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Abstract

Background/Objectives

In spite of all the research effort for developing new vaccines against brucellosis, it remains

unclear whether these new vaccine technologies will in fact become widely used. The goal

of this study was to perform a meta-analysis to identify parameters that influence vaccine

efficacy as well as a descriptive analysis on how the field of Brucella vaccinology is advanc-

ing concerning type of vaccine, improvement of protection on animal models over time, and

factors that may affect protection in the mouse model.

Methods

A total of 117 publications that met the criteria were selected for inclusion in this study, with

a total of 782 individual experiments analyzed.

Results

Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines provided median

protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vectored (n = 38)

vaccines provided protection indexes lower than 2. When all categories of experimental

vaccines are analyzed together, the trend line clearly demonstrates that there was no

improvement of the protection indexes over the past 30 years, with a low negative and non

significant linear coefficient. A meta-regression model was developed including all vaccine

categories (attenuated, DNA, inactivated, mutant, subunit, and vectored) considering the

protection index as a dependent variable and the other parameters (mouse strain, route of

vaccination, number of vaccinations, use of adjuvant, challenge Brucella species) as inde-

pendent variables. Some of these variables influenced the expected protection index of

experimental vaccines against Brucella spp. in the mouse model.

Conclusion

In spite of the large number of publication over the past 30 years, our results indicate that

there is not clear trend to improve the protective potential of these experimental vaccines.
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Introduction

Brucellosis is a zoonotic bacterial disease that accounts for approximately half a million new

cases of human infections annually [1]. The disease is caused by different Brucella species,

which are facultative intracellular Gram negative bacteria that belong to the α-2 Proteobacter-

iacea family [2,3]. Human patients with brucellosis develop nonspecific symptoms including

undulating fever, and the disease may progress to endocarditis, arthritis, osteomyelitis, among

other less common clinical manifestations [4]. In cattle, brucellosis is characterized by abor-

tion and infertility [5–7]. Therefore, bovine brucellosis results in very significant economic

losses [8,9].

Animal brucellosis control and prevention is largely based on vaccination. Therefore, over

the past decades there has been an intensive research effort for developing safer and more effi-

cacious vaccines against brucellosis [3,10–12]. Animal vaccination against brucellosis is based

mostly on live attenuated vaccines [12], including Brucella abortus S19, Brucella abortus RB51,

and Brucella melitensis Rev.1 [3,11,13], whereas Brucella abortus S19 is often considered a gold

standard for vaccine development [14]. However, these live attenuated vaccine strains have

some significant disadvantages including pathogenic potential for humans, induction of abor-

tion in animals, shedding in the milk, and interference with serologic tests in the case of

smooth LPS strains [3,15]. Furthermore, these traditional vaccine strains have their use

restricted to ruminants, whereas pigs, camels, or wild life animals are not covered.

Traditionally, live attenuated vaccines have a much broader use and efficacy than inacti-

vated vaccine formulations [12,16]. During the past few years, there have been an increasing

number of studies on alternative approaches for immunization against brucellosis, including

recombinant subunit vaccines using surface or intracellular proteins of Brucella spp. [17–20].

Several Brucella proteins have been used as immunogens for experimental subunit vaccine for-

mulations, including outer membrane proteins, namely Omp16, Omp19, Omp31, Omp28,

and Omp25 [21–24], ribosomal protein L7/L12 [17,25], Cu-Zn superoxide dismutase [26], a

cytoplasmic protein p39 [27], lumazine synthase BLS [28], among others. In addition, experi-

mental DNA vaccines [28,29] as well as vectored vaccines using deliver vectors such as Salmo-
nella enterica serotype Typhimurium [30], Escherichia coli [31], Yersinia enterocolitica [32],

Lactococcus lactis [33], and the influenza virus [34] have been increasingly studied. Overex-

pression of Brucella antigens in attenuated vaccine strains have also been experimentally evalu-

ated [35]. However, up to date these new approaches have not resulted in the generation of

commercially available vaccines.

Due to the limitations of experimental procedures involving the natural hosts, since it is

expensive and time-consuming, the mouse has been largely used as an experimental model for

vaccine development against brucellosis [15]. The mouse model is suitable for studying patho-

genesis, host immune response, and vaccine protection [36,37]. However, experimental proto-

cols for assessing vaccine efficacy using this animal model are not standardized, which

generates results that are often not quite reproducible [38]. Balb/c is the most commonly used

mouse strain, although other strains have also been used for vaccine experiments, namely

CD1, C57BL/6, OF1, 129/Sv, Swiss, and, mixed/outbred [16]. Vaccine efficacy is assessed

based on experimental challenge with a pathogenic wild type Brucella strain after immuniza-

tion, and quantification of wild type bacteria in target organs, particularly the spleen [39].

In spite of all the research effort for developing new vaccines against brucellosis, it remains

unclear whether these new vaccine technologies will in fact become widely used tools for pre-

venting brucellosis. Therefore, the goal of this study was to perform a meta-analysis to identify
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parameters that influence vaccine efficacy as well as a descriptive analysis on how the field of

Brucella vaccinology is advancing in regard to type of vaccine, improvement of protection on

animal models over time, and factors that may affect protection in the mouse model.

Material and Methods

Data source

Data were retrieved from publications indexed in PubMed up to February 15th 2016, using the

following combinations of terms: (i) “Brucella” and “vaccine”; (ii) “Brucella” and “vaccine” and

“mice”; or (iii) “Brucella” and “vaccine” and “mice” and “challenge”. The list of publications

were then manually disambiguated. Only papers using the mouse model were included in this

study. Importantly, a criterion for inclusion was that the paper must indicate the protective

index or provide original data that allowed us to calculate the index. By definition, protective

index refers to the difference in the log of colony forming unit (CFU) numbers in the spleen of

naive and vaccinated mice. Only papers published in English were included in this study. In

addition, papers with insufficient data–i.e. absence of indication of number of mice per group,

absence of CFU values with their standard deviation, and absence of non vaccinated controls–

were not included in this study.

Data retrieval

This study was performed according to the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses criteria (PRISMA) as detailed in S1 Table. Data were obtained from each

individual experimental group in a given publication. These data were grouped according to

the category of experimental vaccine being tested, including: (i) live attenuated strains, (ii)

DNA vaccines; (iii) inactivated vaccines; (iv) mutant attenuated strains; (v) subunit vaccines;

and (vi) vectored vaccines. Parameters extracted from each individual experiment and consid-

ered for analysis included: publication year, vaccine species (in the case of live vaccines), pro-

tection index, mouse strain, variables related to vaccination (route, dose, number of injections,

and adjuvant), variables related to the challenge (challenge Brucella species and strain, route,

and interval in days between challenge and sampling), vector species was considered in the

case of vectored vaccines.

A linear regression analysis was performed considering the year of publication and protec-

tion index, for all experiments or grouped according to the category of vaccine. In addition,

the influence of each parameter (category of vaccine, mouse strain, route of vaccination and

challenge, number of vaccinations, adjuvant, challenge species, and interval between challenge

and euthanasia) on the protective index.

Data transformation and meta-regression analysis

Arbitrary values were attributed to qualitative data. For instance, values from 0 to 5, being “0”

for attenuated vaccines; “1” for DNA vaccines; “2” for inactivated vaccines; “3” for mutant vac-

cine strains; “4” for subunit vaccines; and “5” for vectored vaccines. Similarly, values were

attributed to mouse strains, routes of vaccination and challenge, use of adjuvant, Brucella spp.

species used for challenge, and number of vaccinations, applying the value zero to the refer-

ence and integral crescent values to the other categories. The interval between challenge and

euthanasia was analyzed as linear quantitative data.

The coefficient of variation, standard error, and confidence intervals were calculated for

each experiment included in this study.
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Statistical analysis

The analysis was conducted initially a random effects meta-analysis estimation with a hetero-

geneity test. If the heterogeneity test is significant (p-value lower than 0.05), and probable

would be significant because there are different types of study with different types of vaccines,

it is necessary to work using a meta-regression in order to verify which factor has positive or

negative effect over the protective index.

The conduction of the meta-regression would use first two independent variables, one

always the type of vaccine with the objective of control the effect of the second independent

variable. In this “controlled univariate meta-regression” will conduct checking the association

of independent variables such as mouse strain, vaccination route, number of vaccinations, use

of adjuvant, Brucella species used for challenge, route of challenge, interval between challenge

and euthanasia; and the dependent variable Protective Index. The independent variables with

over-all p-values lower than 0.200 will be selected to the next step of the multivariable meta-

regression analysis. The multivariable meta-regression was conducted using Protective Index

as dependent variable and all others, which selected in the controlled univariate as indepen-

dent variable. The multivariable model was conducted in a backwards approach, but in this

case the exclusion was done manually in order to understand how the removal of no signifi-

cant variable would affect the other variables. The statistical package used was the Stata soft-

ware (Statacorp, Texas, USA).

This meta-regression approach allowed for attributing a given weight for each individual

experiment based on their standard error. Therefore, a multiple meta-regression analysis was

performed, including all parameters together, generating a meta-regression final model. Val-

ues of p<0.05 were considered statistically significant and was retained in the final model.

Results

Literature search and study characteristics

A total of 117 articles and data from 782 individual experiments were included in this study.

Criteria for inclusion in this study are detailed in Fig 1. A total of 117 publications that met the

criteria were selected for inclusion in this study [14, 17, 18, 20–28, 32, 33, 38, 40–141]. There-

fore, a total of 782 individual experiments were analyzed. Raw data extracted from all 117 pub-

lications and each individual experiment are provided in the S2 Table.

Protection against Brucella spp. induced by different categories of

vaccines in mice—descriptive statistics

Currently, experimental subunit vaccines concentrate most of the research efforts in the field

of Brucella vaccinology, since this category of vaccine accounted for 36.7%, followed by attenu-

ated vaccine strains, which corresponded to 28.26% of all experiments. The others categories

of experimental vaccines account for 13.04%, 8.69%, 8.43%, and 4.9%, in the case of mutant,

DNA, inactivated, and vectored vaccines, respectively. Furthermore, the proteins that were

more often used as subunit vaccines included: LPS fractions (n = 44), L7/L12 (n = 31), HS

(n = 27), Omp19 (n = 22), Omp31 (n = 20), Omp16 (n = 17), Omp25 (n = 8), BLS (n = 8),

SOD (n = 6), P39 (n = 6), BRF (n = 6), Omp28 (n = 5), and urease (n = 4).

Some categories of vaccines were established earlier while other types of vaccines emerged

over the time of this study (1986–2016) as demonstrated in Fig 2. By the end of 1980’s (1986–

1990) there were only experiments with attenuated and subunit vaccines. Inactivated vaccines

appear between 1991 and 1995, whereas more diverse vaccine approaches have been developed

and studied beginning in 2001. The period between 2011 and 2016 included the largest number
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of experiments (n = 269) when compared to the other intervals, which clearly indicates an

increasing investment of research time and resources for brucellosis vaccine development.

Data from 782 previously published experiments were grouped according to the category of

experimental vaccines, namely naturally attenuated, mutant, inactivated, subunit, DNA, and

vectored vaccines. Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines

provided median protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vec-

tored (n = 38) vaccines provided protection indexes lower than 2 (Fig 3).

Fig 1. Flow chart describing the selection of articles for inclusion in the meta-analysis.

doi:10.1371/journal.pone.0166582.g001
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Protection provided by experimental brucellosis vaccines over the past

30 years

In order to assess whether protection indexes have been improving over time, a correlation

analysis was applied to protection indexes and the year of publication of each individual exper-

iment over the past 30 years. When all categories of experimental vaccines are analyzed

together, the trend line clearly demonstrates that there was no improvement of the protection

indexes over the past 30 years, with a low negative and non significant linear coefficient (Fig

4). During this period of time, average protection indexes of experimental vaccines remained

stable and close to 2 Log. A similar trend was observed when different vaccine categories were

analyzed separately (Fig 5), with the exception of DNA vaccines that had a statistically signifi-

cant positive correlation coefficient (Fig 5B). However, this trend to improving protection

indexes over time in the case of DNA vaccines reflects the very low protection indexes of the

early studies rather than high protection indexes since more recent studies have protection

indexes that were in average below 2 Log (Fig 5).

Parameters that influenced protection in the mouse model—descriptive

statistics

A descriptive statistic analysis was performed considering the possible effect of several parame-

ters, including mouse strain, vaccination routes, number of vaccinations, Brucella species used

for experimental challenge, challenge route, and use of adjuvant, on protection indexes of

experimental Brucella vaccines. Note this statistic descriptive does not take in account the

weight of each experimental group, based in sample size and standard errors.

Fig 2. Time line with the number and percentage of experiments for brucellosis vaccine development according

to the type of vaccine. Time intervals and corresponding number of experiments were: 1986–1990 (n = 73), 1991–1995

(n = 50), 1996–2000 (n = 13), 2001–2005 (n = 169), 2006–2010 (n = 208) e 2011–2016 (n = 269). The number of

experiments for each data point is indicated in the graph.

doi:10.1371/journal.pone.0166582.g002
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Protection indexes were evaluated according to mouse strains, including Balb/c, Swiss,

C57BL/6 and others, used in each one of the 782 experiments. In average, the highest levels of

protection were observed in experiments using Swiss mice and its variations, including albino

Swiss and outbreed Swiss CD-1 (Fig 6A). Balb/c is the most commonly used mouse strain for

Brucella vaccine experiments, corresponding to 88.75% (694/782) of all experiments included

in this study. In average, this strain provided lower protection indexes (1.7076), when com-

pared to Swiss mice (2.3791) or other strains (1.7293), but higher than C57BL/6, which pro-

vided the lowest protection indexes (1.296) (Fig 6), when all vaccine categories were grouped

together. Protection indexes provided by each mouse strain according to the category of vac-

cine (attenuated, DNA, inactivated, mutant, subunit, and vectored) are described in S1 Fig.

Different vaccination routes, i.e. oral and intragastic (ORAL/IG), intramuscular (IM), intraper-

itoneal (IP), subcutaneous (SC), and others (intranasal, intraesplenic, etc) provided similar protec-

tion indexes when all vaccine categories were analyzed together (Fig 6B). Protection indexes

provided by different vaccination routes according to the vaccine category are detailed in S2 Fig.

The effect of the number of vaccinations, i.e. single vs. multiple vaccinations (2, 3, 4, and 9

vaccinations) on protection indexes were compared grouping all vaccine categories together.

Interestingly, single vaccinations provided the highest median protection index (Fig 6C). Pro-

tection indexes provided by single or multiple vaccinations according to each vaccine category

are described in S3 Fig.

Fig 3. Protection index provided by different categories of experimental vaccine candidates against Brucella spp.

infection. Values indicate the median, second and third quartiles (box), first and fourth quartiles (error bars). Outliers are

indicated by dots. Median protection indexes were based on 782 independent experiments. The numbers of experimental

groups per category are indicated between parentheses.

doi:10.1371/journal.pone.0166582.g003
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Post vaccination challenges with different Brucella spp. species, namely B. abortus, B. canis,
B. melitensis, B. ovis, and B. suis, were compared. A marked variation in protection indexes

were observed against these virulent challenge species, with nearly two logs of difference in

protection indexes between the lower and higher protection indexes, and challenge with B.

suis resulted in the highest median protection index, when all vaccine categories were analyzed

together (Fig 6D). Protection indexes provided by different vaccine categories against different

Brucella spp. is described in S4 Fig.

The effect of the route of challenge on the protection index was also evaluated after analyzing

all vaccine categories together. The median protection indexes obtained with challenge through

different routes, i.e. oral and intragastric (ORAL–IG), intraperitoneal (IP), other (intranasal,

intraesplenic, etc) e intravenous (IV), were quite similar (Fig 6E). Protection indexes provided

by different routes of challenge according to each vaccine category are described in S5 Fig.

When analyzing all vaccine categories together, protection indexes provided by experimen-

tal vaccines with or without adjuvant were similar (Fig 6F). Importantly the use of adjuvant is

largely restricted to some categories of experimental vaccines, as detailed in S6 Fig.

Meta-analysis estimations

Random effects meta-analysis was conducted using 782 experimental groups from the 117

selected papers estimating the protraction index and testing for heterogeneity. This procedure

Fig 4. Linear regression of protection index over time for experimental vaccine candidates against Brucella spp. in

the mouse model. All experimental vaccine categories (attenuated strains, n = 221; attenuated mutant strains, n = 102;

inactivated vaccines, n = 66; subunit vaccines, n = 287; DNA vaccines, n = 68; and vectored vaccines, n = 38) were included

in this analysis, corresponding to 782 individual experiments (r = -0.0038; r2 = 0.09%; p = 0.4052).

doi:10.1371/journal.pone.0166582.g004
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Fig 5. Linear regression of protection index over time of different categories of experimental vaccines against Brucella spp. in the mouse model.

(A) attenuated strains (n = 221); (B) DNA vaccines (n = 68); (C) inactivated vaccines (n = 66); (D) attenuated mutant strains (n = 102); (E) subunit vaccines

(n = 287); and (F) vectored vaccines (n = 38). Dots indicate each individual experiment, with solid trend lines and dotted lines indicating the confidence

interval. Linear coefficients and p values are indicated in each graph.

doi:10.1371/journal.pone.0166582.g005
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Fig 6. Protection indexes according to different parameters. All experimental vaccine categories were analyzed together and grouped according to: (A)

the mouse strains used in each individual experiment; (B) vaccination route; (C) number of vaccinations; (D) the Brucella spp. species used for experimental

challenge; (E) challenge route; and (F) use of adjuvant. The number of experimental groups for each parameter is indicated between parentheses. Values

indicate the median, second and third quartiles (box), first and fourth quartiles (error bars). Outliers are indicated by dots.

doi:10.1371/journal.pone.0166582.g006
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was made for the experimental groups divided by type of vaccine as well. All estimations show

high heterogeneity suggesting the necessity of use the meta-regression in order to access which

factor is affecting the protection index. The results are displayed in the Table 1.

Bivariate analyses

In order to select variables to be included in the multivariate meta-regression model, a bivari-

ate meta-regression analysis was performed considering each of the variables controlled by

vaccine category, i.e. a bivariate analysis (Table 2). Variables studied included: vaccine cate-

gory, mouse strain, vaccination route, number of vaccinations, use or adjuvant, Brucella spe-

cies used for challenge, challenge route, and interval between challenge and euthanasia.

Naturally attenuated vaccine strains with an average protection index of 2.079 were signifi-

cantly more protective (p<0.001) than DNA, subunit and vectored vaccines, which had aver-

age protection indexes of 1.377, 1.369, and 1.180, respectively. In contrast, protection indexes

provided by inactivated and mutant vaccine strains (2.758 and 2.527, respectively) were statis-

tically similar to that of the naturally attenuated vaccine strains.

Evaluation of mouse strains considering Balb/c as the reference strain, with a protection

index of 2.058, indicated that it had significantly higher protection indexes when compared to

C57BL/6 (p = 0.003) that had a median protection index of 1.43. Conversely, Swiss mice had

protection indexes (2.478) that were significantly higher than those of Balb/c mice (p = 0.002),

whereas no significant differences were observed among “other” strains of mice and Balb/c

(Table 2).

Meta-regression analysis of vaccination routes, considering the oral/intragastric route as

reference, demonstrated that this route, with a protection index of 1.726, was significantly less

protective (p<0.001) than the subcutaneous route (2.205). Protection indexes provided by

intramuscular, intraperitoneal, and others (2.083, 1.938, and 2.184, respectively) were similar

to the oral/intragastric route (Table 2).

Considering one single vaccination as reference with a protection index of 2.059, two vacci-

nations with a protection index of 2.446 provided better protection (p = 0.002) than single vac-

cinations. Conversely, three, four or nine vaccinations, with protection indexes of 1.835, 1.795,

and 2.576, respectively, were statistically similar (p>0.05) to single vaccinations (Table 2).

The use of adjuvant resulted in a significantly better (p = 0.002) protective index (2.359),

when compared to vaccination without adjuvant that resulted in a protective index of 2.066

(Table 2).

The analysis of challenge species, considering B. abortus as the reference with a protection

index of 1.954 demonstrated that protection indexes against B. melitensis, B. ovis, and B. suis

Table 1. Random effect meta-analysis results.

Type of vaccine N Estimation of PI CI 95% of the estimation* Heterogeneity test p-value

Lower Upper

All 787 1.711 1.650 1.773 > 0.001

Attenuated 221 2.083 1.964 2.202 > 0.001

DNA 68 1.408 1.163 1.654 > 0.001

Inactivated 66 2.148 1.929 2.367 > 0.001

Mutant 102 2.052 1.831 2.274 > 0.001

Subunit 287 1.357 1.273 1.441 > 0.001

Vector 38 1.165 0.943 1.387 > 0.001

* CI: confidence interval, which indicates that under the same experimental conditions values would have that range in 95% of the time.

doi:10.1371/journal.pone.0166582.t001
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Table 2. Bivariate meta-regression analysis of variables influencing the protection indexes of experimental brucellosis vaccines.

Confidence interval***

Variable Coefficient* p value** Lower limit Upper limit

Vaccine category—Attenuated reference–Overall p-value < 0.001

DNA -0.7025 <0.001* -0.9597 -0.4453

Inactivated 0.0679 0.607 -0.1916 0.3275

Mutant -0.04485 0.695 -0.2690 0.1793

Subunit -0.7107 <0.001* -0.8751 -0.5463

Vector -0.8990 <0.001* -1.2208 -0.5772

Constant 2.0799 <0.001* 1.9560 2.2038

Mouse strain—Balb/c reference–Overall p-value < 0.001

C57BL/6 -0.6272 0.003* -1.0439 -0.2104

Swiss 0.4197 0.002* 0.1555 0.6839

Others -0.2984 0.203 -0.7583 0.1615

Constant 2.0589 <0.001* 1.9251 2.1927

Route of vaccination–oral/intragastric reference–Overall p-value < 0.001

Intramuscular -0.3571 0.081 -0.7591 0.0447

Intraperitoneal 0.2123 0.083 -0.0280 0.4526

Subcutaneous 0.4790 <0.001* 0.2226 0.7354

Others 0.4581 0.177 -0.2070 1.1233

Constant 1.7265 <0.001* 1.4697 1.9832

Number of vaccinations–Single vaccination reference–Overall p-value < 0.001

Two 0.3872 0.002* 0.1453 0.6291

Three -0.2241 0.108 -0.4974 0.0491

Four -0.2645 0.197 -0.6667 0.1376

Nine 0.5179 0.437 -0.7895 1.8253

Constant 2.0597 <0.001* 1.9412 2.1783

Adjuvant—without adjuvant reference

Adjuvant use 0.2937 0.002* 0.1111 0.4763

Constant 2.0665 <0.001* 1.9428 2.1901

Species challenge—B. abortus reference–Overall p-value < 0.001

B. canis 0.4031 0.084 -0.054 0.8603

B. melitensis 0.1947 0.011* 0.0456 0.3438

B. ovis 0.8208 <0.001* 0.5739 1.0677

B. suis 0.8088 0.003* 0.2751 1.3425

Constant 1.9541 <0.001* 1.8232 2.085

Challenge route–oral/intragastric reference–Overall p-value = 0.009

Intraperitoneal 0.1676 0.375 -0.2034 0.5386

Others -0.4428 0.870 -0.5747 0.4861

Intravenous 0.4419 0.029* 0.4438 0.8395

Constant 1.8772 <0.001* 1.4957 2.2588

Interval (days) between challenge and euthanasia

-0.004 0.165 -0.0096 0.001

Constant 2.1665 <0.001* 1.9916 2.3414

* Positive regression coefficients indicate that the variable has higher protection indexes than the reference variable when statistically significant. Negative

regression coefficients indicate the opposite.

** Statistically significant p values (p < 0.05).

*** Confidence interval indicates that under the same experimental conditions values would have that range in 95% of the time.

doi:10.1371/journal.pone.0166582.t002
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(2.148, 2.774, and 2.762, respectively) were significantly higher when compared to B. abortus
(Table 2). Conversely, the protection index against B. canis (2.357) was similar to that of B.

abortus (p<0.05).

Bivariate meta-regression analysis also considered the route of challenge, with the oral/

intragastric route with a protection index of 1.877 as the reference. The intravenous (IV)

route, with a protection index of 2.318, was significantly more protective than the reference.

Protection indexes provided by the intraperitoneal (IP) or “other” routes (2.044 and 1.833,

respectively) were statistically similar to the reference (Table 2).

Importantly, considering that vaccine experiments are not standardized, we evaluated the

effect of the interval between challenge and measurement of the protective index, and the

number of days between challenge and euthanasia of experimental animals did not signifi-

cantly influenced the protective index (Table 2).

Multivariate meta-regression

A meta-regression model was developed including all vaccine categories (attenuated, DNA,

inactivated, mutant, subunit, and vectored) considering the protection index as a dependent

variable and the other parameters (mouse strain, route of vaccination, number of vaccinations,

use of adjuvant, challenge Brucella species) as independent variables (Table 3).

Subunit and vectored vaccines provided significantly lower protection indexes when com-

pared to attenuated vaccines (p<0.001), which was considered the reference vaccine category.

Protection indexes provided by DNA, inactivated or mutant vaccines were statistically similar

(p<0.05) to the reference (Table 3).

Regarding the mouse strain used in the experiment, C57BL/6 and Swiss mice resulted in

protection indexes that were statistically similar to the reference Balb/c strain (Table 3). Inter-

estingly, “other” mouse strains, which included mouse strains that were knockout for genes

related to immunity on a 129/Sv background, resulted in a lower protection index (p = 0.021)

when compared to the reference (Table 3).

With the exception of the intramuscular route of vaccination that provided lower protec-

tion index when compared to the oral/intragastric (p = 0.035), the other vaccination routes

(intraperitoneal, subcutaneous, and others) provided similar protection when compared to the

reference (Table 3). Two vaccinations performed better than the reference that was one single

vaccination (p<0.001), whereas three, four or nine vaccination did not improve the protection

index when compared to the reference (Table 3).

Experimental vaccines provided significantly higher protection indexes against B. meliten-
sis, B. ovis, and B. suis when compared to the reference challenge with B. abortus (Table 3),

whereas the use of adjuvant did not have significant effect on the protection index (Table 3).

Source of publications on brucellosis vaccinology

The data used in this study was obtained from 117 scientific articles, which were grouped

according to the journal in which they were published. Frequencies of publications in different

journals are detailed S3 Table.

Discussion

Brucellosis remains as one of the most important zoonotic diseases in the world, which justifies

the large number of studies aiming to develop new and improved vaccines [10]. A meta-analy-

sis based on brucellosis vaccine development experiments in the mouse model was performed

in this study. A temporal analysis indicates that protection indexes remained stable over the

past 30 years, which may indicate that the knowledge accumulated during the past decades did
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not necessarily translated into better protection when considered the mouse as a model.

Another way to interpret this unexpected and disturbing finding is that the mouse model may

have a limited range of protection when it comes to brucellosis, which may have resulted in sta-

ble protection indexes over time. Limited knowledge on protective immune resposes of mice

and natural host species of Brucella spp. may also be a factor limiting advancement of this field.

Furthermore, traditional vaccine strategies, particularly those based on the use of attenuated

strains [79,88,142] provided better protection when compared to new strategies such as subunit,

DNA, and vectored vaccines. In the case of live attenuated vaccine strains there is a clear corre-

lation between results obtained in the mouse model and actual protection in the preferred host

species [10,11,143,144]. Indeed, vaccine strains such as B. abortus S19 and B. melitensis Rev.1

are known to generate a robust immune response [11,143], and to induce significant levels of

protection against B. abortus in cattle and B. melitensis in sheep and goats [10,11,144].

Table 3. Multivariate meta-regression analysis of variables influencing the protection indexes of experimental brucellosis vaccines.

Standard Confidence interval***

Variable Coefficient* Error p value** Lower limit Upper limit

Vaccine category—Attenuated reference–Overall p-value < 0.001

DNA -0.1826 0.2291 0.426 -0.6325 0.2672

Inactivated -0.1333 0.139 0.338 -0.6325 0.1397

Mutant -0.0145 0.1126 0.898 -0.2356 0.2066

Subunit -1.0207 0.1453 <0.001* -1.3059 -0.7355

Vector -1.0774 0.1947 <0.001* -1.4597 -0.695

Mouse strain—Balb/c reference–Overall p-value = 0.020

C57BL/6 -0.4214 0.2086 0.044 -0.8309 -0.0119

Swiss 0.1386 0.1912 0.469 -0.2368 0.5141

Others -0.5824 0.2524 0.021* -1.0780 -0.0868

Route of vaccination–oral/intragastric reference–Overall p-value = 0.007

Intramuscular -0.4072 0.1929 0.035* -0.7859 -0.0285

Intraperitoneal -0.0454 0.1242 0.715 -0.2893 0.1985

Subcutaneous 0.1466 0.1316 0.266 -0.1118 0.4051

Others 0.3178 0.3136 0.311 -0.2979 0.9335

Number of vaccinations—Single vaccination reference–Overall p-value < 0.001

Two 0.3943 0.1236 <0.001* 0.1516 0.6369

Three -0.0459 0.1439 0.750 -0.3284 0.2366

Four -0.2248 0.2096 0.284 -0.6363 0.1866

Nine 0.5015 0.644 0.436 -0.7629 1.766

Adjuvant—without adjuvant reference

Adjuvant use 0.1745 0.0927 0.060 -0.0075 0.3565

Species challenge—B. abortus reference–Overall p-value < 0.001

B. canis 0.157 0.2281 0.491 -0.2908 0.6048

B. melitensis 0.1652 0.0788 0.036* 0.0106 0.3198

B. ovis 0.7301 0.1287 <0.001* 0.4774 0.9828

B. suis 0.7793 0.3802 0.041* 0.0329 1.5257

Constant 1.8983 0.1349 <0.001* 1.6335 2.1632

* Positive regression coefficients indicate that the variable has higher protection indexes than the reference variable when statistically significant. Negative

regression coefficients indicate the opposite.

** Statistically significant p values (p < 0.05).

*** Confidence interval indicates that under the same experimental conditions values would have that range in 95% of the time.

doi:10.1371/journal.pone.0166582.t003
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The mouse has been largely used as an experimental model for Brucella spp. infection [36].

This model allows for calculating the protection index that is based on the difference between

the number of CFU (in Log) in the spleens of non vaccinated controls and vaccinated mice

[39]. Thus, a higher protection index indicates a better protection provided by a given experi-

mental vaccine. Experimentally, the protection index is very important for Brucella sp. vacci-

nology, which contrasts to other pathogens that are lethal, for which protection may be

assessed by prevention of lethality in the mouse model [145]. Importantly, correlation between

protection index in the mouse model and protection in the preferred host species is not clear

for most of the recently developed experimental vaccines. For instance, we have recently devel-

oped a B. ovis attenuated mutant vaccine candidate strain that lacks an ABC transporter [36],

which influences the virB-encoded Type IV secretion system [146] thus interfering with intra-

cellular trafficking [147]. This vaccine strain provided only moderate protection in the mouse

model, yielding a protection index of approximately 1.0 [120], whereas it surprisingly provided

a very strong protection against experimental challenge in rams, preventing shedding of the

wild type strain in the semen and urine, accumulation of inflammatory cells in the semen, and

gross or microscopic lesions induced by wild type B. ovis, resulting in sterile immunity under

experimental conditions [148]. This lack of a direct correlation between protection in the

mouse and the preferred host species may also be related to the fact that protection indexes

varied according to the wild type Brucella species used for challenging, which may indicate

that optimal levels of protection indexes may vary among different Brucella species.

This study demonstrated that attenuated live vaccine strains tend to provide higher levels of

protection. Considering that Brucella spp. is an intracellular pathogen, attenuated vaccines

tend to provide superior protection because the vaccine strain remains with the same tissue

and cell tropism as the wild type strain, thus mimicking a natural infection [149]. In fact, B.

abortus S19 and B. melitensis Rev1 are largely used as vaccine strains worldwide. Although

these vaccine strains generate high levels of protection against disease, there are considerable

drawbacks since they both have residual virulence for their hosts, they cause human infections

and disease, and they interfere with routine serological assays since they generate a an antibody

response against smooth Brucella lipopolysaccharide (LPS). Additionally, the Rev 1 vaccine

strain is resistant to streptomycin, one of the antibiotics used for brucellosis treatment in

human patients [11,76]. Conversely, the B. abortus RB51 vaccine strain provides protection

against the disease in cattle [150], and it has the advantage of not interfering with the standard

serological tests since this strain has a rough LPS [119], but this strain is resistant to rifampicin,

which is used for brucellosis treatment in human patients [11]. Mouse experiments demon-

strated that RB51 protects against experimental challenge with several Brucella spp. species,

including B. melitensis, B. ovis, B. abortus, and B. suis [88]. Thus, Brucella mutant strains carry-

ing a rough LPS have been used in several vaccine experiments [11,15]. However, mutant

rough strains provide lower levels of protection when compared to smooth attenuated vaccines

such as Rev 1 [74,151].

Beginning in 2000, a large number of experiments evaluated mutant attenuated Brucella
strains as vaccine candidates. For the same reasons discussed concerning naturally attenuated

strains, these mutant strains tend to provide protection in the mouse model. A limiting factor

for these vaccines is the fact that some of these mutants have poor persistence in the host,

which may not allow enough time for exposure of the vaccine strain to the immune system,

thus preventing appropriate levels of protection [152–154]. However, delivery systems that

promote a slow delivery of the vaccine strain may overcome this limitation [120,148]. The

mutagenesis in these cases usually targets genes that are required for virulence or survival in

the host [93,153,155,156]. Mutant whose deleted genes are required during the early stages of

infection are quickly eliminated by the host immune system [153] so they tend to generate
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insufficient protective immunity [157,158]. There is a great interest in the generation of

mutant strains that carry a rough LPS, such as RB51, since these strains do not interfere with

the most commonly used serologic diagnostic methods [11,101]. However, rough strains tend

to be rapidly eliminated from the host, which results in lower levels of protection [101].

This study demonstrated that, in general, subunit vaccines provided lower levels of protec-

tion, which may be due to limitations to identify the most protective antigens, but it is reason-

able to hypothesize that one single antigen may not be sufficient to trigger a strong protective

immune response against Brucella spp. [159,160,161].

In this study, some parameters affected protection against experimental challenge in the

mouse model. Balb/c is the most commonly used mouse strain for Brucella vaccine experi-

ments [16]. Importantly, protection indexes are influenced by the mouse strain. Indeed,

although C57BL/6 and Swiss mice provided protection indexes that were similar to those of

Balb/c, other strains, which included knockout strains for immune genes, provided lower pro-

tection indexes. With the exception of the intramuscular route of vaccination, all other vacci-

nation routes provided similar levels of protection, including the subcutaneous route that is

one of the preferable routes for practical purposes. The efficacy of the subcutaneous route of

vaccination is in agreement with previous studies [16]. Another parameter that may influence

protection, particularly in the case of subunit or DNA vaccines is the number of vaccinations,

with two vaccination providing better results than single vaccination.

This study associated descriptive statistics with a meta-regression analysis, which is a pow-

erful tool for advancing research on animal health [162]. A previous meta-analysis study on

Brucella vaccinology have identified factors that may influence experimental outcomes in

experiments evaluating whole organism vaccine formulations [16]. This study was more inclu-

sive, covering most of the relevant Brucella vaccine research performed using the mouse

model over the past three decades. The identification of variables that significantly influence

protection indexes in the mouse model, clearly indicates that more standardized experimental

protocols are urgently required to generate data that is more reproducible and with higher pre-

diction value for vaccine performance in the preferred host species. Comparing with a previ-

ous meta-analysis study, which was restricted to whole organism vaccines [16], we found

variables that are equally significant for other kinds of vaccines. For instance, vaccine category,

mouse strain, vaccination route, challenge pathogen strain, challenge route, and challenge-kill-

ing interval, influenced protection in the previous study [16] as well as in this more compre-

hensive meta-analysis. Therefore, this study largely expands the knowledge previously gained

with meta-analysis on Brucella vaccinology [16].

A critical aspect of the mouse model for Brucella vaccine development is the lack of stan-

dardized experimental conditions, which has been previously reviewed [163]. Although the

mouse is a well established model for Brucella infection and vaccinology [36, 163], and in spite

of very specific recommendations by the World Organisation for Animal Health (OIE) for

employing the mouse as a model for predicting protective potential against brucellosis in

ruminants [39], there is a wide range of parameters in experimental protocols, including sex,

age and strain of mice, vaccination and challenge routes, time elapsed between vaccination

and challenge and/or between challenge and assessment of splenic bacterial loads, among oth-

ers. This fact makes comparisons between studies and laboratories very unreliable.

Potential limitations of this study may be associated with restrictions of the original data-

base, although PubMed covers the vast majority of relevant papers on the field of experimental

Brucella vaccinology. Absence of publication of negative results may also have influenced the

outcome of this study, although similar levels of negative results would be expected among dif-

ferent categories of experimental vaccines.
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Conclusions

In conclusion, the importance of brucellosis as a threat for human health as well as due to eco-

nomic losses for the animal industry [1,9], justifies the enormous scientific effort to develop

better vaccines that lack residual pathogenic potential for animals and humans [19]. However,

in spite of the large number of publication over the past 30 years, our results indicate that there

is not clear trend to improve the protective potential of these experimental vaccines, which

may at least in part explain why none of these new vaccine formulations or strategies has

reached the market.

Supporting Information

S1 Fig. Protection index according to the mouse strain experimentally used for different

categories of experimental vaccines against Brucella spp. infection. Vaccine categories

(attenuated strains, DNA vaccines, inactivated vaccines, attenuated mutant strains, subunit

vaccines, and vectored vaccines were regrouped according to the mouse strain experimentally

used (Balb/c, C57BL/6, Swiss, and others). Attenuated vaccines: Balb/c, n = 166; C57BL/6,

n = 9; Swiss, n = 34; others, n = 12. DNA vaccines: Balb/c, n = 67; C57BL/6, n = 1. Inactivated

vaccines: Balb/c, n = 60; Swiss, n = 6. Mutant vaccines: Balb/c, n = 89; C57BL/6, n = 6; Swiss,

n = 4; others, n = 3. Subunit vaccines: Balb/c, n = 274; C57BL/6, n = 3; Swiss, n = 9; others,

n = 1. Vectored vaccines: Balb/c, n = 38. Values indicate the median, second and third quartiles

(box), first and fourth quartiles (error bars). Outliers are indicated by dots.

(TIF)

S2 Fig. Protection index according to the route of vaccination for different categories of

Brucella spp. experimental vaccines. Vaccine categories (attenuated strains, DNA vaccines,

inactivated vaccines, attenuated mutant strains, subunit vaccines, and vectored vaccines) were

regrouped according to the route of vaccination (intragastric and oral, n = 81; intramuscular,

n = 90; intraperitoneal, n = 355; subcutaneous, n = 199; others, n = 9). Attenuated vaccines:

intragastric and oral, n = 12; intraperitoneal, n = 119; subcutaneous, n = 48. DNA vaccines:

intramuscular, n = 62; others, n = 4. Inactivated vaccines: oral, n = 20; intraperitoneal, n = 19;

subcutaneous, n = 26; others, n = 1. Mutant vaccines: oral, n = 5; intraperitoneal, n = 79; sub-

cutaneous, n = 14. Subunit vaccines: oral, n = 25; intramuscular, n = 28; intraperitoneal,

n = 119, others, n = 4. Vectored vaccines: oral, n = 19; intraperitoneal, n = 19. Values indicate

the median, second and third quartiles (box), first and fourth quartiles (error bars). Outliers

are indicated by dots.

(TIF)

S3 Fig. Protection index according to the number of vaccinations for different categories

of experimental vaccines against Brucella spp. Vaccine categories (attenuated strains, DNA

vaccines, inactivated vaccines, attenuated mutant strains, subunit vaccines, and vectored vac-

cines) were regrouped according to the number of vaccinations (1x, n = 394; 2x, n = 196; 3x,

n = 111; 4x, n = 36; 9x, n = 2). Attenuated vaccines: 1x, n = 211; 2x, n = 6; 4x, n = 1). DNA vac-

cines: 1x, n = 6; 2x, n = 2; 3x, n = 34; 4x, n = 26). Inactivated vaccines: 1x, n = 4; 2x, n = 13; 3x,

n = 6; 4x, n = 3. Mutant vaccines: 1x, n = 97; 3x, n = 1. Subunit vaccines: 1x, n = 32; 2x,

n = 148; 3x, n = 68; 4x, n = 3. Vectored vaccines: 1x, n = 4; 2x, n = 27; 3x, n = 2; 4x, n = 3; 9x,

n = 2. Values indicate the median, second and third quartiles (box), first and fourth quartiles

(error bars). Outliers are indicated by dots.

(TIF)
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S4 Fig. Protection indexes according to the challenge Brucella spp. species for different cat-

egories of experimental vaccines. Vaccine categories (attenuated strains, DNA vaccines, inac-

tivated vaccines, attenuated mutant strains, subunit vaccines, and vectored vaccines) were

regrouped according to the Brucella spp. species used for experimental challenge (B. abortus,
B. canis, B. melitensis, B. ovis, and B. suis). Attenuated vaccines: B. abortus, n = 140; B. meliten-
sis, n = 60; B. ovis, n = 12; B. suis, n = 9. DNA vaccines: B. abortus, n = 33; B. canis, n = 2; B.

melitensis, n = 27; B. ovis, n = 6. Inactivated vaccines: B. abortus, n = 28; B. canis, n = 2; B. meli-
tensis, n = 26; B. ovis, n = 7; B. suis, n = 3. Mutant vaccines: B. abortus, n = 40; B. canis, n = 4; B.

melitensis, n = 47; B. ovis, n = 11. Subunit vaccines: B. abortus, n = 194; B. canis, n = 8; B. meli-
tensis, n = 54; B. ovis, n = 31. Vectored vaccines: B. abortus, n = 29; B. melitensis, n = 9. Values

indicate the median, second and third quartiles (box), first and fourth quartiles (error bars).

Outliers are indicated by dots.

(TIF)

S5 Fig. Protection index according to the challenge route for different experimental vac-

cine categories against Brucella spp. Vaccine categories (attenuated strains, DNA vaccines,

inactivated vaccines, attenuated mutant strains, subunit vaccines, and vectored vaccines) were

regrouped according to the route of challenge (oral and intragastric, n = 25; intraperitoneal,

n = 587; others, n = 26; intravenous, n = 131). Attenuated vaccines: oral and intragastric, n = 5;

intraperitoneal, n = 185; others, n = 4; intravenous, n = 23. DNA vaccines: oral and intragas-

tric, n = 1; intraperitoneal, n = 48; intravenous, n = 15. Inactivated vaccines: intraperitoneal,

n = 35; others, n = 14; intravenous, n = 17. Mutant vaccines: oral and intragastric, n = 1; intra-

peritoneal, n = 93; others, n = 4. Subunit vaccines: oral and intragastric, n = 16; intraperitoneal,

n = 191; others, n = 4; intravenous, n = 75. Vectored vaccines: oral and intragastric, n = 2;

intraperitoneal, n = 35; intravenous, n = 1. Values indicate the median, second and third quar-

tiles (box), first and fourth quartiles (error bars). Outliers are indicated by dots.

(TIF)

S6 Fig. Protection index according to the use of adjuvant for different categories of experi-

mental vaccines against Brucella spp. Vaccine categories (attenuated strains, DNA vaccines,

inactivated vaccines, attenuated mutant strains, subunit vaccines, and vectored vaccines) were

regrouped according to the use or not of adjuvant (no, n = 528; yes, n = 253). Attenuated vac-

cines: no, n = 213; yes, n = 7. DNA vaccines: no, n = 61; yes, n = 7. Inactivated vaccines: no,

n = 44; yes, n = 22. Mutant vaccines: no, n = 96; yes, n = 6. Subunit vaccines: no, n = 84; yes,

n = 203. Vectored vaccines: no, n = 30; yes, n = 8. Values indicate the median, second and

third quartiles (box), first and fourth quartiles (error bars). Outliers are indicated by dots.

(TIF)

S1 Table. PRISMA Checklist.
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(XLSX)
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Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a

complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis

in the mouse model. Infect Immun 2003; 71: 3261–71. doi: 10.1128/IAI.71.6.3261–3271.2003 PMID:

12761107

102. Montaraz JA, Winter AJ. Comparison of living and nonliving vaccines for Brucella abortus in BALB/c

mice. Infect Immun 1986; 53:245–51. PMID: 3089933

103. Moustafa D, Garg VK, Jain N, Sriranganathan N, Vemulapalli R. Immunization of mice with gamma-

irradiated Brucella neotomae and its recombinant strains induces protection against virulent B. abor-

tus, B. melitensis, and B. suis challenge. Vaccine 2011; 29:784–94. doi: 10.1016/j.vaccine.2010.11.

018 PMID: 21109033
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105. Murillo M, Grilló MJ, Reñé J, Marı́n CM, Barberán M, Goñi MM, et al. A Brucella ovis antigenic complex

bearing poly-ε-caprolactone microparticles confer protection against experimental brucellosis in mice.

Vaccine 2001; 19:4099–106. doi: 10.1016/S0264-410X(01)00177-3 PMID: 11457533

106. Oñate AA, Céspedes S, Cabrera A, Rivers R, González A, Muñoz C, et al. A DNA vaccine encoding

Cu,Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice. Infect

Immun 2003; 71:4857–61. doi: 10.1128/IAI.71.9.4857–4861.2003 PMID: 12933826

107. Oñate AA, Donoso G, Moraga-Cid G, Folch H, Céspedes S, Andrews E. An RNA vaccine based on
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150. Poester FP, Gonçalves VSP, Paixão TA, Santos RL, Olsen SC, Schurig GG, et al. Efficacy of strain

RB51 vaccine in heifers against experimental brucellosis. Vaccine 2006; 24:5327–34. doi: 10.1016/j.

vaccine.2006.04.020 PMID: 16713034

151. Barrio MB, Grillo MJ, Munoz PM, Jacques I, Gonzalez D, Miguel MJ, et al. Rough mutants defective in

core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with

smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infec-

tion of sheep. Vaccine 2009; 27:1741e9. doi: 10.1016/j.vaccine.2009.01.025 PMID: 19186196

152. Young EJ, Gomez CI, Yawn DH, Musher DM. Comparison of Brucella abortus and Brucella melitensis

infections of mice and their effect on acquired cellular resistance. Infect Immun 1979; 26:680–5.

PMID: 121113

153. Hong PC, Tsolis RM, Ficht TA. Identification of genes required for chronic persistence of Brucella

abortus in mice. Infect Immun 2000; 68:4102–07. PMID: 10858227

154. Kahl-McDonagh MM, Ficht TA. Evaluation of protection afforded by Brucella abortus and Brucella

melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect

Immun 2006; 74:4048–57. doi: 10.1128/IAI.01787-05 PMID: 16790778

155. Allen CA, Adams LG, Ficht TA. Transposon-derived Brucella abortus rough mutants are attenuated

and exhibit reduced intracellular survival. Infect Immun 1998; 66:1008–16. PMID: 9488389

156. Ficht TA. Discovery of Brucella virulence mechanisms using mutational analysis. Vet Microbiol 2002;

90:311–15. doi: 10.1016/S0378-1135(02)00216-X PMID: 12414151

157. Edmonds M, Booth N, Hagius S, Walker J, Enright F, Martin Roop RM II, et al. Attenuation and immu-

nogenicity of a Brucella abortus htrA cycL double mutant in cattle. Vet Microbiol 2000; 76:81–90. doi:

10.1016/S0378-1135(00)00225-X PMID: 10925044

158. Fiorentino MA, Campos E, Cravero SL, Arese AI, Paolicchi F, Campero C, et al. Protection levels in

vaccinated heifers with experimental vaccines Brucella abortus M1-luc and INTA 2. Vet Microbiol

2008; 132:302–11. doi: 10.1016/j.vetmic.2008.05.003 PMID: 18565697

159. Titball RW. Vaccines against intracellular bacterial pathogens. Drug Discov Today 2008; 13:596–600.

doi: 10.1016/j.drudis.2008.04.010 PMID: 18598915

160. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol 2010; 17;1055–65.

doi: 10.1128/CVI.00131-10 PMID: 20463105

Meta-Analysis and Advancement of Brucellosis Vaccinology

PLOS ONE | DOI:10.1371/journal.pone.0166582 November 15, 2016 27 / 28

http://dx.doi.org/10.1007/s12275-014-3689-9
http://www.ncbi.nlm.nih.gov/pubmed/24994009
http://dx.doi.org/10.1016/j.vaccine.2009.06.075
http://www.ncbi.nlm.nih.gov/pubmed/19596411
http://dx.doi.org/10.1128/IAI.71.5.2326&ndash;2330.2003
http://dx.doi.org/10.1128/IAI.71.5.2326&ndash;2330.2003
http://www.ncbi.nlm.nih.gov/pubmed/12704101
http://dx.doi.org/10.1016/S0378-1135(02)00252-3
http://www.ncbi.nlm.nih.gov/pubmed/12414142
http://dx.doi.org/10.1016/S0167-5877(96)01110-5
http://www.ncbi.nlm.nih.gov/pubmed/9234451
http://www.ncbi.nlm.nih.gov/pubmed/20093755
http://dx.doi.org/10.1371/journal.pone.0114532
http://www.ncbi.nlm.nih.gov/pubmed/25474545
http://dx.doi.org/10.1371/journal.pone.0138131
http://www.ncbi.nlm.nih.gov/pubmed/26366863
http://dx.doi.org/10.1371/journal.pone.0136865
http://www.ncbi.nlm.nih.gov/pubmed/26317399
http://dx.doi.org/10.1016/j.vaccine.2009.08.058
http://www.ncbi.nlm.nih.gov/pubmed/19837284
http://dx.doi.org/10.1016/j.vaccine.2006.04.020
http://dx.doi.org/10.1016/j.vaccine.2006.04.020
http://www.ncbi.nlm.nih.gov/pubmed/16713034
http://dx.doi.org/10.1016/j.vaccine.2009.01.025
http://www.ncbi.nlm.nih.gov/pubmed/19186196
http://www.ncbi.nlm.nih.gov/pubmed/121113
http://www.ncbi.nlm.nih.gov/pubmed/10858227
http://dx.doi.org/10.1128/IAI.01787-05
http://www.ncbi.nlm.nih.gov/pubmed/16790778
http://www.ncbi.nlm.nih.gov/pubmed/9488389
http://dx.doi.org/10.1016/S0378-1135(02)00216-X
http://www.ncbi.nlm.nih.gov/pubmed/12414151
http://dx.doi.org/10.1016/S0378-1135(00)00225-X
http://www.ncbi.nlm.nih.gov/pubmed/10925044
http://dx.doi.org/10.1016/j.vetmic.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18565697
http://dx.doi.org/10.1016/j.drudis.2008.04.010
http://www.ncbi.nlm.nih.gov/pubmed/18598915
http://dx.doi.org/10.1128/CVI.00131-10
http://www.ncbi.nlm.nih.gov/pubmed/20463105


161. Gomez G, Adams LG, Rice-Ficht A, Ficht TA. Host-Brucella interactions and the Brucella genome as

tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol

2013; 3:17. doi: 10.3389/fcimb.2013.00017 PMID: 23720712

162. Lean IJ, Rabiee AR, Duffield TF, Dohoo IR. Invited review: Use of meta-analysis in animal health and

reproduction: methods and applications. J Dairy Sci 2009; 92:3545–65. doi: 10.3168/jds.2009-2140

PMID: 19620636
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