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Introduction

The coronavirus disease 2019 (COVID-19) pandemic has resulted
in over 98 million cases and 2.1 million deaths globally [1]. Diabetes
is associated with a higher mortality, need for intensive care, acute
respiratory distress syndrome in COVID-19 disease [2]. Diabetes
(HbA1C � 6.5%) and/or uncontrolled hyperglycaemia (�2 glucose
measurements >10.0 mmol/L (>180 mg/dL)) are associated with
poor outcomes in COVID-19 patients [3]. However, stress hyper-
glycaemia (defined as blood glucose values exceeding 7.78 mmol/L

(140 mg/dL)) in the absence of diabetes is seen in severe acute illness
[4–6]. Previous studies have shown that in critically ill patients,
stress hyperglycaemia is associated with poor clinical outcomes
during hospitalization [7]. Stress hyperglycaemia can prolong the
length of hospital stay [8] – a parameter that is closely linked with
poor outcomes in COVID-19 patients [9]. An excess of circulating
proinflammatory cytokines (common in COVID-19 patients) is
associated with the consequences of hyperglycaemia [10]. Sardu
et al. [11] showed that hyperglycaemia during hospitalization
correlated with interleukin-6 and D-dimer concentrations in COVID-
19 patients. However, the mechanistic basis and replicability of
associations of hyperglycaemia in absence of diabetes with COVID-
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Objective. – Diabetes is a known risk factor for mortality in Coronavirus disease 2019 (COVID-19)

patients. Our objective was to identify prevalence of hyperglycaemia in COVID-19 patients with and

without prior diabetes and quantify its association with COVID-19 disease course.

Research design and methods. – This observational cohort study included all consecutive COVID-19

patients admitted to John H Stroger Jr. Hospital, Chicago, IL from March 15, 2020 to May 3, 2020 and

followed till May 15, 2020. The primary outcome was hospital mortality, and the studied predictor was

hyperglycaemia [any blood glucose �7.78 mmol/L (140 mg/dL) during hospitalization].

Results. – Of the 403 COVID-19 patients studied, 51 (12.7%) died; 335 (83.1%) were discharged while 17

(4%) were still in hospital. Hyperglycaemia occurred in 228 (56.6%) patients; 83 of these hyperglycaemic

patients (36.4%) had no prior history of diabetes. Compared to the reference group no-diabetes/no-

hyperglycaemia patients the no-diabetes/hyperglycaemia patients showed higher mortality [1.8%

versus 20.5%, adjusted odds ratio 21.94 (95% confidence interval 4.04–119.0), P < 0.001]; improved

prediction of death (P = 0.01) and faster progression to death (P < 0.01). Hyperglycaemia within the first

24 and 48 h was also significantly associated with mortality (odds ratio 2.15 and 3.31, respectively).

Conclusions. – Hyperglycaemia without prior diabetes was common (20.6% of hospitalized COVID-19

patients) and was associated with an increased risk of and faster progression to death. Development of

hyperglycaemia in COVID-19 patients who do not have diabetes is an early indicator of progressive

disease.
�C 2021 Elsevier Masson SAS. All rights reserved.
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19 disease course remains understudied.
In this investigation, we focused on the potential of hyper-

glycaemia detected early during hospitalization of COVID-19 as an
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ndicator of mortality. We hypothesized that hyperglycaemia even
n the absence of diabetes may be associated with adverse
utcomes in COVID-19 patients. Here, we report the independent
ssociation of hyperglycaemia with clinical course in COVID-19
atients using a single-centre data of hospitalized COVID-19
atients from the United States of America.

ethods

tudy participants

This retrospective, hospital record-based study was conducted
t John H. Stroger, Jr Hospital of Cook County, Chicago, IL. All
OVID-19 patients admitted between March 15, 2020 and May 3,
020 and followed till the censoring date of May 15, 2020 were

ncluded. Thus, follow-up of the cohort was done from the date of
dmission to the hospital to one of the following endpoints: in-
ospital death; hospital discharge or censoring on the day the
tudy ended (May 15, 2020). On the censoring day, 17 (4%) patients
ere still in hospital. COVID-19 was confirmed using the

olymerase chain reaction for the RdRp and N genes. Clinical
ata of these patients was collected by chart reviews. The study
as approved by the Institutional Review Board of the Cook

ounty Health, Chicago, IL with waiver of informed consent.

utcomes and predictors

The primary outcomes were hospital mortality and time to
rogress to mortality. Outcome ascertainment was censored on
ay 15, 2020. Patients still in hospital who did develop an

utcome under consideration were censored for computation of
ength of stay and time-to-event analyses. Main predictor of
nterest was hyperglycaemia defined as at least one BG value
7.78 mmol/L (140 mg/dL) – a cut-off recommended as a

reatment target in critically ill patients [12] and a definition of
yperglycaemia in non-critically ill hospitalized patients [13]. To
xamine the use of hyperglycaemia as an early predictor of adverse
utcomes, we also considered occurrence of hyperglycaemia
ithin the first 24 h (HG24) and 48 h (HG48) of admission. BG

alues were retrospectively derived from the database and
epresented a mixture of fasting and non-fasting measurements
nd venous and capillary sources. Detailed information collected
n socio-demographics, presenting symptoms, comorbidities,

aboratory investigations, history of medications and substance
se from the electronic health records. Severity of illness at
dmission was quantified using the qSOFA score that combines
nformation from respiratory rate, systolic blood pressure and

ental status into a single metric [14].

tatistical analyses

Descriptive statistics included mean � standard deviation for
ontinuous variables and number (%) for categorical variables. The
ime trends of BG values during hospitalization were examined using
eneralized estimating equations (GEE). The GEE models used
aussian family function, identity link function and equal correlation

tructure. BG time trends were smoothed using cubic splines with a
not every day for the first 14 days of admission. The association of
iabetes and hyperglycaemia with outcomes was tested for signifi-

potential collinearity among covariates without overfitting the data.
We did not input missing data and the stepwise models described
below have been run on participants without missing data. The first
step of the forward addition strategy – included a total of
59 covariates – 4 sociodemographic variables (age, gender, ethnicity
and black race), 12 symptoms (cough, cough with sputum, nasal
congestion, headache, fever, fever with chills, shortness of breath,
nausea/vomiting, diarrhoea, myalgia, altered mental status and
fatigue), 14 comorbidities (hypertension, diabetes, coronary artery
disease, congestive heart failure, chronic obstructive pulmonary
disease, asthma, other lung disease, chronic kidney disease, end-stage
renal disease, chronic liver disease, cancer, ever smoker, alcohol
consumption and qSOFA score), 11 laboratory investigations (total
white cell count, neutrophil count, lymphocyte count, platelet count,
haemoglobin concentration, serum sodium, serum bicarbonates,
serum creatinine, serum globulin, proteinuria, haematuria) 15 medi-
cations (insulin, angiotensin converting enzyme inhibitors, angioten-
sin receptor blockers, mineralocorticoid receptor antagonists, beta-
blockers, other anti-hypertensive, statins, non-steroidal anti-inflam-
matory drugs, aspirin, vitamin D, hydroxychloroquine, azithromycin,
rivaroxaban, chemotherapy and steroids) and 3 substance use
variables (marijuana, cocaine and heroin). In the second step of this
analysis, we added hyperglycaemia to the full model (total number of
covariates 60). Lastly, to understand the association of hyperglycae-
mia with and without diabetes, we replaced the covariate hyper-
glycaemia with indicators for diabetes and hyperglycaemia groups
and used the DM-/HG- patients as the reference group. Improvement
in the prediction of the mortality using hyperglycaemia was also
assessed by estimating the area under a receiver-operating charac-
teristic curve (AUROC) from the fitted logistic regression models.
Statistical significance for difference between two AUROCs was tested
using the DeLong and DeLong test. To ensure robustness of the
analyses conducted, we embarked upon some additional analyses.
First, since some patients initially not identified as having diabetes
could have been misclassified, we conducted sensitivity analyses by
restricting the analyses to patients on whom HbA1C data was
available; in this subset we reclassified patients with HbA1C � 6.5%
as diabetes. To arrive at robust estimates of standard errors and 95%
confidence intervals, we conducted bootstrapping using the number
of participants on whom HbA1C data was available and with
1000 replicates. Second. We tested the hypothesis that the number
of glucose measurements ordered till detection of hyperglycaemia is
not a simple proxy measure of hyperglycaemia. Third, to ensure that
the estimates of AUROC were unaffected by sample characteristics,
we conducted 10-fold cross validation. For this, the folds were
obtained a priori by shuffling the entire dataset and diving randomly
into 10 equal parts. Ten-fold cross-validation proceeded by using each
fold as the validation set and the remaining folds as the derivation set.

To test whether a continuous variable was associated with
mortality in a linear fashion, we compared the likelihood ratio x2

statistic and the pseudo-R2 of the untransformed covariate with a
quadratic polynomial, cubic polynomial, log-transformed and
square-root transformed variable as predictor. Further, we
examined the strength of association of the quartiles of the
untransformed variable with mortality and estimated the signifi-
cance value of a linear trend using the Cochran-Armitage trend
test. The association of early detection of hyperglycaemia with
mortality was assessed by replacing the variable hyperglycaemia
with hyperglycaemia during the first 24 h (HG24) or 48 h (HG48) in
the multivariable stepwise logistic regression analyses described
ance using the Pearson’s chi-square test and the Kruskal-Wallis test
s appropriate. The association with risk of mortality was quantified
s odds ratios (OR) using multivariable stepwise logistic regression
nalyses with forward addition strategy and a retention criterion of
.05. The forward addition strategy was used since it is robust to the
umber of predictors for a moderate size dataset and accounts for the
2

above.
To test the association of the study groups with the time to in-

hospital mortality, we used Kaplan–Meier plots, logrank test and
Cox proportional hazards regression to estimate the hazard ratios
(HR). To test the independence of association from potential
confounders, we used a forward addition, stepwise Cox regression
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variable selection strategy similar to the one used in logistic
regression analyses explained above. Even though the study
enrolled the patients from the time of admission, for the survival
analyses, participants were considered to enter the cohort on the
date and time of the first detection of hyperglycaemia; if
hyperglycaemia was never detected then date and time of hospital
admission was considered as the entry point. Exit from the cohort
was as defined earlier.

All statistical analyses were conducted using Stata 12.0 software
package (Stata Corp., College Station, TX). The statistical signifi-
cance was assessed at a type I error rate of 0.05.

Table 1
Baseline characteristics of study participants (total n = 403).

Characteristicc Mean/Na SD/% N availableb

Socio-demographic characteristics

Age (y) 54.96 13.55 403

Males 273 67.7 403

Hispanic/Latino ethnicity 221 54.8 403

Race

Black/African American 153 38.0 403

White 137 34.0 403

Other 79 19.6 403

American Indian 25 6 403

Asian 7 1 403

Multiple 2 <1 403

Presenting symptoms

Cough 101 25.1 403

Fever 75 18.6 403

Shortness of breath 61 15.1 403

Myalgia/arthralgia 47 11.7 403

Fatigue 35 9 403

Fever with chills 28 7 403

Cough with sputum 23 6 403

Diarrhoea 21 5 403

Sore throat 10 3 403

Nausea/vomiting 10 2 403

Nasal congestion 8 2 403

Headache 7 2 403

Altered mental status 7 2 403

Haemoptysis 2 <1 403

Comorbidities

Hypertension 196 48.6 403

Obesity (BMI � 30 kg/m2) 185 45.9 403

Diabetes 155 38.5 403

Coronary artery disease 31 8 403

Chronic kidney disease 31 8 403

Asthma 27 7 403

Other lung disease 25 6 403

Chronic liver disease 25 6 403

Cancer 25 6 403

Chronic heart failure 21 5 403

COPD 17 4 403

ESRD 15 3 403

HIV/AIDS 10 2 403

Atrial fibrillation 9 2 403

Smoking status

Non-smoker 276 68.8 401

Former smoker 51 12.7 401

Current smoker 39 10 401

Unknown 35 9 401

qSOFA score

qSOFA 0 110 27.3 403

qSOFA 1 205 50.9 403

qSOFA 2 86 21.3 403

qSOFA 3 2 <1 403

Other early features

Highest temperature in 24 h (8C) 38.19 0.89 402

Lowest systolic BP in 24 h (mmHg) 108.90 15.88 403

Highest heart rate in 24 h (bpm) 105.08 16.53 403

Highest respiratory rate in 24 h (/min) 26.96 13.12 403

Initial laboratory investigations

White cell count (�109 cells/L) 7.56 3.97 402

Platelet count (�109 cells/L) 224.15 112.90 402

Haemoglobin (g/L) 1.34 0.22 402

Differential white cell count

Neutrophils (%) 74.12 11.66 373

Lymphocytes (%) 16.58 9.29 373

Eosinophils (%) 0.43 0.99 373

Basophils (%) 0.45 0.30 375

Monocytes (%) 8.42 3.68 373

Serum ferritin (mg/L) 784.88 1063.95 263

Serum sodium (mEq/L) 135.39 5.00 403

Serum potassium (mEq/L) 4.15 0.59 371

Table 1 (Continued )

Characteristicc Mean/Na SD/% N availableb

Serum ALT (IU/L) 44.74 55.53 375

Serum LDH (U/L) 375.84 475.00 313

Serum D-dimer (mg/L) 2.18 3.30 221

Lowest plasminogen (mg/L) 540.36 190.66 152

Serum Troponin (mg/L) 0.26 1.86 116

Serum creatine kinase (U/L) 2682.92 16006.10 53

Serum C-reactive protein (mg/L) 12.72 8.88 279

Proteinuria 8 2 403

Haematuria 52 12.9 403

HbA1c (%) 7.22 2.29 279

Medication history

Insulin 69 17.1 403

ACE inhibitors 85 21.1 403

Angiotensin receptor blockers 28 7 403

Mineralocorticoid receptor antagonist 10 3 403

Beta-blocker 62 15.4 403

Other antihypertensive 103 25.6 403

Statin 137 34.0 403

NSAID 28 7 403

Aspirin 77 19.1 403

Vitamin C supplementation 1 <1 403

Vitamin D supplementation 6 1 403

Hydroxychloroquine 2 <1 403

Azithromycin 4 1 403

Warfarin 10 2 403

Apixiban 4 1 403

Riveroxaban 7 2 403

Steroids 3 1 403

Chemotherapy 16 4 403

Calcineurin inhibitor 3 1 403

Mycophenolate mofetil 2 <1 403

Azathioprine 1 <1 403

Substance use

Marijuana 16 4 403

Cocaine 19 5 403

Heroin 22 5 403

Amphetamine 2 <1 403

Outcomes

ICU admission 97 24.1 403

ARDS 61 15.1 403

Mechanical ventilation 56 13.9 403

Death 51 12.7 403

Abbreviations: 8C — degrees in centigrade, mmHg — millimetres of mercury, bpm —

beats per minute, /min-per minute, L — Litre, g/L — grams per Litre, % — percentage,

mg/L — microgram per Litre, mEq/L — milliequivalent per Litre, mmol/L — millimole

per Litre, mg/dL — milligram per decilitre, mmol/L — micromole per Litre, g/L —

grams per Litre, U/L — units per Litre, IU/L — international units per Litre, mg/L —

milligram per Litre, mg/L — milligram per Litre.
a Columns indicate mean and standard deviation (SD) for continuous variables

and number (N) and percentage for categorical variables.
b Total number of study participants on whom data was available.
c Parentheses show units.
Serum bicarbonates (mEq/L) 24.10 4.17 403

First blood glucose level (mmol/L) 8.04 4.24 403

First blood glucose level (mg/dL) 144.72 76.32 403

Serum creatinine (mmol/L) 145.01 221.93 403

Serum albumin (g/L) 0.35 0.05 375

Serum globulin (g/L) 0.30 0.10 403

Serum AST (U/L) 55.24 78.39 357

3

Results

Study participants

We included a total of 403 (out of 406 eligible, 99.3%) COVID-19
patients who were admitted to the study centre and had non-missing
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ata for diabetes and other comorbidities. Clinical characteristics of
he study participants are detailed in Table 1. Majority of the patients
ere male (67.7%), of Hispanic/Latino ethnicity (54.8%) and Black/
frican American race (38.0%). Of the study participants, 97 (24.1%)
atients needed ICU admission; 56 (13.9%) patients needed
echanical ventilation; and 51 (12.7%) patients died.

revalence of hyperglycaemia and diabetes

Hyperglycaemia was observed in 228 (56.6%) patients (Fig. 1A,
ellow and red slices of the pie combined). The presence of
yperglycaemia and diabetes identified four subsets of patients:
hose with diabetes and hyperglycaemia (DM+/HG+, n = 145,
6.0%), patients with diabetes but no hyperglycaemia (DM+/HG�,
 = 10, 2%), patients with hyperglycaemia who did not have
iabetes (DM�/HG+, n = 83, 20.6%) and patients who had neither
iabetes nor hyperglycaemia (DM�/HG�, n = 165, 40.9%) (Fig. 1A).

HbA1c values within the past year were available for
79 patients (69.2%, Table 1). The median (interquartile range)
bA1c values for the four groups were as follows: DM+/HG+ group

available n = 141) – 8.0% (3.3%); DM+/HG� group (available
 = 8) – 6.8% (0.75%); DM�/HG+ group (available n = 51) – 5.7%
0.8%) and DM�/HG� group (available n = 79) – 5.6% (0.6%). Three
2%) patients belonging to the DM�/HG� group and 10 (19.6%)
atients belonging to the DM�/HG+ group had one HbA1c
alue � 6.5%.

As shown in Fig. 1B (White funnel), for the 403 patients
ncluded in this study, we had a total of 7263 (average
.91 measurements per patient per day) BG measurements over
he entire period of hospitalization. Of these, 3983 BG measure-

ents were on 97 patients who were admitted to ICU during
ospital stay and 70/97 (72.2%) patients had their first hyper-
lycaemia finding before ICU admission. Of the 83 patients in the
M-/HG+ group (Fig. 1B, yellow funnel), 36 were admitted to ICU
nd 25/36 (69.4%) patients had their first hyperglycaemia finding
efore ICU hospitalization. The average time (95% CI) from first
yperglycaemia finding to ICU admission was 6.83 days (5.32–8.36
ays) in all patients (n = 70) and 7.32 days (4.45–10.2 days) in the

according to the study groups. DM�/HG� patients (blue curve) had
well-maintained BG levels that stayed around 5.56 mmol/L
(100 mg/dL) throughout the first two-weeks of hospitalization
with very little fluctuation. The DM+/HG-patients (green curve) also
mimicked the blue curve albeit with wider confidence bands and
smaller number of data points. DM+/HG + patients (red curve)
demonstrated consistently high BG values with substantially larger
fluctuations.

BG levels of the DM�/HG+ patients (yellow curve) showed an
interesting pattern. For the first week, these patients had low
average values that appeared to increase in the second week.
Indeed, during the second week the DM+/HG+ and DM�/HG+
patients (red and yellow curve, respectively) showed overlapping
confidence bands indicating no statistical difference in average BG
levels. Consistent with these observations, the average coefficient
of variation of BG values in the DM+/HG+ (red curve), DM+/HG�
(green curve), DM�/HG+ (yellow curve) and DM�/HG� (blue
curve) patients was 28.3%, 9.8% (likely influenced by a shorter
duration of follow-up, Fig. 2A), 24.9% and 7.3%, respectively.

Association of hyperglycaemia and diabetes with mortality

In the first step of the forward addition, stepwise logistic
regression analyses, higher neutrophil percentage, older age,
insulin therapy (as outpatient), haematuria, high serum globulin
at admission, low platelet count and nasal congestion significantly
associated covariates retained in this final model (Table 2, Step 1).
Interestingly, as shown in Table S1 (see supplementary materials
associated with this article on line) and Figure S1 (see supplemen-
tary materials associated with this article on line), the association
of neutrophilia with mortality was linear. In the second step of this
analysis, we added hyperglycaemia to the full model (total number
of covariates 60) and found that hyperglycaemia was retained in
the final model with an OR of 14.0. In this model, two new
covariates (fever with chills and marijuana use) got added to the
final model at the expense of the symptom of nasal congestion. The
AUROC for models in step1 and step 2 was 0.86 (95% CI 0.81–0.91)
and 0.90 (95% CI 0.86–0.94), implying a statistically significant

DM-/HG -

*DM-/HG +
83 (20.6%)

DM-/HG -
165 (40.9%)

A

DM+/HG +
145 (36.0%)

All admi�ed pa�ents

Pa�ents admi�ed to ICU

Pa�ents with hyperglycemia
before ICU admission

All Pa�ents 

DM-/HG +

DM+/HG +
N = 403

M = 7,263
N = 97

M = 3,983
N = 70

M = 3,482

N = 145
M = 4,903

N = 47
M = 2,761

N = 45
M = 2,707

B

All admi�ed pa�ents

Pa�ents admi�ed to ICU

Pa�ents with hyperglycemia
before ICU admission

N = 83
M = 1,562

N = 36
M = 1,110

N = 25
M = 775

N = 165
M = 712
N = 12
M = 99
N = 0
M = 0

ig. 1. Distribution of study groups and blood glucose measurements in hospitalized COVID-19 patients. (A) The pie chart shows number (%) of patients in the color-

oded study groups. These color-codes are consistently used throughout the rest of the paper. DM+/HG+, patients with diabetes and hyperglycaemia; DM+/HG-, patients with

iabetes but no hyperglycaemia; DM-/HG+, patients with hyperglycaemia who did not have diabetes; DM-/HG-, patients who had neither diabetes nor hyperglycaemia (B)
unnel plots showing the distribution of patient subsets when considered in all study participants (funnel with white background); in the DM-/HG+ group (yellow

ackground); in the DM+/HG+ group (red background); and in the DM-/HG- group (blue background). N, number of patients; M, number of blood glucose measurements; *,

M+/HG- group (N = 10 (2.5%)).
M�/HG+ group (n = 25).

lycaemia during hospitalization

Fig. 2A shows the cubic spline smoothed, non-linear trends of
lycemia in the study participants over the period of hospitalization
4

improvement in prediction (increase in AUROC 0.04, DeLong and
DeLong P = 0.01). Lastly, to understand the association of
hyperglycaemia with and without diabetes, we replaced the
covariate hyperglycaemia with indicators for diabetes and hyper-
glycaemia groups and used the DM-/HG- patients as the reference
group. The results (Table 2, step 3) showed that occurrence of
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hyperglycaemia in patients with or without diabetes was
significantly associated with hospital mortality. All other cova-
riates retained in the final model in this step 3 were the same as
those retained in step 2. This analytic strategy demonstrated that
hyperglycaemia with or without diabetes was an independent
predictor of hospital mortality.

We assessed the robustness of this finding in several ways. First,
sensitivity analyses on patients with HbA1c data reaffirmed these
results with a comparably high OR (13.0 Table S2; see supplemen-
tary materials associated with this article on line) and bootstrap CIs
mostly above unity. Second, the first detection of hyperglycaemia
was not influenced by the number of BG measurements ordered till

indicated that our observation of the association between
hyperglycaemia and mortality risk in hospitalized COVID-19
patients was robust to potential misclassification and indication
biases.

Hyperglycaemia as an early indicator of mortality

To examine the clinical use of hyperglycaemia as a predictor of
mortality, we investigated whether detection of hyperglycaemia
early after admission can still provide a prognostic value. Average
time from hospital admission to the first detection of hyper-
glycaemia was 0.11 days (95% CI 0–0.27 days) in diabetes patients
and 2.15 days (95% CI 1.46–2.83 days) in non-diabetes patients. Of
the 228 patients with hyperglycaemia, 177 (77.6%) were detected
by the end of 24 h and an additional 17 (total of 194, 85.1%) by the
end of 48 h. For this, we repeated the analyses shown in Table 2,
step 2 by replacing the variable hyperglycaemia with hyper-
glycaemia detected during the first 24 h (HG24) or 48 h (HG48). We
found (Table S4; see supplementary materials associated with this
article on line) that both HG24 and HG48 were significant and
independent predictor of mortality (HG 24 - OR 2.15, 95% CI 1.00–
4.59, HG 48 OR - 3.31, 95% CI 1.44–7.62). Sensitivity analyses
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Fig. 2. Glycemia trends and association of hyperglycaemia with time to death in
hospitalized COVID-19 patients. (A) Trends in glycemia over two-weeks following

hospital admission for the diabetes- and hyperglycaemia-based, color-coded study

groups. N and M indicate number of patients and number of BG measurements,

respectively. Shown in the plot for each study group are cubic spline-smoothed,

non-linear glycemia trends obtained using generalized estimating equations. Thick

lines show point estimates and light-coloured areas show 95% confidence bands. (B)
Kaplan-Meier plot for time to death in the color-coded study groups left-censored at

the time of first detection of hyperglycaemia. Median time to death is indicated

using color-coded numbers and dashed vertical lines. Statistical significance for

difference in survival curves was tested using the overall as well as comparison-

specific logrank test (indicated at the top-right corner).

Table 2
Association of hyperglycaemia and diabetes with the risk of death using stepwise

logistic regression (n = 373). Results shown are from final model for each scenario.

Covariates OR 95% CI

Step 1: using 59 covariatesa

Differential neutrophil countb (%) 1.10 1.06–1.15

Age (y) 1.05 1.02–1.08

On insulin 2.65 1.17–5.97

Haematuria 4.27 1.78–10.3

Initial Serum globulin (g/L) 2.99 1.50–5.95

Initial Platelet count (�109 cells/L) 0.99 0.99–1.00

Nasal congestion 9.06 1.33–61.9

Step 2: Step 1 covariates + hyperglycaemia

Differential neutrophil countb (%) 1.09 1.04–1.14

Hyperglycaemia 14.0 3.47–56.3

Age (y) 1.05 1.02–1.09

Haematuria 3.28 1.78–10.3

Initial Serum globulin (g/L) 2.99 1.50–5.96

Fever with chills 5.69 1.51–21.5

Marijuana use 20.9 2.51–174.8

Initial Platelet count (x109 cells/L) 0.99 0.99–1.00

Step 3: Step 1 covariates + combination of diabetes and hyperglycaemia

Differential neutrophil countb (%) 1.09 1.04–1.14

Glycaemic status

No-diabetes/no-hyperglycaemia Ref

No-diabetes/hyperglycaemia 21.94 4.04–119.0

Diabetes/no-hyperglycaemia 5.97 0.32–111.8

Diabetes/hyperglycaemia 17.06 3.46–84.1

Age (y) 1.06 1.02–1.09

Haematuria 3.39 1.39–8.34

Initial Serum globulin (g/L) 2.88 1.46–5.70

Fever with chills 6.10 1.62–23.0

Marijuana use 17.78 1.97–160.5

Initial Platelet count (x109 cells/L) 0.99 0.99–1.00

OR, odds ratio; CI, confidence interval; Ref, reference category.

Abbreviations: % — percentage, y — years, g/L — grams per Litre, L — Litre.
a Results are from the final model retained after stepwise forward addition

strategy. The full list of included variables in given in the Methods section. Variables

in the final model are shown in the order of entry into the model.
b used as a continuous variable and expressed as percentage.
that time point (adjusted OR 0.94, 95% CI 0.87–1.03). Third, we
conducted a 10-fold cross-validation of the final model (Table 2,
step 2); the results of which (Table S3; see supplementary
materials associated with this article on line) showed a consistent
prediction across folds (average 10-fold accuracy 0.75) implying
that the model did not overfit the data. Together, these results
5

(Table S1; see supplementary materials associated with this
article on line) in patients with HbA1c data suggested that while
HG24 was marginally non-significant, HG48 was an independent
predictor of mortality. Together, these results indicated that
hyperglycaemia was an early predictor of the risk of mortality in
the study cohort.
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ssociation of hyperglycaemia and diabetes with time to death

The Kaplan–Meier plot (Fig. 2B) showed 90% survival in the
M�/HG� group (blue curve) while the DM+/HG+ patient group

red curve) rapidly progressed to death with a median survival
ime of 19.4 days. Interestingly, the DM�/HG+ group (yellow
urve) substantially overlapped the survival curve for the DM+/
G+ group with a median survival time of 26.2 days. Survival

urves for the DM+/HG+ (red curve) and DM�/HG+ (yellow curve)
atients crossed each other towards the end of follow-up

ndicating comparable survival. These results showed that the
yperglycaemia and diabetes-based patient groups were signifi-
antly associated (logrank P < 0.01) with survival in hospitalized
OVID-19 patients. Further, as shown in Fig. 2B, within the group
f COVID-19 patients without diabetes those with hyperglycaemia
apidly progressed to death significantly faster as compared to
hose without hyperglycaemia (logrank P < 0.01) but such a
ignificant difference was not observed in patients with diabetes.

Analogous to the logistic regression analyses for association
ith risk of death, we next conducted stepwise Cox regression

nalyses to test the association with time to death. These results
howed (Table 3) that the variables retained in Step 1 mostly
atched those in Step 1 of Table 2 with the exception of fatigue,

significantly rapidly (HR 7.58 95 % CI 1.73–33.1 and 8.86 95% CI
1.90–41.4, respectively). Further, when we investigated the
association of early hyperglycaemia with time to mortality using
Cox proportional hazards regression, we found that the direction of
association was consistent with the results of corresponding
logistic regression analyses but statistical significance for the
association of HG24 and HG48 with time to death was not observed
(Table S5; see Supplementary materials associated with this article
on line).

Discussion

The prevalence of hyperglycaemia in our study of hospitalized
COVID-19 patients was 56.6% which is higher than the 38–40%
prevalence reported in non-COVID-19 patients [15]. Our analyses
have uncovered hospitalized nondiabetic COVID-19 patients with
hyperglycaemia as a subgroup (20.6%) that is associated with a
high risk of death and progress rapidly to death. Diabetes patients
are a known high-risk group in COVID-19 disease [2,16]. While our
results support this view, they also imply that it may be more
informative to focus on the glycaemic status as an indicator of the
clinical course of COVID-19 patients. Focusing on hyperglycaemia,
as shown by results in Table 2, Table 3 and Fig. 2, can potentially
inform a clinician early and accurately about the anticipated
disease course. Our results also point toward the possibility of
using hyperglycaemia within the first 48 h of admission as an
independent predictor of COVID-19 prognosis. It is noteworthy
that our definition of hyperglycaemia is inherently biased towards
picking up hyperglycaemia early during disease.

We and others have previously demonstrated that the degree of
hyperglycaemia in critically ill patients without diabetes plays a
significant prognostic role in predicting hospital mortality
[8,17,18]. Indeed, Max Harry Weil, father of critical care medicine,
knew by 1973 that in critically ill patients, ‘‘Elevation of blood
sugar reflects secretion of increased amounts of catecholamines
from the adrenal medulla’’ [19]. Epinephrine-induced phosphor-
ylation of the insulin receptor reduces its tyrosine kinase activity
[20] and causes prompt and prolonged inhibition of pancreatic
insulin secretion [21]. Thus, early appearance of hyperglycaemia in
nondiabetic COVID-19 patients likely signals increased systemic
stress.

We conjecture that hyperglycaemia may contribute to devel-
opment of cytokine storm [11,22,23] and severe lung pathology in
critically ill COVID-19 patients by promoting proinflammatory
glycosylation of the Fc portion of IgG. A key characteristic that
determines IgG pathogenicity is Fc glycosylation [24]. As discussed
by Bermingham et al. [25], hyperglycaemia can drive production of
diphosphate-N-acetylglucosamine, a substrate for glycosylation of
IgG-Fc. Elevated HbA1c is associated with pro-inflammatory
glycosylation of IgG-Fc in both Type 1 and Type 2 diabetics
[26,27] and predicts a more difficult course of COVID-19
[28]. Hoepel et al. [29] found increased Fc glycosylation in anti-
Spike IgG from severely ill COVID-19 patients and went on to show
that macrophages responded to these patients’ Spike-IgG immune
complexes by producing inflammatory cytokines. In an in vitro
model with human macrophages, pulmonary artery endothelial
cells, and platelets, these Spike-IgG immune complexes induced
long-lasting endothelial disruption and platelet activation. Spike-
IgG immune complexes without enhanced Fc glycosylation did not

able 3
ssociation of hyperglycaemia and diabetes with the time to death using stepwise

ox regression (n = 373).

Covariates HR 95% CI

Step 1: using 59 covariatesa

Fatigue 3.33 1.53–7.23

Dialysis 2.95 1.21–7.22

Differential neutrophil countb 1.05 1.01–1.08

Initial Serum globulin (g/L) 2.25 1.32–3.84

Initial Platelet count (x109 cells/L) 0.99 0.99–1.00

Steroids 12.21 1.49–100.0

Step 2: Step 1 covariates + hyperglycaemia

Hyperglycaemia 5.56 1.62–19.0

Fatigue 3.24 1.46–7.16

Age (y) 1.03 1.01–1.06

Steroids 13.88 1.64–117.65

Initial Serum globulin (g/L) 2.15 1.31–3.50

Initial platelet count (x109 cells/L) 0.99 0.99–1.00

Differential neutrophil countb (%) 1.04 1.00–1.08

Marijuana use 6.07 1.24–29.6

Rivaroxaban 8.37 1.04–66.8

Step 3: Step 1 covariates + combination of diabetes and hyperglycaemia

Glycaemic status

No-diabetes/no-hyperglycaemia Ref

No-diabetes/hyperglycaemia 8.86 1.90–41.4

Diabetes/no-hyperglycaemia 10.6 0.85–131.8

Diabetes/hyperglycaemia 7.58 1.73–33.1

Fatigue 3.41 1.49–7.80

Age (y) 1.04 1.01–1.06

Steroids 16.0 1.83–139.8

Initial Serum globulin (g/L) 2.26 1.41–3.60

Initial Platelet count (x109 cells/L) 0.99 0.99–1.00

Differential neutrophil countb (%) 1.04 1.01–1.07

Marijuana use 5.19 0.99–160.5

Rivaroxaban 9.63 1.19–78.3

R, hazards ratio; CI, confidence interval; Ref, reference category.

bbreviations: % — percentage, y — years, g/L — grams per Litre, L — Litre.
a Results are from the final model retained after stepwise forward addition

trategy. The full list of included variables in given in the Methods section. Variables

 the final model are shown in the order of entry into the model.
b used as a continuous variable and expressed as percentage.
ialysis and steroid use. In Step 2, hyperglycaemia was retained as
he most significant predictor (HR 5.56, 95% CI 1.62–19.0). Also,
ge, marijuana use and rivaroxaban medication were retained in
he final model and dialysis was not retained. In Step 3, we
bserved that as compared to the reference group of DM�/HG�,
yperglycaemia (with or without diabetes) progressed to death
6

induce these pathophysiological responses, and specific blockade
of the macrophage Fcg2 receptor blocked the inflammatory
response to enhanced Fc-glycosylated IgG-Spike immune comple-
xes [29]. Similarly, Zlamal et al. [30] have demonstrated platelets’
Fcg2-receptor is responsible for platelet activation by IgG immune
complexes from patients with severe COVID-19.
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Platelet activation induced by enhanced Fc glycosylated
immune complexes is consistent with platelet hyperactivity in
severe COVID-19 patients [31] and autopsy histopathology
identifying platelet-fibrin microthrombi in the lungs [32]. Exces-
sive macrophage stimulation by enhanced Fc-glycosylated im-
mune complexes is consistent with the macrophage activation
syndrome (MAS) often manifest in the laboratory values seen in
severe COVID-19 [33]. The result is hypercoagulability with
compromised micro perfusion, pulmonary endothelial fluid
leakage, and severe respiratory distress syndrome that can result
in death.

However, this prognostic role of hyperglycaemia varies by the
primary cause of critical care such that primary diagnoses like
trauma, coma and neurological diseases are especially prone to
high likelihood of adverse outcomes associated with hyper-
glycaemia [8]. Our results need to be viewed in the light of the
emerging literature on association of hyperglycaemia with
COVID-19 prognosis. Studies have shown that pre-existing
diabetes [2], newly detected diabetes [34], prediabetes [35],
uncontrolled hyperglycaemia (�2 BG values of �10 mmol/
L(180 mg/dl) [3]) or fasting BG � 7 mmol/L (�126 mg/dL) [36]
are significant determinants of COVID-19 prognosis. Our study
adds to these findings the observation that hyperglycaemia
detected early after hospitalization in patients without a history
of diabetes can also independently predict the disease course in
COVID-19 patients. Notably, as posited by Sathish et al. [37],
SARS-CoV-2 may directly injure the pancreatic b-cells, may
impede insulin signalling pathways or activate the renin-
angiotensin system and via a combination of these mechanisms
may contribute to new onset diabetes. We do not have post-
discharge follow-up data on the study subjects to evaluate
whether the hyperglycaemia detected during current hospitali-
zation persisted after discharge, however, there remains a
distinct possibility that the nondiabetic hyperglycaemia ob-
served during a COVID-19 hospitalization may be a harbinger of
new or unmasked diabetes.

Three other incidental findings in this study merit a mention.
First, haematuria was found to be significantly associated with the
risk of mortality in the logistic regression model. There is
burgeoning evidence to support the association of haematuria,
proteinuria and acute kidney injury (AKI) during COVID-19 disease
and these parameters are considered to be early indicators of the
renal involvement in COVID-19 [38]. The observed independent
association of haematuria with mortality in this study, thus raises
the possibility of kidney involvement. Whether this association is
further accentuated by the presence of diabetes and/or hyper-
glycaemia needs to be investigated in future studies. Second, we
found that differential neutrophil count remained a significantly
associated covariate across all models. Several other studies have
demonstrated the prognostic utility of relative or absolute
neutrophilia in COVID-19 [39]. Third, our study found that high
initial platelet count was associated with a reduced risk of
mortality – a finding that concurs with other observations
[40]. Thus, our results concur with most of the other haemato-
logical associations with in-hospital mortaliHG24ty in COVID-19
patients, but additionally reports the association of diabetic as well
as nondiabetic hyperglycaemia even after accounting for known
haematological associations. Notably, the prevalence of other
factors retained in final models shown in Tables 2 and 3 was low
and thus resulted in wide confidence intervals that need to be

preceded the outcomes of interest, the possibility of a temporal
bias cannot be refuted. Second, our study does not include any
practice changes based on hyperglycaemia detection. However,
our results suggest that a closer clinical scrutiny of COVID-19
patients based on glycaemic status may provide additional
insights into their clinical course. Studies in future need to
specifically address these hypotheses. Third, although we have
provided a coherent model of the pathophysiology, whether
hyperglycaemia in COVID-19 patients is consequential or coinci-
dental to disease biology is currently unknown and cannot be
surmised from our results. Studies are needed to specifically
understand the biology of hyperglycaemia in COVID-19 patients.
Fourth, since the BG data were retrospectively derived from the
source of blood sample, its relation to fasting status remains
unknown in this study. This heterogeneity of BG sampling could
have biased our OR estimates. Despite this potential measured and
unmeasured confounding, our results from sensitivity analyses
indicate that our interpretations are likely to have been minimally
influenced by confounding due to BG sampling. Fifth, the
likelihood of undiagnosed diabetes at admission was 4% and
10% in the no-diabetes/no-hyperglycaemia and no-diabetes/
hyperglycaemia groups, respectively. We evaluated, through
sensitivity analyses, the influence of this misclassification on
our interpretations. While the sensitivity analyses demonstrated
the robustness of our inferences, larger multicentric studies are
needed before the findings can be generalized. Sixth, information
on neither the duration of diabetes nor the duration and dose of
antidiabetic medication was available. In the same vein, it should
be noted that glucose lowering agents such as metformin have
been shown to influence outcomes in COVID-19 patients
[41,42]. However, none of the admitted COVID-19 patients
received any glucose lowering drug other than insulin which
was accounted for in our analyses. Our study represents the
clinical practice during very early stages of the pandemic when
clear protocols for dysglycaemic COVID-19 patients were not in
place. Whether development and implementation of such pro-
tocols can improve COVID-19 outcomes cannot be directly
answered by our study and should be evaluated in future studies.
Seventh, arguably drugs such as dexamethasone that are used in
the management of respiratory distress can directly inflate blood
glucose levels and may masquerade as hyperglycaemia. During the
very early stages of the pandemic that our study data captures,
corticosteroids were not commonly used. Indeed, in our dataset
only three patients had received steroids during index hospitali-
zation. Therefore, we believe that the potential influence of
glucose-altering drugs on our inferences would be minimal.

Nevertheless, we have observed the appearance of hypergly-
caemia in nondiabetic COVID-19 patients who are much more
likely to progress to severe disease. We suggest this is an early
marker of a stress response that results in amplification of the
pathophysiology outlined above. Close and perhaps continuous
monitoring of blood glucose in hospitalized COVID-19 patients
could provide clinicians with early recognition of this risk.
Hyperglycaemia as defined in this study is mostly inclusive of
and incremental to known diabetes status both in terms of
prevalence and its association with mortality. Thus, presence of
hyperglycaemia can enable early identification of patients at risk
for poor outcomes and improve risk stratification of COVID-19
patients.
evaluated in larger samples in future studies.
Our study has some limitations. First, this is a retrospective,

observational study of hospitalized COVID-19 patients and is thus
prone to all the limitations of observational studies. For instance,
causative association cannot be established from our results.
While our analyses attempted to ensure that hyperglycaemia
7
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