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extraction of gray-scale intensity 
distributions from micro computed 
tomography imaging for femoral 
cortical bone differentiation 
between low-magnesium and 
normal diets in a laboratory mouse 
model
shu-Ju tu1,2, Shun-Ping Wang3,4, Fu-Chou Cheng5 & Ying-Ju Chen6

Previous studies have shown that the geometric development of femoral trabecular bone is affected 
by insufficient dietary intake of magnesium. However, it is not clear whether the development of 
femoral cortical bone can be quantitatively evaluated according to a diet with inadequate magnesium 
supplementation. Therefore, we used a micro computed tomography (CT) imaging approach with a 
laboratory mouse model to explore the potential application of texture analysis for the quantitative 
assessment of femoral cortical bones. C57BL/6J male mice were divided into two groups, where one 
group was fed a normal diet and the other group was fed a low-magnesium diet. We used a micro CT 
scanner for image acquisition, and the subsequent development of cortical bone was examined by 
texture analysis based on the statistical distribution of gray-scale intensities in which seven essential 
parameters were extracted from the micro CT images. Our calculations showed that the mean intensity 
increased by 7.20% (p = 0.000134), sigma decreased by 29.18% (p = 1.98E-12), skewness decreased 
by 19.52% (p = 0.0000205), kurtosis increased by 9.62% (p = 0.0877), energy increased by 24.19% 
(p = 3.32E-09), entropy decreased by 6.14% (p = 3.00E-10), and the Nakagami parameter increased 
by 104.32% (p = 4.13E-12) in the low-magnesium group when compared to the normal group. We 
found that the statistical parameters extracted from the gray-scale intensity distribution were able to 
differentiate between femoral cortical bone developments in the two different diet groups.

Bones are critical organs that protect internal organs and are the major mineral reservoir of the body. The mus-
culoskeletal system includes bones, muscles, and joints. The functions of these different tissues are movement 
and biomechanical performance. Fracture risk is highly correlated with the bone strength of femoral cortical 
bones1–4. In recent years, micro computed tomography (CT), which is an x-ray based imaging technology with 
high spatial-resolution, has been successfully used to quantify bone quality in different animal experiments1–4.

The current approach for femoral cortical bone assessment includes quantitative assessment of bone min-
eral density (BMD) and bone morphology1–4. These parameters are calculated based on a user-defined region of 
interest (ROI) in bone images. They are considered a single quantity to represent a global average with a specific 
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physical attribute for the entire ROI. Unfortunately, the histogram distribution of gray-scale intensities obtained 
from images has not yet been investigated. In particular, the statistical distribution of gray-scale intensities may 
be critical for the evaluation of local variations in the ROI5,6.

In cancer imaging research, a similar texture approach of gray-scale intensity distribution in CT images has 
been used to quantify tumour heterogeneity7. Previous studies have shown that some texture parameters derived 
from the gray-scale intensity distribution such as entropy and energy are highly correlated with tumour angio-
genesis and metabolism8. In previous studies, bone heterogeneity has been shown to be associated with fracture 
resistance9–11. In particular, bone heterogeneity may be the result of the composition of different bone tissues, 
bone turnover dynamics between osteoblasts and osteoclasts, or bone mineralization kinetics12–15. In CT imaging 
physics, attenuation of x-ray transmission to matter corresponds to the material composition16. Consequently, it 
is highly conceivable to anticipate a close relationship between bone heterogeneity and gray-scale intensity varia-
tions between adjacent pixels in CT images.

Osteoporosis is an important health problem for the elderly. There is a growing consensus regarding the role of 
microarchitecture in osteoporotic bone loss and fragility. This trend has been promoted by advances in imaging 
technology, which have enabled a transition from assessments of mass to microarchitecture. In previous studies, 
imaging of trabecular bone has been a research focus, but advances in resolution have also enabled the detection 
of cortical bone micro-architecture. However, some reports have shown that cortical bone is intimately linked 
to the remodelling process, which underpins bone loss; thus, our fundamental understanding of bone health 
through imaging animal models could be potentially improved. Therefore, one main goal of our study was to 
use magnesium-deficient animals and micro CT imaging to develop a new method for cortical bone analysis. It 
has been shown that the quality of trabecular bone development is inferior in mice fed a diet with an insufficient 
amount of magnesium, compared with mice fed a normal diet17–19. In this study, we examined whether the quan-
titative texture analysis of gray-scale intensity distribution obtained from micro CT images is effective for cortical 
bone assessment in laboratory mice. A summary of this study is shown in Fig. 1.

Materials and Methods
Animal model. C57BL/6J male mice (4 weeks of age) were purchased from BioLASCO Taiwan Co., Ltd. 
(Taipei, Taiwan) and housed in a temperature-controlled (22 °C) and light-controlled room (12:12 h light-dark 
cycle). Animal care and experimental procedures were approved by the Institutional Animal Care and Use 
Committee of Taichung Veterans General Hospital (ID: La-1021102). Three R (3Rs) were included in the affi-
davit of the approved animal use protocol. Animal experiments were performed in accordance with relevant 
guidelines and regulations. All animals were supplied with a basal diet over a week long acclimatization period. 
Subsequently, mice were randomly assigned to two groups, a control group (n = 7) and a low magnesium group 
(n = 7), and were fed either the basal diet (5755 TestDiet containing 0.7 mg/g Mg, Richmond, IN, USA) or a 
low magnesium diet (5865 TestDiet containing <0.08 mg/g Mg), respectively, for 8 weeks. The mice were fed 
their respective diets and distilled water ad libitum. After 8 weeks on the diets, the experimental animals were 

Figure 1. A flowchart of our technical approach to bone assessment in laboratory mice with micro CT imaging 
and quantitative analysis of gray-scale intensity distribution.
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sacrificed by carbon dioxide asphyxiation, and the femoral bones were collected from each mouse within 20 min-
utes. All removed samples were wrapped with gauze moistened with 0.9% saline solution and then preserved at 
−20 °C. Then, each femoral bone was scanned by micro CT for quantitative assessment.

Micro CT imaging system. The imaging system was a desk-top micro CT scanner (SkyScan 1076, Bruker 
Micro CT, Belgium) in which the x-ray tube and detector were housed and integrated in a radiation-shield 
instrument. The x-ray beam was collimated as a cone beam irradiation system. The detector of x-ray was a 
charge-coupled device camera with 11-million pixels. The anode voltage range was between 20 and 100 kV. A 
modified and high-speed Feldkamp algorithm was used in for image reconstruction. The scanning bed for the 
animal is made of carbon fibre material. In our work, micro CT scanner was operated at 50 kV, and a 0.5 mm 
thickness aluminum filter was used for optimal image contrast. The current setting was 0.2 mA and the total 
detector exposure time was 1440 seconds. A total of 720 project images were acquired through circular scanning 
with a total of 720 rotational steps. The distance from the source to the object was 121 mm, and the distance from 
the source to the camera detector was 165 mm. Images were reconstructed and processed with a spatial resolution 
of 9.0 µm. The range of attenuation coefficients used in the reconstruction software was between 0 and 0.15. The 
options of beam hardening and ring artefact correction were selected as 40% and 10.

Several clinical bone imaging systems are available from different vendors among different healthcare insti-
tutions. Additionally, a single machine may have multiple settings for different applications of bone imaging. It 
is thus difficult to make a correct bone disorder diagnosis, if the images are acquired using different systems and 
settings. For example, bone mineral density from dual-energy x-ray absorptiometry imaging and parameters 
from quantitative CT cannot be used to compare clinical changes in bone disease in the same patient if those 
instruments are from different vendors or use different setting. To test our methodology of texture analysis, we 
therefore used identical settings in a single micro CT scanner for the two animal groups. These settings included 
all scanning and image reconstruction parameters.

Region of interest. The mid-plane at the mid-diaphysis of the femoral cortical bone was located and a 
length of 0.5 mm along the direction of the long-axis was then delineated as the ROI1. CTAn (CT-Analyser, 
Bruker micro CT, Belgium) and Avizo (Visualization Sciences Group, Massachusetts, USA) were used to perform 
image analysis. The final sets of ROIs were approved by an experienced radiologist specialized in musculoskeletal 
imaging. The ROI, based on suggestions from previous literature, provided us with a sufficient pixel number for 
statistical evaluation1,20. We chose this ROI because it was an area where the theoretical biomechanical bone 
strength could be evaluated and where we can use a material testing system to measure the experimental bone 
strength. In particular, our analysis of the gray-scale intensity distribution for this ROI could be subsequently 
compared and correlated with theoretical biomechanical strength calculations and experimental bone strength 
measurements by a material testing system.

Quantitative parameters. In this study, we used a methodology based on the statistical distribution of the 
gray-scale intensities to extract image features from micro CT images for the assessment of bone development 
in our animal experiments. The gray-scale intensities were directly obtained from the pixels of micro CT images. 
The intensities are positive integers with values between 0 and 255. Quantitative parameters were computed from 
the distribution of the gray-scale intensities in the pixels of ROI. In our work, the computed quantities were mean, 
sigma, skewness, kurtosis, energy, entropy, and the Nakagami parameter16,21. The following equations were used 
in our calculations:
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where k is an integer value of the gray-scale intensity between 0 and 255, Pk is the height of normalized distri-
bution of the gray-scale intensity k, E(X) is the expectation value of X, Var(X) is the variance of X, and X is the 
variable of the gray-scale intensity21,22. A short summary of these parameters is listed in Table 1.

Bone mineral density phantom. In clinical medicine, BMD is an essential reference for the diagnosis of 
osteoporosis and the potential risk of bone fracture23,24. To further investigate whether one of our investigated 
parameters was correlated with BMD, we used a standard BMD phantom (QRM-microCT-HA, QRM GmbH, 
Moehrendorf, Germany) to acquire micro CT images and calculated the corresponding parameters25. The phan-
tom consists of five cylindrical inserts of known densities of calcium hydroxyapatite (Ca-HA), Ca10(PO4)6(OH)2. 
Proprietary epoxy resin is uniformly filled as the base material. The BMD values of the cylindrical inserts are 200, 
400, 600, 800 and 1000 mg-HA/cm3. The physical size of the cylindrical insert was 5 mm in diameter and 38 mm 
in length.

Statistical analysis. Microsoft Excel and Medcalc software (version 11.4, Mariakerke, Belgium) were used 
for statistical analysis. Data are presented as the mean ± standard deviation. A t-test was performed for statistical 
analysis. An F-test was used to determine whether an equal-variance assumption should be applied. A p-value 
was used to determine whether the difference between two groups was statistically significant. We considered a 
result to be significantly different when the p-value was less than 0.05.

Results and Discussion
A micro CT image of a femoral cortical bone, depicted in gray-sale intensities, and its region of interest are 
shown in Fig. 2A–C. The corresponding images of pseudo-colour presentation with views from three different 
planes are included in Fig. 3. The distributions of gray-scale intensities extracted from micro CT images for 
different groups are shown in Fig. 4. The results of the associated quantities derived from the distribution are 
listed in Table 2. We observed that the mean pixel intensity increased by 7.20% (p < 0.005), sigma decreased by 
29.18% (p < 0.005), skewness decreased by 19.52% (p < 0.005), kurtosis increased by 9.62% (p < 0.005), energy 
increased by 24.19% (p < 0.005), entropy decreased by 6.14% (p < 0.005), and the Nakagami parameter increased 
by 104.32% (p < 0.005) in the group of mice with the low magnesium diet compared to the respective parameters 
in the mice with the control diet.

There are limitations of this texture approach that was used to quantify cortical bone developments between 
different diet groups. Our technical approach extracted quantitative parameters from the statistical distribution 
which was obtained from gray-scale intensities in the micro CT images. However, there are factors which could 
potentially affect the results of these quantitative parameters. These factors included imaging settings of micro 
CT acquisitions, image noise, image voxel number, image reconstruction algorithms, image artifacts, and post 
image-processing algorithms. Some potential sources responsible for the image noise are the quantum noise from 
the photon counting statistics, electronics devices, and the size of image voxel. There are three options for the 
voxel size in the micro CT system. These options were 9, 18, and 35 µm. The size of image voxel would determine 
the total number of voxels within the volume of femoral cortical bone. The gray-scale intensities in all image 
voxels of femoral cortical bone were used to build the statistical distribution. Then the quantitative parameters 
are derived from these statistical distributions. In this study, the voxel size of 9.0 µm was selected for image recon-
struction. This selection allowed us to use the largest number of image voxels in cortical bone images to represent 
the gray-scale intensity distribution. There are reports that discuss the effect of image quality and image settings 
on texture analysis26. Nevertheless, in our study, imaging settings were identical for the two groups of mouse 
specimens. The results should allow us to differentiate between the two different diet groups of mice.

BMD is an essential indicator for osteoporosis and a potential risk assessor of bone fracture23,24. A BMD phan-
tom for micro CT imaging was used to study whether one of our investigated parameters was correlated with the 
quantity of BMD. The Nakagami parameter was highly correlated with BMD value, as shown in Fig. 5 (r2 = 0.979, 
p = 0.00121).

Parameters Definition and description

Mean A first-order statistical quantity and the average gray-scale intensity of the image pixels in the region of interest.

Sigma The standard deviation and a second-order statistical quantity for variation quantification.

Skewness
A third-order statistical quantity and measure of asymmetry in the distribution. A Gaussian distribution is symmetric 
at the peak and has a skewness value of zero. A positive skewness represents the central population tendency of the 
distribution shifted to the left. A negative skewness represents the central population tendency of the distribution 
shifted to the right.

Kurtosis A fourth-order statistical quantity and measure of the peakedness of the distribution. A positive kurtosis represents a 
distribution of a relatively peaked shape. A negative kurtosis represents a distribution of a relatively flat shape.

Energy An image feature that represents variations and uniformity of gray-scale intensities in images.

Entropy An image feature that represents information of randomness, complexity, or heterogeneity.

Nakagami parameter An image feature that represents the scatter characteristics and microstructure of the tissue.

Table 1. A summary of parameters used in our quantitative analysis of gray-scale intensity distributions for 
femoral cortical bones with micro CT imaging.
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In addition to cortical bones, femoral bones are rich in trabecular bones. Trabecular bone consists of tiny bone 
tissue units that are densely interconnected23,24,27. In x-ray imaging, these tiny trabecular bone units induce partial 
volume effect on micro CT images16. Consequently, the gray-scale intensities may substantially decrease in pixel 
value at locations with high concentrations of trabecular bone. Therefore, our approach of using gray-scale inten-
sity distributions may not be useful for trabecular bone analysis4,19. However, femoral cortical bones are dense and 
compact. The image artifact of partial volume is minimal. The biomechanical strength of femoral cortical bones 
is directly responsible for the risk assessment of bone fracture. The primary purpose of our manuscript was to 

Figure 2. (A) An image of a coronal view of a femur bone acquired from the micro CT scanning. The region of 
interest is shown in the added box. (B) A 3D volume-rendered image of a femur bone acquired from the micro 
CT scanning. The region of interest is shown in the added box. (C) A 3D volume-rendered image of the region 
of interest.

Figure 3. The corresponding images of pseudo-colour presentation with three views from different planes.
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report our new approach to bone quality evaluation between groups with two different diets. Therefore, femoral 
cortical bones were used in our study.

Orthopaedic surgeons and radiologists use the BMD index for key assessment of bone strength and treatment 
response. However, the BMD value mainly represents an average quantity for the delineated ROI and it may be 
critical to further evaluate the statistical histograms of gray-scale intensities in images12–15. In particular, the aver-
age gray-scale intensity can be obtained from the gray-scale intensity distribution, but it is unlikely that a correct 
statistical distribution could be formalized based on a single average28,29. Additionally, identical averages could be 
obtained from different distributions, as illustrated in Fig. 6. In particular, images with different distributions of 
gray-scale intensities could suggest different bone strength profiles.

Figure 4. Distributions of gray-scale intensities extracted from micro CT imaging of femoral cortical bones.

Parameters

Basal diet Low-Mg diet

p-valueAverage Average

Mean 98.1 ± 1.4 105 ± 1 0.000134

Sigma 17.8 ± 0.1 12.6 ± 0.1 1.98E-12

Skewness −0.906 ± 0.018 −0.729 ± 0.021 0.0000205

Kurtosis −0.0606 ± 0.0507 −0.0665 ± 0.0431 0.0877

Energy 0.0201 ± 0.0003 0.0250 ± 0.0002 3.32E-09

Entropy 4.10 ± 0.01 3.85 ± 0.01 3.00E-10

Nakagami parameter 9.54 ± 0.33 19.5 ± 0.2 4.13E-12

Table 2. Quantitative assessment of femoral cortical bones at mid-diaphysis with our parameters. These 
parameters are derived from the gray-scale intensity distribution in micro CT images. We consider the 
parameter useful to differentiate between the two experimental groups when the p-value is less than 0.05.

Figure 5. A linear correlation was identified between the Nakagami parameter and bone mineral density with a 
standard micro CT phantom with five inserts of different calibrated bone mineral densities.
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Dual-energy x-ray absorptiometry and the quantity of bone mineral density have been used for related oste-
oporosis diagnosis in current clinical bone diagnoses. However, the image of dual-energy x-ray absorptiometry 
is limited to a two-dimensional radiograph and the BMD quantity, an average of the entire defined area, cannot 
fully reflect bony health and strength. Compared to BMD, bone quality such as bone microarchitectures, the 
composition of bone tissue, the degree of mineralization, and bone morphology, is considered more crucial to 
bone strength. In recent progresses of bone imaging, x-ray based CT systems such as quantitative CT with low 
radiation exposure have been used for advanced diagnoses of bone disorders30–32. The morphology of femoral 
trabecular bones can be quantified from these CT images. Additionally, three-dimensional images allow us to 
explore volumetric bone information. In our study which was based on an animal model, we extracted a series 
of quantitative parameters from gray-scale intensity distributions of micro CT images to differentiate femoral 
cortical bone strength between two groups of mice with different diets. In addition to the index of bone mineral 
density from trabecular bones, our texture analysis study using a series of quantitative parameter extractions from 
femoral cortical bones can potentially be applied to further bone strength assessment with a 3D bone scanning 
system such as the quantitative CT. Therefore, we propose using a 3D bone imaging system such as a quantitative 
CT to build a bone informatics system for a general healthy population with our quantitative parameters and 
other useful quantities. For further clinical applications, more extensive research is needed to study the potential 
correlations between these texture parameters, mechanical bone strength, bone histology, and chemical compo-
sition analysis of cortical bones.

In the NRecon software of our micro CT system (SkyScan 1076, Bruker Micro CT, Belgium), we were able to 
choose the range of attenuation coefficients for bone image reconstruction. The choice of attenuation coefficient 
range allows users to visualize bone images with better contrast between hard and soft tissues. However, the 
choice of attenuation coefficient range affects the gray-scale intensities in the image pixels where the gray-scale 
intensities are integers distributed between 0 and 255. Therefore the results of texture analysis depended on the 
choice of the attenuation coefficient range. It is thus essential to keep an identical set of scanning settings and 
reconstruction parameters for imaging different animal groups. In this study, we used identical reconstruction 
parameters and imaging settings for comparing the texture analysis results between animals with different diets.

As shown in Fig. 6, an identical mean can be obtained from three different probability distribution functions:
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where x ∈ [0, 255], and f1(x), f2(x), and f3(x) are normalized to 1. If the probability distribution functions represent 
the distribution of gray-scale intensities of micro CT images for bone analysis, then 0.55%, 9.69%, and 18.89% 
of gray-scale intensities in the functions f1(x), f2(x), and f3(x), respectively, are below the 25th percentile (the first 
quartile), even though these three distribution functions have identical means of 128. A high percentage of low 
gray-scale intensity in micro CT images indicates a high percentage of bone volume with low density; therefore, 
this could suggest an enlargement of areas with low bone density or an increase in the risk of bone fracture.

To further demonstrate the potential effect of variations in gray-scale intensities between pixels, we proposed 
two scenarios as shown in Fig. 7, in which 8-bit images are depicted with gray-scale intensities from 0 to 255. 
These figures show different distributions of gray-scale intensities in 16 × 16 pixel space, while the means of the 

Figure 6. Three different probability distribution functions with the same mean of 128. These probability 
distribution functions are normalized to 1. Although the means are identical in these functions, the relative 
percentages of low-density populations in these functions are different.
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two figures are identical. The gray-scale intensity is identical for all pixels in Fig. 7A, while pixels with low and 
high intensity values are randomly distributed in Fig. 7B. The boundary between pixels with different densities 
represents a discontinuity interface, a location that is more vulnerable to breakage or fracture33,34. Therefore, we 
may expect the strength of resistance against an external force in the image shown in Fig. 7A to be stronger than 
that in the image shown in Fig. 7B.

In our analysis of micro CT images, the mean is a first-order statistical parameter and represents the average 
of gray-scale intensities over the pixels in the delineated ROI16,21,22. A large mean in bone images represents high 
average bone physical density in that area. In this study, the mean value in low-magnesium mice was greater than 
that in control mice (p < 0.005).

In statistics, sigma is a second-order parameter and represents the standard deviation of a sample popula-
tion16,21,22. Sigma is a measure used to quantify the spread over the mean. A distribution with a smaller sigma 
indicates that the functional shape is sharper around the mean and therefore more data points are centrally 
populated around the mean value. In our distribution analysis of gray-scale intensities, a small sigma represents 
high uniformity in the micro CT image, with a large population of pixels with gray-scale intensities similar to 
the average. A large sigma represents a wide range of gray-scale intensities and hence the bone images look 
non-uniform. A bone image with a wide gray-scale intensity distribution may suggest that the bone tissue is 
highly heterogeneous.

In previous studies of bone mineralization density distribution (BMDD), a quantity of peak width was defined 
to show the correlation of the width of the calcium peak in the BMDD with the outcomes of bone disease and 
anabolic treatment13–15,35. In our study, the statistical parameter sigma directly corresponds to the quantity of 
the calcium peak width in the BMDD. Therefore, the sigma parameter is potentially effective in evaluating bone 
development after bone disease treatment.

Skewness is a third-order statistical parameter and represents a measure of asymmetry in the distribu-
tion16,21,22. A positive skewness indicates that the distribution peak is shifted to the left and that the right tail of 
the distribution is longer than the left, while a negative skewness indicates the peak is shifted to the right and that 
the left tail is longer than the right. In this quantitative micro CT imaging study, a positive skewness indicates 
that the number of pixels with intensities lower than the average gray-scale intensity is greater than the number 
with intensities higher than the average gray-scale intensity, while a negative skewness indicates the opposite. 
Therefore, we can expect a negative quantity of skewness corresponding to bone of higher density in the specified 
ROI, indicating greater bone strength.

In statistics, kurtosis is a fourth-order parameter and represents a measure of peakedness, which is the func-
tional shape of the peak in the distribution16,21,22. In micro CT images, a distribution with a positive kurtosis 
indicates that the shape of the peak is sharper relative to a Gaussian distribution and is called leptokurtic, while a 
negative kurtosis represents a peak shape that is relatively flat and is called platykurtic16,21,22. Therefore, a positive 
kurtosis suggests that the gray-scale intensities of bone images look more uniform than those with a negative 
kurtosis.

In our study, energy is an image feature parameter and represents uniformity, indicating variations of 
gray-scale intensities between pixels in images16,21,22. The maximum energy is one. A quantity of one for energy 
represents a uniform image in which the gray-scale intensities for all pixels are equal. Low energy suggests a rel-
atively non-uniform image with a variety of pixel intensities. Therefore, we may observe large variations between 
pixels in bone images when the energy is low16,21,22. A large variation of gray-scale intensity in bone images may 

Figure 7. (A) An 8-bit image (16 by 16) with a uniform distribution. The mean is 128 and the gray-scale 
intensities in the pixel are set to 128. The gray-scale intensity is corresponded to the relative bone density.  
(B) An 8-bit image (16 by 16) with a non-uniform distribution. The mean is 128 and the gray-scale intensities in 
the pixel are generated by a random number generator. The gray-scale intensity corresponds to the relative bone 
density. The images were produced by MATLAB.
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suggest a large discontinuity between pixels and the boundary, and a large discontinuity of bone density is easier 
to break when subjected to an external force29,34.

In physics, the quantity of entropy represents a measure of randomness or complexity for a physical state36–38. 
In CT images of cancer, entropy has been shown to be correlated with biological characteristics of tumours39. Our 
micro quantitative CT imaging analysis showed a decrease in entropy (from 4.10 to 3.85) from control mice to 
low-magnesium mice (p < 0.005).

The quantities of entropy calculated by Eqs 8–10 are 4.63, 5.23, and 5.43, respectively. The percentages of 
gray-scale intensities, that were below the 25th percentile in Eqs 8–10 are 0.55%, 9.69%, and 18.89%, respectively. 
We also observed that the linear correlation between entropy and that percentages of gray-scale intensities lower 
than the 25th percentile is high (r2 = 0.9221). Therefore, the entropy quantity extracted from micro CT images of 
bones was expected to be linearly correlated with the percentage of low-density bone in the specified ROI.

In a previous study of ultrasound Nakagami imaging, it was established that the Nakagami parameter is corre-
lated with the scatter property of tissue material during the propagation of ultrasound transmission and is further 
correlated with tissue microstructure40,41. For CT imaging and x-ray physics, Rayleigh coherent scattering, the 
photoelectric effect, and Compton scattering are responsible for interactions between matters and x-rays of kV 
energy used in micro CT scanning16. In particular, the probability of the photoelectric effect is approximately 
proportional to the third power of the atomic number and probability of the Compton scattering is proportional 
to the physical density of the material. The most abundant inorganic element in bones is calcium (atomic number 
Z = 20), an element of relatively high atomic number, compared to that in soft tissues of organic compounds, 
hydrogen (Z = 1) and carbon (Z = 6). Therefore, a correlation between the Nakagami parameter and the compo-
sition of chemical elements in bone tissue in CT images was expected.

In this study, we showed that the Nakagami parameter was associated with the scatter of x-ray photons in 
micro CT imaging and bone tissue configuration. Bone heterogeneity is an essential quantity and is affected by the 
composition of different bone tissues. In particular, bone composition and therefore bone heterogeneity may be 
affected by the process of bone turn over, bone matrix dynamics, and bone development kinetics13–15,42. Therefore, 
the Nakagami parameter is a potentially useful quantity to evaluate different aspects of bone characteristics.

In previous bone research studies, a measure of BMDD was shown, and some quantities, such as peak width, 
were derived from BMDD16,24,25,28,29. The authors further investigated the dependence of BMDD on bone remod-
elling, mineralization kinetics, some bone diseases, and treatment outcomes. In our study, the mean was directly 
proportional to the BMD; sigma was a second-order statistical quantity and equivalent to the peak width of 
the BMDD; skewness was a third-order statistical quantity and an essential parameter to determine the shifting 
direction of the BMDD; Kurtosis was a fourth-order quantity and a parameter used to determine the shape of the 
gray-scale intensity distribution; and energy, entropy, and the Nakagami parameter were essential CT textural 
parameters correlated with bone heterogeneity. Therefore, our micro CT imaging approach of gray-scale intensity 
distribution for bone analysis extended the BMDD approach and could potentially be integrated with other imag-
ing techniques, such as back-scattered electron imaging and Fourier transform infrared imaging14.

Conclusions
We used a laboratory mouse animal model to perform a quantitative study on gray-scale intensity distributions 
that were acquired from micro CT images for bone assessment, and the results were shown to be effective. A set 
of seven quantitative parameters was obtained for comparisons between different groups of mice. The parameters 
of mean, sigma, skewness, energy, and entropy were effective in showing that the quality of cortical bone develop-
ment was inferior in the low-magnesium group compared to that in the normal diet group. A linear correlation 
was established between the Nakagami parameter and BMD. We discussed potential interpretations of these 
parameters in bone analysis. BMD is typically used in existing approaches to bone diagnosis and bone treatment 
assessment. However, BMD is only an average quantity over a specified ROI and can be equivalently obtained 
from the gray-scale intensity distribution. In this study, we showed that the distributions of gray-scale intensities 
were very different, even though their means were identical. In particular, the relative percentage of low gray-scale 
intensities, indicating bone areas of low density, may suggest locations with a potentially high risk of fracture. Our 
study extended and added a new technical perspective to existing approaches to bone analysis.
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