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Arachidonic acid (AA 20:4n-6) is an essential component of cell membranes and modulates cell mem-
brane fluidity. AA is metabolized by cyclo-oxygenase (COX), lipoxygenase (LOX) and cytochrome P450
enzymes to form several metabolites that have important biological actions. Of all the actions, role of
AA in the regulation of blood pressure and its ability to prevent both type 1 and type 2 diabetes mellitus
seems to be interesting. Studies showed that AA and its metabolites especially, lipoxin A4 (LXA4) and
epoxyeicosatrienoic acids (EETs), potent anti-inflammatory metabolites, have a crucial role in the patho-
biology of hypertension and diabetes mellitus. AA, LXA4 and EETs regulate smooth muscle function and
proliferation, voltage gated ion channels, cell membrane fluidity, membrane receptors, G-coupled recep-
tors, PPARs, free radical generation, nitric oxide formation, inflammation, and immune responses that, in
turn, participate in the regulation blood pressure and pathogenesis of diabetes mellitus. In this review,
role of AA and its metabolites LXA4 and EETs in the pathobiology of hypertension, pre-eclampsia and dia-
betes mellitus are discussed. Based on several lines of evidences, it is proposed that a combination of
aspirin and AA could be of benefit in the prevention and management of hypertension, pre-eclampsia
and diabetes mellitus.
� 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Arachidonic acid (AA, 20:4n-6) is one of the important polyun-
saturated fatty acids (PUFAs) that forms an important constituent
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of cell membranes. It is available in very small amounts in human
diet. Human milk contains significant amounts and cow’s milk
small amounts of AA. Meat, egg yolks, some seaweeds, and some
shrimps also contain AA. Average daily intake of AA is in the region
of 50–300 mg/day that accounts for the total daily production of
various prostaglandins (PGs), which is estimated to be about 1
mg/day [1]. Even though AA is present in human diet, it is likely
that it is insufficient for our body needs since most, if not all, of
it may be destroyed or degraded during storing, cooking and other
processes. It is estimated that more than 90% of AA may be inacti-
vated in these processes though, precise estimation is not avail-
able. In view of this our tissues depend on endogenous formation
of AA from its precursor linoleic acid (LA 18:2n-6), an essential
fatty acid (EFA). It should be noted here that there are two EFAs,
LA and alpha-linolenic acid (ALA, 18; 3n-3). Both LA and ALA are
widely distributed in our diet and hence, their deficiency is unli-
kely. Even though LA and ALA are essential for life, some, if not
all, of their actions are brought about by their metabolites namely
long-chain metabolites such as gamma-linolenic acid (GLA, 18:3n-
6), di-homo-GLA (DGLA, 20:3n-6) and AA from LA and eicosapen-
taenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA,
22:6n-3) from ALA. The formation of GLA, DGLA and AA from LA
and EPA and DHA from ALA are regulated by the actions of
enzymes desaturases and elongases as shown in Fig. 1. It is
Fig. 1. Scheme showing possible interaction(s) among various factors involved in the p
indicates enhancement of action/synthesis; (�) indicates decrease in synthesis/action. AS
and maresins from their respective precursors. Legend to Fig. 1: High fat diet (HFD)/exces
(by enhancing NF-kB expression) that may enhance ROS (reactive oxygen species) gener
formation that interferes with eNO production. IL-6 and TNF-a decrease activity of de
precursors of LXA4/resolvins/protectins/maresins that enhance NO and decrease ROS ge
HTN have low plasma NO, AA/EPA/DHA and LXA4/resolvins/protectins/maresins and hig
the activity of D6 and D5 desaturases. Paradoxically, whenever there is deficiency of AA,
directly or as a result of NF-kB activation), a pro-inflammatory molecule that can decre
suppress inflammation [2–5]. Some studies suggested that under some very specific co
augmenting the formation of LXA4 and 15-PGDH–deficient mice display a twofold increa
and that they show increased fitness of these tissues in response to damage. Thus, PGE2
polymorphisms of desaturases, COX-1 and COX-2 and 5-, 12-, 15-lipoxygenases
protectins/maresins and modulate development of HTN. Co-factors needed for optima
AA/EPA/DHA and hence, their deficiency may also have a role in the pathogenesis of HTN
hypertensive function. EETs are derived from AA by the action of cytochrome P450 enzy
Resolvins, protectins, maresins.
noteworthy that DGLA, AA and EPA and DHA are further metabo-
lized to form a variety of metabolites by the actions of COX-1,
COX-2 and LOX enzymes as described below.

Metabolism of EFAs

EFAs are polyunsaturated fatty acids (PUFAs) since they contain
two or more double bonds. There are at least four independent
families of PUFAs. They include:

The ‘‘x-3” series derived from a-linolenic acid (ALA, 18:3, x-3).
The ‘‘x-6” series derived from cis-linoleic acid (LA, 18:2, x-6).
The ‘‘x-9” series derived from oleic acid (OA, 18:1, x-9).
The ‘‘x-7” series derived from palmitoleic acid (PA, 16:1, x-7).

Both LA and ALA are converted to their respective long-chain
fatty acids by the action of enzymes: D6 and D5 desaturases (d-
5-d). Thus, LA is converted to gamma-linolenic acid (GLA, 18:3),
dihomo-GLA (DGLA, 20:3) and AA (20:4) whereas ALA is converted
to form eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic
acid (DHA, 22:6) respectively. DGLA forms precursor to 1 series
prostaglandins whereas AA forms the precursor of 2 series of
PGs, thromboxanes (TXs) and the 4 series of leukotrienes (LTs)
and anti-inflammatory compounds: lipoxins. EPA derived from
athobiology of blood pressure maintenance and development of hypertension. (+)
A = Aspirin. Aspirin is known to enhance the formation of LXA4, resolvins, protectins
s salt intake enhances pro-inflammatory cytokines IL-17, IL-6 and TNF-a production
ation. ROS inactivates eNO production. HFD/excess salt intake also enhances ADMA
saturases resulting in decreased conversion of dietary LA/ALA to AA/EPA/DHA, the
neration and block IL-6, TNF-a and IL-17 formation and action. Thus, patients with
her concentrations of ADMA, ROS/lipid peroxides, IL-17/IL-6/TNF-a and decrease in
production of PGE2 is increased (HFD/excess salt enhance COX-2 expression either
ase IL-6 and TNF-a production as a feed-back regulatory evet but seldom is able to
nditions, PGE2 may have anti-inflammatory actions and enhances tissue repair by
se in PGE2 levels across multiple tissues—including bone marrow, colon, and liver—
has many actions and may have both pro- and anti-inflammatory actions. Genetic
(LOX) may also lead to decreased formation of AA/EPA/DHA/LXA4/resolvins/
l activity of desaturases and elongases are important for adequate formation of
. Salt intake may also reduce the production of EETs that have vasodilator and anti-
mes (soluble epoxide hydrolase). It is possible that EETs may interact with lipoxins.
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ALA forms the precursor to 3 series of PGs, TXs and the 5 series of
LTs and anti-inflammatory compounds: resolvins. EPA can be elon-
gated to form DHA, the precursor of anti-inflammatory com-
pounds: resolvins, protectins and maresins. LA, GLA, DGLA, AA,
ALA, EPA, and DHA are all PUFAs, but only LA and ALA are EFAs.
In general, PGs, TXs, and LTs formed from AA and EPA have pro-
inflammatory actions (though eicosanoids derived from EPA are
much less pro-inflammatory in nature compared to those formed
from AA) and play a significant role in atherosclerosis, asthma,
inflammatory bowel disease, rheumatoid arthritis, lupus, sepsis,
cancer, etc. Although the terms EFAs and PUFAs are used inter-
changeably, all EFAs are PUFAs but all PUFAs are not EFAs. Many
actions of EFAs can also be brought about by PUFAs. Thus,
EFA-deficiency can be corrected by PUFAs, and hence, PUFAs can
also be termed as ‘‘functional EFAs” [6,7].

The exact mechanism(s) involved in the preferential release of
AA, EPA, and/or DHA from the cell membrane lipid pool and their
subsequent conversion to their respective specific products is not
known. For instance, it is not clear how a cell decides to convert
AA to PGs, LTs or TXs and/or LXA4 is not well understood. Since,
AA, EPA, and DHA give rise to both pro-inflammatory (PGs, LTs
and TXs) and anti-inflammatory compounds (lipoxins, resolvins,
protectins, maresins, and nitrolipids) it is reasonable to propose
that the balance between these mutually antagonistic compounds
plays a significant role in the initiation, progression and/or reversal
of a disease process. Biologically active nitrolipids such as nitroli-
noleate (formed due to the nitration of linoleate by nitric oxide)
are known to stimulate smooth muscle relaxation, inhibit platelet
aggregation, and suppress human neutrophil pro-inflammatory
functions [8–12]. Thus, PUFAs and their metabolites play a signifi-
cant role in several diseases.

Since LA, ALA, and OA are metabolized by the same set of desat-
urases and elongases, these 3 series compete with one another for
the same set of enzymes. It is generally believed that enzymes
(desaturases and elongases) prefer x-3 to x-6 and x-6 over x-9
(x-3 > x-6 > x-9). Presence of significant amounts of 20:3 x-9
indicates that there is deficiency of x-3 and x-6 fatty acids and
so its presence can be used as an indication of EFA deficiency.
The activities of D6 and D5 desaturases are low in humans
(D5 > D6) and hence, the conversion of LA and ALA to their respec-
tive metabolites may be inadequate in conditions such as
atherosclerosis. It is recommended that the intake of x-6 to x-3
fatty acids need to be maintained �1:1 while the Western diet is
believed to be around 10:1 (x-6 to x-3 ratio is 10:1).

PLA2 can be activated by various hormones and growth factors
via G-protein coupled receptors (GPCRs). The released free AA, EPA
and DHA, are acted upon by cyclo-oxygenases, lipoxygenases and
cytochrome P450 enzymes to form their respective metabolites.
P450 enzymes function as hydroxylases or epoxygenases. Cyto-
chrome P450 enzymes are inhibited by nitric oxide (NO), carbon
monoxide (CO) and reactive oxygen species (ROS), which are pro-
duced in variable amounts during inflammation and other diseases
by leukocytes, monocytes, macrophages and other cells. Products
formed from AA, EPA and DHA by the action of cytochrome P450
function as second messengers in various signalling pathways
and regulate vascular, renal and cardiac function.

It is highly likely that there exists a balance between pro-
inflammatory and anti-inflammatory products formed from AA.
For instance, many prostaglandins leukotrienes and thromboxanes
have pro-inflammatory actions whereas LXA4, PGI2 (prostacyclin)
and PGJ eicosanoids are anti-inflammatory in nature. Thus, it is
anticipated that under normal physiological conditions a balance
is maintained among these pro- and anti-inflammatory products
to maintain homeostasis and prevent inappropriate inflammation.
This implies that when this balance is tilted more towards
pro-inflammatory products, initiation and perpetuation of
inflammation may occur. It is highly likely that inflammation
may be initiated and perpetuated not simply because pro-
inflammatory metabolites are synthesized and released in excess
amounts but also because adequate amounts of anti-
inflammatory metabolites that suppress inflammation and induce
resolution of inflammation from AA, EPA and DHA are not formed
in adequate amounts. Thus, ultimately it is the balance between
pro- and anti-inflammatory metabolites that determines the per-
sistence of inflammation or its resolution. This is supported by
the observation that in obesity, type 2 diabetes mellitus, hyperten-
sion, coronary heart disease, non-alcoholic fatty liver disease
(NAFLD), Alzheimer’s disease, depression, schizophrenia, and age-
ing the plasma and specific tissue AA content of phospholipid frac-
tion is low. Because of this, formation of anti-inflammatory LXA4
(lipoxin A4) is not formed in sufficient amounts and hence, inflam-
mation persists. It is noteworthy that anti-inflammatory products
such as LXA4, resolvins, protectins and maresins inhibit formation
of pro-inflammatory prostaglandins (PGs), leukotrienes (LTs) and
thromboxanes (TXs). This feed-back regulation between pro and
anti-inflammatory products is crucial to regulate inflammation
and inflammation-associated diseases. In general, it is assumed
that prostaglandins, leukotrienes and thromboxanes formed from
EPA are considered as anti-inflammatory, But, it is emphasized
here that this is not true and it needs to be understood that 3 series
of PGs, TXs and 4 series of LTs formed from EPA are, in fact, pro-
inflammatory in nature except that they are relatively weak pro-
inflammatory compounds compared to 2 series of PGs, TXs and 4
series LTs derived from AA.
Modulators of desaturases and elongases

Several factors are known to modulate the activities of desat-
urases and elongases that may result either in normal or decrease
in their action. As a result of this, the formation of metabolites of
dietary LA and ALAmay vary. Some of the factors that can influence
the activities of desaturases and elongases are saturated fats,
cholesterol, trans-fatty acids, alcohol, adrenaline, and glucocorti-
coids that are known to inhibit the activities of D6 and D5 desat-
urases [1,6]. On the other hand, pyridoxine, zinc, nicotinic acid,
and magnesium are regarded as co-factors that are essential for
normal D6 desaturase activity. Another important factor that acti-
vates D6 desaturase is insulin. Hence, in condition wherein insulin
levels are low or insulin resistance is present could result in
decreased activity of D6 desaturase. This could be one of the rea-
sons as to why diabetics have low activity ofD6 desaturase and this
results in decrease plasma and tissue levels of GLA, DGLA, AA, EPA
and DHA. Of all the metabolites, AA is an important fatty acid that
has anti-diabetic action and hence, normal activity of D6 desat-
urase is needed to maintain normal plasma and tissue levels of
AA. Furthermore, AA is the precursor of LXA4, a potent anti-
inflammatory molecule. Our recent studies revealed that both AA
and LXA4 have anti-diabetic actions as discussed below. It is
known that the activity of D6 desaturase falls with age that may
explain decreased levels of plasma and tissue AA content. Other
factors that inhibit D6 desaturase activity are oncogenic viruses
and radiation. The suppressive action of oncogenic viruses on D6

desaturase activity may explain as to why cancer cells have low
content of GLA, AA, EPA and DHA. In addition, total fasting, protein
deficiency, and a glucose-rich diet reduce, whereas fat-free diet
and partial caloric restriction enhance D6 desaturase activity. It is
known that D6 and D5 desaturases are regulated by sterol regula-
tory element binding protein-1 (SREBP-1) and peroxisome
proliferator-activated receptor-a (PPAR-a), which may explain
the ability of various PUFAs to reduce plasma cholesterol, triglyc-
erides and their lipogenic actions [13]. Alternatively, the lipogenic
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functions of SREBP-1 and PPAR-a may be ascribed to their interac-
tion with PUFAs.

Both type 1 and type 2 diabetes mellitus, essential hyperten-
sion, dyslipidemia and metabolic syndrome are associated with
decreased activities of D6 and D5 desaturases that may explain
low circulating and tissue levels of GLA, DGLA, AA, EPA and DHA.
Trans-fatty acids are known to interfere with the metabolism of
EFAs, promote pro-inflammatory status, atherosclerosis and coro-
nary heart disease [6,7,14]. EPA and DHA of n-3 series and GLA,
DGLA and AA of n-6 series have been shown to suppress the pro-
duction of pro-inflammatory interleukin-6 (IL-6), tumor necrosis
factor-a (TNF-a), IL-1, IL-2 and HMGB1 (high mobility group box
1) [15]. In a similar fashion, saturated fatty acids and cholesterol
have the ability to interfere with EFA metabolism and thus, pro-
mote production of IL-6 and TNF-a that may account for their
involvement in atherosclerosis and coronary heart disease (CHD).
Since saturated fatty acids, cholesterol and trans-fatty acids inter-
fere with the activities of desaturases, this could lead to reduced
formation of GLA, DGLA, AA, EPA, and DHA. As a result of this
action, formation of prostacyclin (PGI2) from AA; PGI3 from EPA;
lipoxins from AA; resolvins, protectins and maresins from EPA
and DHA and nitrolipids from various PUFAs are likely to be low
that may initiate and accelerate the progression of atherosclerosis.
Reduced formation of PGI2, PGI3, lipoxins, resolvins, protectins,
maresins and nitrolipids results in persistence of low-grade sys-
temic inflammation, CHD and reduced healing of wounds [7,15].
NO, ADMA, PGI2, and oxidative stress in hypertension

Hypertension (HTN) is common. It is estimated that �20–25% of
the subjects above the age of 45 have detected or undetected HTN
[16,17]. It is estimated that worldwide, approximately 1 billion
people have hypertension that accounts for more than 7.1 million
deaths per year. In view of this high prevalence, it is important to
understand its pathophysiology and develop effective methods of
prevention and management of HTN.

HTN is associated with an increase in peripheral vascular resis-
tance, insulin resistance, endothelial dysfunction and enhanced
activity of the sympathetic nervous system [18]. Endothelial cells
produce prostacyclin (PGI2), nitric oxide (NO), and endothelins
[19] that have a role in the regulation of vascular diameter and
tone [20]. Dysfunction of endothelial cells has a role in the patho-
genesis of atherosclerosis, hypertension and coronary and/or cere-
bral vasospasm or thrombosis [18–21]. Superoxide anion
inactivates nitric oxide (NO) [22], whereas superoxide dismutase
(SOD) enhances the half-life of NO by quenching the superoxide
anion [23]. Hence, it is likely that superoxide anion can enhance
vascular resistance by inactivating NO. In fact, it has been sug-
gested that superoxide anion itself can cause vasoconstriction
and increase peripheral vascular resistance [21]. Previously, we
observed that patients with essential hypertension have high
levels of superoxide anion and hydrogen peroxide whereas those
of NO are low [21]. In addition, the concentrations of anti-
oxidants such as vitamin E and SOD were found to be low and
those of lipid peroxides are increased in these patients [24]. All
these biochemical abnormalities reverted to normalcy after the
control of hypertension with various anti-hypertensive drugs
[21]. These results imply that HTN is associated with an imbalance
between pro- and anti-oxidants and predominantly a state of
heightened oxidative stress. In this context, it is noteworthy that
patients with essential HTN have increased circulating levels of
IL-1ra (IL-1 receptor antagonist) and increased IL-1 and IL-6 pro-
duction capacity suggesting that HTN is associated with an altered
profile of pro- and anti-inflammatory cytokines with the balance
tilted more towards inflammation [25]. It is likely that this
increased pro-inflammatory cytokine profile could induce excess
production of free radicals seen in those with uncontrolled HTN
[21–24]. These and other evidences suggest that HTN is an inflam-
matory disorder wherein both systemic inflammation and
inflammation in the hypothalamus could be seen [24–32]. Further-
more, increased sympathetic nervous system activity is seen in
uncontrolled HTN that also contributes to inflammation since both
epinephrine and nor-epinephrine have pro-inflammatory actions
whereas acetylcholine, the principal neurotransmitter of the
parasympathetic vagal nerve, is a potent anti-inflammatory mole-
cule [33,34]. Acetylcholine is a potent enhancer of endothelial NO
generation implying that NO has anti-inflammatory actions. Thus,
autonomic nervous system, inflammation and HTN are interrelated
[35,36].

It is likely that acetylcholine is a stimulator of formation of
lipoxin A4, a potent anti-inflammatory molecule that may also
account for the anti-inflammatory action of acetylcholine [37].
Patients with HTN have reduced plasma concentrations of AA,
the precursor of LXA4 (see Table 4) [38]. Based on these observa-
tions, it is suggested that patients with essential HTN may have
low plasma levels of LXA4 [39]. It is likely that circulating plasma
LXA4 levels may be low not only in HTN but also in diabetes mel-
litus, CHD and heart failure [39,40] that may explain the close asso-
ciation seen among HTN, diabetes mellitus, CHD and heart failure.

In addition, patients with HTN have significantly increased
plasma levels of asymmetrical dimethyl arginine (ADMA), an inhi-
bitor of NO generation [41,42]. Furthermore, angiotensin-II is a
potent pro-inflammatory molecule that can enhance the genera-
tion of free radicals and thus decrease eNO and produce vasocon-
striction and induce development of HTN [43]. It is relevant to
note that exercise that is of significant benefit in HTN is known
to have anti-inflammatory actions, enhance NO and LXA4 genera-
tion [44–46]. LXA4 is a potent inducer of eNO generation [47]. Pre-
viously, we showed that AA can enhance the formation of LXA4
[46,47] and inhibits the action of angiotensin-converting enzyme
(ACE) activity that leads to reduced formation of angiotensin-II
[48]. This could be one mechanism by which AA is able to suppress
inflammation since angiotensin-II is a pro-inflammatory molecule.
Because of these actions of AA (increasing LXA4 formation, inhibi-
tion of ACE activity) could be considered as an anti-inflammatory
molecule. Furthermore, AA can augment eNO generation [49,50].
Similar NO synthesis enhancing action is also evident with other
PUFAs such as DHA and EPA [51]. Thus, it is likely that AA, EPA
and DHA enhance the production of NO, LXA4 and possibly, resol-
vins (from EPA and DHA), protectins and maresins (from DHA),
inhibit ACE activity and thus, function as anti-inflammatory and
anti-hypertensive molecules.
Salt, eicosanoids, and LXA4 in HTN

Excess salt intake is known to cause development of hyperten-
sion, though its exact mechanism of action is not clear. High salt
intake (>20 g/day) suppresses NO production and thus, may
increase blood pressure [52]. Salt enhances plasma ADMA levels,
an inhibitor of NO synthesis, whereas high dietary potassium
intake reduces blood pressure and ADMA levels while increasing
NO bioactivity in normotensive salt-sensitive but not salt-
resistant Asian subjects after salt loading [53]. Salt loading
enhances the expression of COX-2 by activating NF-kB that, ulti-
mately leads to increased production of PGE2 and thromboxane
A2 (TXA2), a pro-inflammatory and platelet aggregator substances
but PGE2 is a vasodilator whereas TXA2 is a vasoconstrictor mole-
cule [54]. Paradoxically PGE2 suppresses the production of IL-6 and
TNF-a. AA (the precursor of PGE2), EPA and DHA also suppress IL-6
and TNF-a production and thus, serve as anti-inflammatory
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molecules. In addition, AA, EPA and DHA, the precursors of LXA4
(from AA), resolvins (from AA and EPA) and protectins and mare-
sins (from DHA) that are potent anti-inflammatory metabolites
and suppress IL-6 and TNF-a production as well. It is interesting
that PGE2 exacerbates pro-inflammatory actions of IL-17 [55,56].

Recent studies revealed that salt enhances the production of
pro-inflammatory cytokine IL-17 [57–59] whose elaboration could
be suppressed by AA, EPA and DHA, LXA4, resolvins, protectins and
maresins [60–62]. In addition, salt can suppress the activities of
desaturases and thus, reduce plasma and tissue content of AA,
EPA and DHA. Thus, ultimately, excess salt intake leads to an
increase in the generation of ROS. Based on these evidences, it
can be proposed that salt is pro-inflammatory in nature though salt
is essential for life and excess salt is harmful.

This close interaction and negative and positive feed-back reg-
ulation among PUFAs, NO, ACE, cytokines, eicosanoids, LXA4, resol-
vins, protectins and maresins may account for their regulatory role
in the pathobiology of hypertension and its associated conditions:
atherosclerosis, CHD, heart failure and diabetes mellitus [[63–70]
Fig. 1].

Pufas in diabetes mellitus

Apart from the fact that essential hypertension is a risk factor
for the development of coronary heart disease, stroke, atheroscle-
rosis, and peripheral vascular disease, its presence also need to
be suspected for the presence of diabetes mellitus. In majority of
the instances, essential hypertension is associated with insulin
resistance if not for the presence of established diabetes mellitus.
As discussed above, free radicals, nitric oxide (NO), eicosanoids,
pro- and antiinflammatory cytokines, PUFAs, folic acid, tetrahydro-
biopterin (BH4), and vitamin C (folic acid and vitamin C are co-
factors in the metabolism of EFAs especially for the activity of
desaturases, whereas BH4 is a co-factor for the synthesis of NO)
not only play a role in the pathobiology of hypertension but may
also have a role in the pathogenesis of diabetes mellitus. This is
since, insulin resistance is common both in hypertension and dia-
betes mellitus (especially type 2 DM). Vascular endothelium is the
source of vasodilators: prostacyclin (PGI2), NO, and endothelium-
derived hyperpolarizing factor, and other vasoactive factors such
as endothelins and prostaglandin E1 (PGE1) [71]. Since under
normal conditions a balance is maintained between endothelial
vasoconstrictors and vasodilators, it is likely that when this
balance is tilted more towards vasoconstrictors and/or when the
concentrations of vasodilators are reduced, hypertension develops.
Endothelium dependent vasodilatation is likely to be impaired as a
result of an increase in the oxidative stress that inactivates NO and
PGI2. This is supported by our observation that polymorphonuclear
leucocytes of patients with uncontrolled essential hypertension
produce significantly higher amounts of superoxide anion, hydro-
gen peroxide (H2O2), and lipid peroxides, indicating an increase
in oxidative stress in hypertension [21]. These abnormalities revert
to normal after the control of hypertension by conventional anti-
hypertensive drugs. It is likely that an increase in free radical
generation could be responsible for the heightened peripheral vas-
cular resistance seen in hypertension. This could be due to a
decrease in NO bioavailability and an increase in superoxide anion
generation possibly, due to enhanced NAD(P)H oxidase activity
[72]. Low-grade systemic inflammation occurs in hypertension as
evidenced by elevated plasma levels of CRP, TNF-a, and IL-6. These
pro-inflammatory molecules are elevated in subjects with type 2
diabetes as well [73]. Subjects with elevated CRP levels are known
to have higher risk of developing diabetes mellitus [72,74]. Dietary
glycemic load significantly and positively enhances plasma
CRP [72,75], indicating that hyperglycemia is a potent inducer of
inflammation.
Acute elevation of plasma glucose levels in normal and
impaired glucose tolerance (IGT) subjects increased plasma IL-6,
TNF-a, and IL-18 levels, and these increases were much larger
and lasted longer in IGT subjects compared with control [76]. In
addition, hyperglycemia induced production of acute phase reac-
tants from adipose tissue [77]. These data indicate that the
increased incidence of type 2 diabetes seen in the elderly is as a
result of alterations in the homeostatic mechanisms that control
TNF-a, IL-6, and CRP levels, and that low-grade systemic inflamma-
tion occurs in type 2 diabetes. Low-grade systemic inflammation
occurs both in hypertension and type 2 diabetes mellitus that
may explain as to why blood pressure progression is a strong
and independent predictor of occurrence of type 2 diabetes in
hypertensives. In view of the overlap of several biochemical abnor-
malities among obesity, type 2 diabetes, hypertension, and insulin
resistance (such as cytokines, adipokines, reactive oxygen species,
anti-oxidants, and NO), it is reasonable to propose that a more gen-
eralized pathophysiological process underlies in them (hyperten-
sion and DM) [72]. One such underlying abnormality in both
hypertension and diabetes mellitus could be an alteration in the
metabolism of PUFAs.

Cytokines and PUFAs in DM

Excess production of interleukin-1 (IL-1), IL-2, IL-6, TNF-a and
macrophage migration inhibitory factor (MIF), nitric oxide (NO),
superoxide anion, and other free radicals occurs in type 1 DM
and may have a role in its pathophysiology. These cytotoxic mole-
cules are released by macrophages, lymphocytes, and monocytes
infiltrating pancreatic b cells [78,79]. Both streptozotocin (STZ)
and alloxan also induce production of excess of ROS, NO and other
nitroso compounds possibly, by enhancing production of IL-2,
interferon-c (IFN-c), and TNF-a by TH1 lymphocytes, which acti-
vate macrophages that, in turn, cause apoptosis of b cells [80–
82]. TNF-a upregulates MIF production [83,84] and both TNF-a
and MIF act in concert with each other to induce type 1 DM.

MIF, TNF-a, and ILs augment the synthesis and release of pro-
inflammatory prostaglandins (PGs) but, suppress prostacyclin
PGI2 production. On the other hand, PGE2 suppresses TNF-a and
IL-1 production suggesting that TNF-a, IL-1-induced enhancement
of PGE2 has a negative regulatory control on these cytokines. Thus,
an interaction exists between cytokines and PGs [82,85–88].
Peroxisome proliferator-activated receptor-c (PPAR-c) activators
suppress free radical generation and TNF-a and IL-2 and, thus,
ameliorate the occurrence of diabetes in the Zucker diabetic fatty
fa/fa rat [89,90]. PUFAs function as endogenous ligands of PPARs
and we noted that oral supplementation of PUFAs-rich oils and
pure individual PUFAs: GLA, AA, EPA, and DHA prevented the
development of both alloxan and STZ-induced type 1 DM in exper-
imental animals [82,91–94]. These results are interesting since,
free radical-induced DNA damage activates poly (ADP-ribose)
polymerase (PARP) synthase that leads to enhanced NAD+ utiliza-
tion because of which NAD+ depletion occurs. This leads to a signif-
icant alteration in protein metabolism resulting in pancreatic b cell
death [95,96]. This is supported by the observation that nicoti-
namide supplementation suppresses free radical generation and,
thus, ameliorates DM implying a role for PARP and free radicals
in the pathogenesis of type 1 DM. Based on these evidences, I pro-
pose that the protective actin of PUFAs against alloxan and STZ-
induced type 1 DM [82,91–94] is as a result of their (PUFAs) ability
to restore anti-oxidant defenses to normal [82]. Our recent studies
revealed that STZ-induced type 1 and type 2 DM and high-fat diet-
induced type 2 DM can be prevented by AA (unpublished data). In
an extension of this study, it was noted that this anti-diabetic
action of AA is due to increased formation of LXA4, an anti-
inflammatory metabolite of AA. In addition, LXA4 also protected
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Wistar rats from the development of chemical-induced type 1 and
type 2 DM by restoring the altered antioxidant defenses, and
expressions of Pdx1, NF-kB, and IKB genes in the pancreas and
plasma TNF-a levels in type 1 and type 2 DM; Nrf2, Glut2;
COX-2 and inducible nitric oxide (iNOS) proteins in pancreatic tis-
sue of type 1 DM and LPCLN2 (lipocalin 2), NF-kB, IKB I in adipose
tissue of type 2 DM to normal [82,97,98]. It is noteworthy that GLA,
EPA, and DHA also showed similar beneficial action but were much
less effective compared to AA that could be ascribed to their lim-
ited capacity to enhance LXA4 formation. . It is likely that
decreased formation of LXA4 in the presence of GLA, EPA and
DHA could be due to their limited capacity to displace AA from
the cell membrane lipid pool, whereas AA is the direct precursor
of LXA4. In this context, it is interesting to note that oral adminis-
tration of cod liver oil, a source of EPA and DHA, during pregnancy
can decrease the incidence of type 1 DM [99,100]. No such studies
have been performed in type 2 DM. In view of the evidences
([82,91–94,97,98], it will be interesting to know whether supple-
mentation of PUFAs during pregnancy and early childhood can pre-
vent adult onset of type 2 DM [101,102].

Low and high dose IL-2/TNF-a in type 1 DM and its relationship
to PUFAs metabolism

Chronic and low dose and systemic administration of TNF-a and
IL-2 inhibit the development of type 1 DM in BB rats and NODmice
and other autoimmune/inflammatory diseases suggesting that a
defect in TNF-a and IL-2-mediated immunoregulation has a signif-
icant role in the pathogenesis of these diseases [103–107]. It is rel-
evant to note the high levels/doses of IL-2/TNF-a are cytotoxic to
pancreatic b cells whereas low-doses of IL-2/TNF-a prevent b cell
damage and protect from the development of type 1 DM. These
paradoxical actions of IL-2/TNF-a suggest that high concentrations
of IL-2 enhance free radical generation and reduce antioxidant con-
tent of b cells, whereas low concentrations of IL-2/TNF-a have
opposite action. It is unclear how different concentrations of IL-
2/TNF-a can produce such opposite actions. This led me to propose
that low and high concentrations of IL-2/TNF-a may have diamet-
rically opposite actions on COX (cyclo-oxygenase) and LOX (lipoxy-
genase) enzymes and metabolism of PUFAs (see Fig. 2). It is
possible that these molecules (IL-1, IL-2, TNF-a, PUFAs and their
metabolites) interact with the gut microbiota, gut hormones, and
hypothalamic neurotransmitters. In addition, IL-4 and IL-10 that
are anti-inflammatory cytokines enhance the conversion of AA,
EPA, and DHA to their respective LXs (from AA), resolvins (from
EPA and DHA), protectins (from DHA), and maresins (from DHA)
that suppress inflammation [108–113]. It is relevant to note that
IL-4 upregulates 15-LO gene expression leading to increased
production of LXs, especially LXA4 to initiate from inflammation/
suppress inflammation and autoimmune disease process.

In this complex interaction among cytokines, COX, LOX
enzymes and PUFAs, there seems to be a very significant role for
phospholipases as shown in Fig. 2. From the initiation of inflamma-
tion till its resolution, there is a sequential activation of various
types of PLA2s. During the first 24 h of initiation of inflammation
type VI iPLA2 protein expression is increased, while in the next
48–72 h type IIa and V sPLA2 expressions are increased, whereas
the expression of type IV cPLA2 expression is gradually increased
during resolution phase of inflammation and peaking at 72 h.
Increase in type IV cPLA2 expression occurs in parallel with
enhanced expression of COX-2 [114], suggesting that these
enzymes are coupled to each other to regulate inflammation. Thus,
different types of PLA2 have distinct and specific yet different roles
in the inflammatory process. A decrease in the production/secre-
tion of PGE2, LTB4, IL-1b, and platelet-activating factor (PAF)
occurs when cPLA2 is inhibited. By contrast, inhibition of types
IIa and V sPLA2 blocked PAF and LXA4 formation with a simultane-
ous reduction in the activities of cPLA2 and COX-2. Thus, sPLA2-
derived PAF and LXA4 enhance COX-2 and type IV cPLA2
expression and IL-1b induces the expression of cPLA2. These
results suggest that IL-1 has dual action: not only initiates and
participates in the progression of inflammation but also plays a
role in the resolution of inflammation [109,110,114–116]. LXA4
suppresses the production of ILs and TNF-a; enhances TNF-a-
mRNA decay, inhibits TNF-a secretion, and leukocyte trafficking
and, thus, suppresses inflammation [6,117,108,109,115–123] (see
Fig. 2). This close interaction between cytokines and bioactive
lipids in the induction and resolution of inflammation is crucial
to regulate inflammatory process. In this complex set of interac-
tions among cytokines, PUFAs and their metabolites there appears
to be a role for gut microbiota and hypothalamic neurotransmitters
as well (see Fig. 2).
Gut microbiota and PUFAs and their metabolites in type 1 DM

It is now believed that gut microbiota have a role in the patho-
biology of type 1 DM. It has been suggested that increased inci-
dence of type 1 DM in recent years could be attributed to
changes in the human microbial environment [82,124] secondary
to changes in the diet. Both promotion and inhibition of autoim-
munity can be ascribed to gut microbes that signal their influence
through TLRs [82,125]. In general, Bacteroidetes protection from
type 1 DM, whereas Firmicutes promote type 1 DM [126].

Gut microbiota can regulate immune response, alter efficacy of
cancer therapy, influence neuronal function by altering the concen-
trations of various neurotransmitters, etc. [127–132]. It is known
that microbiota produce metabolites that act on the gut, gut-
associated immunocytes, alter production and action of neuro-
transmitters, such as serotonin, both in the gut and hypothalamus.
Gut microbiota induce and expand specialized Treg cells and thus,
prevent aberrant inflammatory responses to b cells and maintain
homeostasis [133,134] partly, by controlling differentiation of
TH17 cells [135–138]. Butyrate, a short chain fatty acid, produced
by gut microbiota selectively expands intestinal Treg cells [139]
and enhances Treg cells abundance to induce increased production
of anti-inflammatory cytokine IL-10 that can prevent type 1 DM.

Since the proliferation and type of gut microbiota depends on
the presence of specific nutrients present in the food consumed
by the individual, it is imperative to suggest that generation of
unique metabolites by gut microbiota depends on the food we con-
sume. Thus, indirectly it can be suggested that the ability of gut
microbiota to produce specific metabolites that play a vital role
in the regulation of immune response is dependent on the food
that is ingested. In other words, gut microenvironment influences
the composition of the microbiota. Some of the dietary compo-
nents, such as sugar, fat, or fiber influence and determine which
microbial species thrive in the gut. Gut microbiota has a critical
role in the regulation of host serotonin production since they
(gut microbiota) can augment serotonin biosynthesis from colonic
enterochromaffin cells (ECs), which supply serotonin to the
mucosa, lumen, and circulating platelets [130,131]. Both acetate
and butyrate, the short chain fatty acids produced by the gut
microbiota, determine enteric serotonin production, and, thus, reg-
ulate beta cell proliferation and function since, serotonin stimu-
lates b cell proliferation [140,141]. Both exogenous and
endogenous stimuli (toxins) that reduce b cells mass in type 1
DM may do so by interfering with b cells mass enhancing ability
of serotonin. Recently, we observed that serotonin enhances the
viability of rat insulinoma pancreatic b cells in vitro. Based on these
results, it can be suggested that gut microbiota metabolites: acet-
ate and butyrate, enhance serotonin production from ECs that, in



Fig. 2. Scheme showing interaction among high and low doses of IL-2/TNF-a in the induction and prevention of type 1 DM. It is likely that high doses of IL-2/TNF-a induce the
activation of iPLA2 and COX-2 leading to the synthesis and release of excess of PGE2 and LTB4 and other pro-inflammatory molecules that, in turn, enhance ROS generation
leading to apoptosis of pancreatic b cells and onset of type 1 DM. In contrast, low doses of IL-2/TNF-a activate sPLA2 and cPLA2 (cPLA2 > sPLA2) that leads to the synthesis and
release of lipoxins, reoslvins, protectins and maresins which suppress the formation of ROS and enhance antioxidant Dasstatus of pancreatic b cells and prevention of type 1
DM. Same set of events are likely to occur in type 2 DM as well except that in this instance, IL-2/IL-6 and TNF-a produce sysemic insulin resistance. Production of adeuate
amounts of lipoxins, resolvins, protectins and maresins suppress IL2/IL-6/TNF-a production and amelioration from systemic insulin resistance and type 2 DM. It is likely that
activation of iPLA2 inhibit the formation of tolerogenic Dcs and enhance the occurrence of type 1 DM, whereas activation of cPLA2 enhances the formation of tolerogenic DCs
and suppresses the occurrence of type 1 DM. It is alsopossible that activation of iPLA2 enhances the formation of pro-inflammmatory eicosanoids such as PGE2 and LTs,
whereas activation of cPLA2 augments the formation of anti-inflammmatory lipoxins, resolvins, protectins and maresins. This figure is modified from Das UN. Frontiers
Endocrinology 2017; 8:182 (Ref. [82]).
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turn, enhance b cell proliferation. Thus, one mechanism by which
gut microbiota prevent type 1 DM is by enhancing serotonin pro-
duction. Tryptophan present in the diet is utilized by gut micro-
biota to form indole derivatives: indole-3-acetic acid, indoxyl-3-
sulfate, indole-3-propionic acid, and indole-3-aldehyde that are
ligands for the aryl hydrocarbon receptor (AHR). These indole
metabolites activate AHR of gut-resident T cells and innate lym-
phoid cells to augment production of IL-22, which protects b cells.
Tryptophan also regulates the formation of neurotransmitter sero-
tonin. Thus, gut microbiota and their metabolites, tryptophan,
serotonin, and b cell survival and proliferation and inflammatory
events, especially secretion of IL-22, are interrelated to each other
in a complex fashion. It is possible that gut microbiota enhances
the formation of branched fatty acid esters of hydroxy fatty acids,
such as palmitic-acid-9-hydroxy-stearic acid, which is known to
increase insulin sensitivity and lower plasma glucose levels by
stimulating glucagon-like peptide-1 (GLP-1) and insulin secretion
and reduce adipose tissue inflammation [142]. Gut microbiota
may also alter endocannabinoids and thus, influence development
of type 1 DM.

It is not yet known but entirely possible that gut microbiota
convert dietary LA and ALA to their long chain metabolites: AA,
EPA and DHA that, in turn, enhance the formation of anti-
inflammatory and antidiabetic molecules: LXA4 (from AA),
resolvins (from EPA and DHA), and protectins and maresins
(from DHA), which results in the prevention of type 1 DM as dis-
cussed above and elsewhere [91–94,97,98].
Cytokines, gut microbiota, PUFAs and type 2 DM

In contrast to the aetiopathogenesis of type 1 DM wherein the
inflammatory events occur close to pancreatic b cells, in type 2
DM there is low grade systemic inflammation as evidenced by
increased circulating concentrations of IL-6, TNF-a, CRP
(C-reactive protein) and decreased NO and adiponectin
[143–154]. Thus, efforts made to suppress IL-6 and TNF-a levels
and enhance NO and adiponectin concentrations are of benefit in
the prevention and management of type 2 DM. This may explain
as to why AA, EPA and DHA and lipoxins, resolvins, protectins
and maresins are of benefit in type 2 DM since they are able to sup-
press inflammation [15,66,82,91–94,97,98,102]. PUFAs augment
adiponectin production by their ability to function as endogenous
ligands of PPARs [102]. Furthermore, patients with type 2 DM have
low plasma phospholipid content of AA and LXA4 that may
increase the plasma and tissue levels of TNF-a and IL-6 due to lack
of negative feed-back control exerted by PUFAs and LXA4 on pro-
inflammatory cytokines. Low plasma and tissue concentrations of
PUFAs can result in low secretion of adiponectin [82,155,156] that
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can aggravate insulin resistance and enhance the occurrence of
type 2 DM.

Like the involvement of gut microbiota in type 1 DM, there is a
strong relationship between gut microbiota and type 2 DM. Some
of the mechanisms that relate gut microbiota to the onset of insu-
lin resistance and type 2 DM include: changes in bowel permeabil-
ity, endotoxemia, interaction with bile acids, changes in the
proportion of brown adipose tissue, and effects associated to use
of drugs like metformin [82,157–162]. The role of gut microbiota
in type 2 DM can, in part, be attributed to their ability to produce
acetate, propionate and butyrate that have anti-inflammatory
actions. It has been shown that commensal microbes of gut micro-
biota can induce colonic regulatory T (Treg) cells that have a role in
the suppression of inflammatory responses by producing butyrate.
A positive correlation has been found between luminal concentra-
tions of butyrate and the number of Treg cells in the colon. Buty-
rate can induce differentiation of Treg cells in vitro and in vivo,
and ameliorated the development of colitis. These observations
suggest that butyrate may have a role in host–microbe interactions
establish immunological homeostasis in the gut and thus, influence
pathobiology of type 2 DM [82,157–165]. In addition, obesity and
type 2 DM are associated with hypothalamic inflammation due
to enhanced production of TNF-a that explains the involvement
of brain in these conditions including changes in the concentra-
tions of various neurotransmitters [82,102]. It is possible that the
high content of AA and DHA in the brain may function as anti-
inflammatory molecules to prevent HFD-induced hypothalamic
inflammation and thus, prevent obesity and type 2 DM. Further-
more, PUFAs have the ability to alter gut microbiota
[82,166,167], neurotransmitter release, and action [82,168–171],
Fig. 3. Scheme showing metab
enhance BDNF synthesis and secretion [171], and LXA4 enhances
BDNF secretion and vice versa, modulate immune response and
suppress IL-6 and TNF-a synthesis (reviewed in 78], gut hormone
release (including that of GLP-1) [172–174], and finally alter gene
expressions as well [82,175–179]. These and other evidences
(reviewed in [82,180–182] support the contention that PUFAs
(especially AA) and their metabolites (such as LXA4) play a major
role in the pathogenesis of both type 1 and type 2 DM.

P-450 enzyme actions on AA and their role in hypertension and
diabetes mellitus

AA is not only acted upon by COX and LOX enzymes but also by
the cytochrome P-450 (CYP) pathway (see Fig. 3 for metabolism of
AA). CYP hydroxylase enzymes generate HETEs, such as 20-HETE,
that have cardiovascular and proinflammatory activities
[183,184], whereas epoxyeicosatrienoic acids (EETs) are derived
from CYP epoxygenase enzymes that have cardiovascular actions
and are anti-inflammatory in nature. Hormonal and paracrine fac-
tors as well as environmental factors and diseases can alter CYP
expression and activity [185–189]. These CYP epoxygenase
enzymes are located in the endoplasmic reticulum and add an
epoxide across one of the four double bonds in AA to produce four
EET regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET
[186,190]. EETs generated by epoxygenase enzymes can then be
further metabolized. EETs can be catabolized to their correspond-
ing diols by the soluble epoxide hydrolase (sEH) enzyme. 14,15-
EET is the preferred substrate for sEH with 11,12-EET and
8,9-EET also being converted to their corresponding dihydroxye-
icosatrieonic acids (DHETs).
olism of arachidonic acid.
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EETs modulate cardiac and vascular physiology to maintain
cardiovascular homeostasis. EETs have angiogenic actions that
contribute to their action on cancer. For instance, increased epoxy-
genase enzyme expression and increasing EETs appear to be asso-
ciated with increased tumor size [191,192]. One of the cell-
signaling mechanisms by which EETs act is by their ability to acti-
vate PPAR-a. EETs may bring about some of their actions via
receptor-dependent and receptor-independent mechanisms and
function in a paracrine or autocrine manner.

Increased salt intake causes oxidant stress, reduces NO gener-
ation and endothelial dysfunction despite reduced production of
angiotensin-II. This suggests that angiotensin-II does not partici-
pate in salt-induced hypertension and it could be due to
decreased NO generation and inflammatory events that occur
as a result of enhanced IL-17 production as already discussed
above. Angiotensin-II has pro-inflammatory actions and aug-
ments free radical generation [193]. NO quenches superoxide
anion. PUFAs and NO have been shown to inhibit the activity
of angiotensin converting enzyme (ACE) activity and thus, lower
angiotensin-II levels. This feed-back regulation among ACE activ-
ity, PUFAs, NO and free radicals is disturbed in hypertension
resulting in lower NO generation, reduced PUFAs content,
increased free radical generation and possibly, lower levels of
LXA4 and EETs (possibly, secondary to lower AA levels
[21,24,38]). These results imply that methods designed to
enhance the production of EETs (by inhibiting the activity of
sHE, soluble epoxide hydrolase) may be of benefit in the preven-
tion and management of hypertension. It is likely that AA (and
other PUFAs), LXA4 and EETs enhance NO generation to produce
their vasodilatory action, whereas 20-hydroxyeicosatetraenoic
acid (20-HETE), a major vasoconstrictor eicosanoid in the micro-
circulation inhibited NO formation [194].

There is preliminary evidence to suggest that EETs may have a
role in insulin resistance and diabetes mellitus. CYP2J3 activation
reversed insulin resistance via upregulated AMPK signaling and is
associated with decreased endoplasmic reticulum stress response
in adipose tissue [195]. CYP2J3-derived EETs alleviate insulin
resistance, in part, through upregulated endothelial nitric oxide
synthase expression [196,197]. Inhibition of sEH has been shown
to enhance insulin signaling and sensitivity, increased islet size
and vasculature, and decreased plasma glucose [198]. Similarly,
sEH knockout attenuated insulin resistance and enhanced
glucose-stimulated insulin secretion from islet cells and
decreased islet cell apoptosis [199–202]. These results suggest
that EETs and sFE has a significant role in the pathobiology of
diabetes mellitus.

Conclusions and future perspectives

It is evident from the preceding discussion that AA and its
metabolite LXA4 and EETs play a critical role in the pathobiology
of hypertension and type 1 and type 2 DM. It is likely that a defi-
ciency of AA, LXA4 and EETs may lead to the development of
hypertension and diabetes mellitus. This deficiency could be due
to a defect in the activities of desaturases, COX, LOX and sEH
enzymes and/or the much-needed co-factors that are vital for their
normal activities. Based on these evidences, it is proposed that a
rational combination of AA (and possibly other PUFAs) and low
dose aspirin (to enhance the formation of LXA4) and other co-
factors such as vitamin C, folic acid, niacinamide, B12 and magne-
sium could be employed to prevent hypertension and diabetes
mellitus. It is suggested that supplementation of AA, aspirin and
other co-factors during pregnancy may prevent the development
of pre-eclampsia (that is characterized by hypertension and insulin
resistance and growth retardation of the fetus) and during lacta-
tion and early childhood may help in proper growth and develop-
ment of the newborn and prevent occurrence of hypertension and
diabetes in the adulthood.
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