molecular Oxygen. J

Phys Chem 100: 4219–4223.

80. d’Hennezel O, Pichat P, Ollis DF (1998) Benzene and toluene gas-phase photocatalytic degradation

over H 2 O and HCL pretreated TiO 2: by-products and mechanisms. J Photochem Photobiol, A 118:

197–204.

BTEX photocatalysis ZnO

PLOS ONE | https://doi.org/10.1371/journal.pone.0189276 December 20, 2017 16 / 16

https://doi.org/10.1371/journal.pone.0189276

