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Solar park (SP) is rapidly growing throughout the planet due to the

increasing demand for low-carbon energy, which represents a remarkable

global land-use change with implications for the hosting ecosystems.

Despite dozens of studies estimating the environmental impacts of SP

based on local microclimate and vegetation, responses of soil microbial

interactions and nutrient cycle potentials remain poorly understood. To bridge

this gap, we investigated the diversity, community structure, complexity,

and stability of co-occurrence network and soil enzyme activities of soil

prokaryotes and fungi in habitats of ambient, the first, and sixth year since

solar park establishment. Results revealed different response patterns of

prokaryotes and fungi. SP led to significant differences in both prokaryotic

and fungal community structures but only reduced prokaryotic alpha diversity

significantly. Co-occurrence network analysis revealed a unimodal pattern

of prokaryotic network features and more resistance of fungal networks to

environmental variations. Microbial nitrogen and phosphorus cycle potentials

were higher in SP and their variances were more explained by network

features than by diversity and environmental characteristics. Our findings

revealed for the first time the significant impacts of SP on soil prokaryotic

and fungal stability and functional potentials, which provides a microbial

insight for impact evaluation and evidence for the optimization of solar

park management to maximize the delivery of ecosystem services from this

growing land use.
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Introduction

Demand for clean energy has experienced an exponential
increase in the past decade and is expected to increase in the
future to contribute to limiting the global temperature rise
to 1.5◦C (Teske, 2019). Of all the existing renewable energy
technologies, solar park has the greatest potential for power
generation, which has grown more than five times in the last
decade (Yue et al., 2021) and will outpace all other alternative
energy sources by 2050 (Osaki, 2019). With such a huge interest
in solar energy development, it is crucial to take enough
precautions regarding the environmental changes induced by
the solar park. The solar park generally consists of large scale
of ground-mounted photovoltaic arrays, which could shade
habitat, absorb solar radiation, intercept wind, and divert rainfall
to the downslope edge. These changes could impose dramatic
implications on microclimate, biodiversity, soil nutrients, and
diverse ecosystem services (Grodsky and Hernandez, 2020). For
instance, reduced mean daily albedo under photovoltaic arrays
resulted in lower soil and air temperature (Yang et al., 2017).
Declined water evaporation intensity under photovoltaic panels
promoted soil water content and water-use efficiency by 328%
(Hassanpour Adeh et al., 2018). Lower evaporation, higher soil
water content and moderate temperature increased vegetation
coverage and aboveground biomass under photovoltaic arrays,
which indicated positive effects of SP on the hosted ecosystem
(Jiang et al., 2019). However, land-use changes due to large
solar facilities establishment can elicit biodiversity loss and
thereby reduce ecosystem stability and services (Grodsky and
Hernandez, 2020). For instance, solar parks in the desert
ecosystem may inhibit native plant species, which could result
in a decrease in the historically speciose plant communities
underpinning primary productions (Moore et al., 2017). It is
worth noting that both the positive and negative effects solar
park induced could exert influences on soil microorganisms,
nonetheless, how the soil microbial community responds to
these perturbations remains poorly understood.

A healthy ecosystem has been defined as “being stable
and sustainable, maintaining its organization and autonomy
over time and its resilience to stress” (Rapport et al., 1998).
Environmental perturbations such as climate change can impact
the stability and structure of the ecosystem and further affect
the ecosystem’s function or services (Kéfi et al., 2019). Finding
sensitive and robust indicators in response to environmental
perturbations allows humans to better identify, quantify,
and anticipate the modifications of ecosystem quality. The
biological components are more sensitive to environmental
perturbations relative to the abiotic components of the
ecosystem (Carignan and Villard, 2002). Within the biological
component, microorganisms are one of the most popular
bioindicators evaluating the effects of climate changes and
anthropogenic perturbations on the ecosystem due to their short
generation time and genetic plasticity (Bouchez et al., 2016) and

their primary roles in many biogeochemical processes (Singh
et al., 2020). Microbial taxonomic diversity and community
composition have been the primary bioindicators of land use
change (Bouchez et al., 2016), while an increasing number
of studies found that the complex interconnections among
community members were more sensitive to environmental
disturbances (Karimi et al., 2017; Ramirez et al., 2018). In
addition, the microbial network could better reveal the changes
in the stability of microbiomes, which are influenced by the
antagonistic, neutral, and cooperative interactions between the
members within these communities (Faust and Raes, 2012).
These characteristics indicate that microbial networks could
play a complementary role to traditional bioindicators of the
impacts of environmental perturbations and ecosystem quality.
Previous studies have partially explored the impacts of the solar
park on soil archaea and prokaryotic diversity and community
composition, while few empirical studies have investigated
the changes in complexity and stability of soil microbial co-
occurrence network (Chao et al., 2016). It is necessary to include
network analysis for a comprehensive assessment of SP effects
on soil microbial communities in light of network analysis that
has been widely applied in many land use change evaluations
and has been proved effective and complementary.

Soil extracellular enzymes make great contributions to soil
ecological processes including organic matter decomposition,
nutrient cycling, and soil fertility (Acosta-Martínez et al.,
2007). Since most of these functions are microbially mediated,
soil extracellular enzyme activities (EEAs) can be indicative
of microbial function potentials. α-1,4-gulcosidase (αg),
β-1,4-glucosidase (βG) and β-xylosidase (βx), β-1,4-N-
acetylgucosaminidase (nag), leucine aminopeptidase (lap), and
acidic phosphatase (ap) were the most used soil extracellular
enzymes related to soil C, N, and P cycle, which could be used as
a proxy for soil microbial function potentials (Xiao et al., 2018).
It is reasonable to assume that microbial network topological
features play an important role in regulating soil EEAs given
observed significant associations between network indices and
other proxies of microbial function potentials such as the C cycle
function gene (Yuan et al., 2021). Despite increasing findings
on significant correlations between soil EEAs and microbial
community structures as well as environmental changes
(Moghimian et al., 2017; Moscatelli et al., 2018), limited studies
investigate the impacts of microbial co-occurrence network
complexity on this proxy of microbial function potentials.

The solar park will continue to expand for the goal of
carbon neutrality. It is necessary to understand the mechanism
of SP on a local ecosystem to develop better management
practices that mitigate adverse solar park impacts. Nonetheless,
previous studies of ecological impacts of SP most concentrated
on local microclimate and/or vegetation, ignoring stability of
soil microbial interactions network and microbial functional
potentials. To bridge this gap, we selected sites of ambient (Y0),
the first (Y1), and the sixth year (Y6) since the installation
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of SP in the alpine desert grassland in Qinghai-Tibet Plateau
and investigated the plant and soil physicochemical properties,
soil extracellular enzymes activities, and soil microbial matrix.
Our study addressed the following questions: (1) Does the solar
park alter soil prokaryotic and fungal diversity, community
composition, and network complexity and stability; (2) Does
the solar park promote or declined microbial function
potentials represented by soil EEAs; (3) Does abiotic or biotic
factors affect microbial function potentials and which factors
regulate them the most.

Materials and methods

Site description and soil sampling

This research was undertaken at the Huanghe Solar Park,
one of the world’s largest solar parks, Longyangxia Dam Solar
Park, established in 2013 with a capacity of 850 MW, which
is to the southeast of the Qinghai-Tibet Plateau (36◦9′47′′N,
100◦35′14′′E) (Figure 1A). The photovoltaic panels are oriented
south-facing at an angle of 39◦. The photovoltaic panel
dimensions are 16.5 m by 9.91 m. The gap between solar panel
rows should be around 5.4 m. Before conversion to a solar park,
the field site was alpine desert grassland. With an average annual
temperature of 4.8–6.0◦C, average annual precipitation of 278–
523 mm, and annual evaporation of 1,716.7 mm, this region has
a semi-arid climate. The soil texture comprises mostly sandy
loam. The dominant plant species are Achnatherum splendens
and Artemisia frigida.

To determine the impacts of the solar park on plant-soil
properties and soil microbial community, we selected a total
of 18 sites of 0 year (Y0), 1 year (Y1), and 6 years (Y6)
since SP installation in the alpine desert grassland in Qinghai-
Tibet Plateau (Figure 1B). The schematic of photovoltaic panels
is shown in Figure 1C. Five randomly distributed soil cores
in each site at 0–10 cm depth were collected. Soil cores
collected from the same plot were mixed as a composite to
minimize the variability caused by soil spatial heterogeneity.
Each soil composite was divided into subsamples for separate
microbial and chemical analyses. Samples for microbial analysis
were saved in sterile bags to avoid contamination and stored
in −20◦C for DNA extraction, and samples for chemical
analysis were put into plastic bags and stored at 4◦C. Soil
and plant samples of the solar park were sampled under
photovoltaic panels. Microclimate, vegetation, soil properties,
and soil microorganism metrics of each site were measured.

Soil physicochemical and plant
properties

Soil total organic carbon (SOC), total nitrogen (TN), and
total phosphorus (TP) contents were measured with air-dried

soils using the K2Cr2O7–H2SO4 titrimetric method, Kjeldahl
digestion, and vanadium molybdate yellow colorimetry,
respectively. About 2.5 g of fresh soils were extracted with
2 M KCl and filtered to determine soil inorganic nitrogen
concentration including nitrate (NO3

−) and ammonium
(NH4

+) using the Clever Chem 200+. The microbial biomass
carbon (MBC) and nitrogen (MBN) were determined by the
chloroform fumigation and extraction method (Davidson
et al., 1989). Soil pH was measured with a fresh soil to water
ratio of 1:5 using a Sartorius pH meter (PB–10, Sartorius
Corporate Administration GmbH, Göttingen, Germany). Soil
moisture (SWC) was evaluated by drying the soil at 105◦C
for 24 h. Soil temperature (ST) was measured at depths of
10 cm using a Hydra Probe sensor (Campbell Scientific,
Inc., United States).

A 50 cm × 50 cm quadrat was randomly selected in
each plot in mid-August 2019 to measure vegetation biomass
(AGB), cover, and diversity. The aboveground vegetation of each
plot was oven-dried at 75◦C for 48 h to calculate the plant
productivity. Vegetation Shannon index (VegS), Vegetation
Richness index (VegR), and Vegetation Pielou index (VegP)
were measured according to the number of individual species
before all plants were clipped.

DNA extraction and sequence
processing

Soil DNA was extracted from 0.5 g frozen soil samples
using a FastDNA SPIN Kit for Soil (MP Biomedicals, Santa
Ana, CA, United States) according to the instruction manual
and was quantified using a NanoDrop 2000 Spectrophotometer
(Bio-Rad Laboratories Inc., United States). PCR was carried out
using the primer set 515F and 806R for prokaryotic and ITS1F
and ITS2 targeting the ITS1 region for fungi. Approximately
250 bp paired-end reads were generated on the Illumina MiSeq
platform. The QIIME2 (version 2018.6) was used to analyze
the raw sequencing data (Bolyen et al., 2019). The DADA2
plugin in QIIME2 (Callahan et al., 2016) was used to filter
out low-quality sequences and chimeras and then generate
amplicon sequence variants (ASVs), which were classified using
the QIIME2 naive Bayes classifier (Bokulich et al., 2018)
trained on 99% Operational Taxonomic Units (OTUs) from
the SILVA rRNA database (v 132) (Quast et al., 2012) and
UNITE database (Nilsson et al., 2019) for prokaryotic and
fungi, respectively.

Data filtering and alpha and beta
diversity analysis

ASVs with very small counts in very few samples are
likely due to sequencing errors or low-level contaminations. To
ensure a more strict analysis, we only keep ASVs occurring
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FIGURE 1

Location of solar park (A), image of sample sites (B), and schematic of the potential effects of photovoltaic panel on microclimate (C).

in at least 20% of total samples and containing at least
four counts at each sample. All downstream data analysis
will be based on filtered data. Shannon and phylogenetic of
prokaryotic and fungal alpha diversity indices were estimated.
To reveal potential microbial compositional variation across
soil samples, PCoA (Principal Coordinate Analysis) was
performed based on weighted UniFrac distance and Bray–Curtis
distance and Permutational Multivariate Analysis of Variance
(PERMANOVA) was used to evaluate significant differences
in microbial community structures in a vegan R package
(Dixon, 2003).

Microbial co-occurrences network
analyses

The co-occurrence network in most studies was constructed
using arbitrary thresholds, and therefore, the constructed
networks are subjective rather than objective. To avoid
the subjectivity of researchers, a random matrix theory
(RMT)-based approach, which can identify a threshold for
microbial network construction, was performed to construct
the prokaryotic and fungal co-occurrences networks through
the Molecular Ecological Network Analyses Pipeline1 and were

1 http://ieg2.ou.edu/MENA

visualized using gephi.2 The network analysis is performed
according to previous studies by Zhou et al. (2010) and Deng
et al. (2012). Topologic features of the network were measured
to evaluate the network complexity.

Network modularity (Grilli et al., 2016), network
vulnerability (Yuan et al., 2021), and ratio of negative
cohesion to positive cohesion (Neg:Pos cohesion) (Herren
and Mcmahon, 2017) have been used as the proxy for network
stability. Moreover, theoretical studies indicated that natural
connectivity with node loss caused by external disturbance
could be indicative of network robustness or deletion stability
(Dunne et al., 2002). We estimate the network robustness based
on the decreasing proportions of natural connectivity and the
average degree of the whole network in the case of removing
keystone nodes and random nodes (Wu et al., 2021).

Network vulnerability. The vulnerability of a network is
indicated by the maximal vulnerability of nodes in the network
as follows:

max
(

E−Ei

E

)
where E is the global efficiency and Ei is the global efficiency after
removing node i, and d(i,j) is the number of edges in the shortest
path between node i and j.

2 https://gephi.org/
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E =
1

n(n− 1)

∑
i6=j

1
d(i, j)

Natural connectivity is calculated based on the following
function. λ corresponds to the “average eigenvalue” of the
graph adjacency matrix and N is the number of nodes
in matrix.

λ̄ = ln

(
1
N

N∑
i=1

ei

)

Network keystone nodes were identified based on (1)
hub nodes: Network hubs, connetors, and module hubs
classified based on within-module connectivity (Zi) and
among-module connectivity (Pi) (Olesen et al., 2006) and
(2) Top 10 nodes: nodes with top 10% degree. The R
code for network robustness calculation can be found in
Supplementary material.

Microbial function potentials

To estimate the biogeochemical function of microbes,
soil extracellular enzymes activity (EEA) involved in C, N,
and P turnover were measured, including C-acquisition
enzymes, α-1,4-gulcosidase (αg), β-1,4-glucosidase (βG),
and β-xylosidase (βx), N-acquisition enzymes, β-1,4-N-
acetylgucosaminidase (nag), leucine aminopeptidase (lap),
and phosphorous-acquisition enzyme, acidic phosphatase
(ap) (Jian et al., 2016). In addition, we acquired enzyme
metabolic pathways based on Kyoto Encyclopedia of Genes and
Genomes orthologs (KOs) and Enzyme Commission numbers
(EC numbers) based on 16s sequences with PICRUST2
(Douglas et al., 2020).

Statistical analysis

To quantify the effects of soil properties, vegetation
characteristics, and microclimate on soil microbial diversity,
Redundancy analysis (RDA) and Forward Selection with
permutation were performed by using the vegan R package.
To find the correlations among microbial functional potentials,
microbial network features, microbial community structure,
and environmental characteristics, Mantel test based on
“spearman” with 999 permutations were conducted.
To evaluate how the environmental characteristics and
microorganisms might have regulated microbial function
potentials, VPA was used to discern the contributions of
these variables to the overall variations of the microbial
function potentials. Canonical Correlation Analysis (CCA)
by CANOCO software v4.54 were used to estimate
the effects of the environmental factors on microbial
communities (MBC, MBN, alpha-diversity of prokaryotes
and fungi, etc.).

TABLE 1 Environmental factors in Y0, Y1, and Y6 soil samples.

Environmental
factors

Y0 Y1 Y6

AGB/g·m−2 38.83± 4.87c 88.84± 10.72b 145.34± 6.13a

Cover/% 28.83± 9.09c 43.83± 12.66b 76.83± 8.73a

VegR 7.00± 0.00a 4.50± 0.84b 4.00± 0.89b

VegS 1.02± 0.11a 0.34± 0.25b 0.14± 0.12b

VegP 0.93± 0.10a 0.33± 0.22b 0.16± 0.14b

SOC/g·kg−1 10.83± 3.61b 18.02± 4.91a 18.01± 4.83a

TN/g·kg−1 0.95± 0.09b 1.34± 0.17a 1.24± 0.12a

TP/g·kg−1 0.49± 0.13a 0.56± 0.12a 0.57± 0.11a

TK/mg·kg−1 18.00± 1.79a 18.97± 1.80a 20.02± 1.94a

NH4
+/mg·kg−1 4.60± 0.54b 6.49± 0.96a 6.25± 1.34a

NO3
−/mg·kg−1 15.99± 1.72a 15.35± 5.51a 20.44± 12.56a

MBC/mg·kg−1 9.61± 2.51b 20.68± 9.00a 24.17± 9.90a

MBN/mg·kg−1 2.91± 1.47b 6.55± 1.32a 5.68± 3.22a

pH 8.43± 0.23a 8.65± 0.22a 8.58± 0.41a

SWC/% 6.17± 0.09c 8.37± 0.22b 11.84± 0.15a

ST/◦C 19.36± 3.85a 14.51± 2.70b 12.55± 1.65b

Evap/g·m−3 4.56± 1.47a 2.40± 0.54b 2.06± 1.13b

Environmental factors marked in bold indicate statistically significant differences
(P < 0.05) among Y0, Y1, and Y6. AGB indicate plant above-ground biomass; Cover
indicate plant cover; VegR, VegS, and VegP indicate plant richness index, plant Shannon
diversity index, and plant pielou evenness index, respectively; SOC indicate soil total
organic carbon; TN indicate soil total nitrogen; TP indicate soil total phosphorus;
NO3

− indicate soil nitrate nitrogen; NH4
+ indicate soil ammonium nitrogen; MBC and

MBN indicate microbial biomass carbon and nitrogen, respectively. The different letters
represent the “ambient”, “initial”, and “constant” are corresponding to “Y0”, “Y1”, and
“Y6”, respectively.

Results

Vegetation and soil physicochemical
properties

As shown in Table 1, SP had a significant impact on most
environmental factors except soil TP, TK, NO3

−, and pH. The
SOC, TN, SWC, MBC, MBN, AGB, and Cover were the highest
under the Y6 group and were the lowest under the Y0 group,
whereas the Evap and three vegetation diversity indices under
Y0 samples were significantly higher.

Soil microbial diversity and community
composition

We characterized 1,531 prokaryotic and 550 fungi species-
level ASVs. The majority of the prokaryotic ASVs were
classified as Actinobacteria (33.6%), Proteobacteria (23.6%),
Acidobacteria (10.7%), followed by Gemmatimonadetes
(9.8%) and Thaumarchaeota (9.1%) at the phylum level
(Supplementary Figure 1). Phylum Ascomycota (75.8%),
Mortierellomycota (16.3%), and Basidiomycota (6.9%)
dominated the sample fungi community.
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We observed significant differences in α diversity across Y0,
Y1, and Y6 in soil prokaryotic communities and Y6 had the
lowest Shannon and phylogenetic diversity (p <0.05; Kruskal–
Wallis). Soil fungi diversity under SP had greater Shannon
diversity and PD diversity than the Y0 fungi community, but
showed no significant difference, as shown in Figures 2A–D.
Both the weighted-UniFrac and Bray–Curtis PCoA showed
that prokaryotic and fungi communities from SP soil were
clearly separated from the Y0 soil. First, two axes explained
50∼60% total variation for both prokaryotic and fungal
communities. Permutational multivariate analysis of variance
(Adonis) also identified the significant difference among the
three microbial communities. These results indicated the great
influence of SP on the belowground microbiota (Figures 2E–
H).

Complexity and stability of soil
microbial co-occurrence networks

As shown in Figure 3 and Table 2, prokaryotic interaction
networks with 279, 253, and 248 nodes and fungal interaction

networks with 83, 76, and 66 nodes were constructed from
Y0, Y1, and Y6 soil samples, respectively. For prokaryotic
networks, the Y1 network with the highest average degree
(AvgD), average clustering coefficient (AvgCC), and shortest
average path distance (GD) were more connecting than Y0 and
Y6 networks. For fungal networks, the Y6 had lower links (83)
relative to Y0 (296) and Y1 networks (298), and the lowest
AvgD and AvgCC and the longest GD, Y0, and Y1 had similar
network structures.

Network modularity, vulnerability, and ratio of negative
cohesion to positive cohesion (Neg:Pos Cohesion) are used most
to indicate the robustness or stability of the interaction network.
As shown in Table 2 and Figure 4C, both prokaryotic and
fungal networks of Y6 had the largest modularity and Neg:Pos
Cohesion. The network vulnerability showed a fluctuation in
prokaryotic networks but no variation in fungal networks
(Figure 4D), indicating higher resistance to disturbances in
fungal networks. In addition, we simulated species extinction to
estimate network robustness (the resistance to node loss) based
on either random node loss or removal of keystone nodes (hub
nodes and Top 10 nodes). For prokaryotic networks, both NC
and AvgD of Y1 experienced the fastest drop (a bigger absolute

FIGURE 2

Comparison of alpha and beta diversity across Y0, Y1, and Y6 soil samples. (A–D) are phylogenetic index (PD) and Shannon index (Shan) of soil
fungal (.fun) and prokaryotic (.pro) communities. (E–H) are principle coordinate analysis (PCoA) of soil fungal and prokaryotic communities
based on Weighted UniFrac (WeiUni) distance and Bray–Curtis (Bray) distance, respectively. * indicate p < 0.05, ** indicate p < 0.01, ∗∗∗ indicate
p < 0.001.
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FIGURE 3

Co-occurrence networks of soil prokaryotic and fungi communities (A,B). Each point represents node (ASV) and each line (link) represents
pairwise interaction between nodes, and node colors and size represent phyla and degree, respectively, red and green line indicate the positive
and negative correlation between nodes, respectively. The chord diagram shows links among phyla in different network (C,D). The chord color
is identical with the nodes in networks. The chord width between two phyla is proportional to the number of associations. (E,F) represent venn
graphs of nodes in prokaryotic networks and fungal networks, respectively. (G) represents the significant correlations between network features
and environmental characteristics, network features with suffix “.pro” and “.fun” indicate prokaryotic and fungal networks features, respectively.

value of slope) with the nodes removed randomly increasing
(Figure 4A). For fungal networks, Y1 and Y0 showed a similar
trend and Y6 showed the lowest slope (Figure 4A). As shown
in Figure 4B and Table 2, fungal networks had larger mean
declined proportions (MDP) of NC and AvgD but less total
declined proportions (TDP) than prokaryotic in general after

the removal of keystone nodes. Y6 prokaryotic network had
the least TDP of NC and AvgD but had the largest MDP after
the removal of hub nodes or Top 10 nodes. Y6 fungal network
showed the lowest TDP and MDP of NC and AvgD after hub
nodes removal (Figure 4B) but had the highest values after the
loss of Top 10 nodes.
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TABLE 2 Topological properties of prokaryotic and fungi
interaction network.

Network properties Prokaryote Fungi

Y0 Y1 Y6 Y0 Y1 Y6

Total nodes 279 253 248 83 76 66

Total links 1329 2053 1122 296 298 83

Average degree (AvgD) 9.53 16.23 9.05 6.67 7.84 2.52

Average clustering
coefficient (AvgCC)

0.04 0.08 0.05 0.07 0.12 0.05

Average path distance (GD) 2.74 2.27 2.72 2.51 2.33 4.84

Density (D) 0.03 0.06 0.03 0.08 0.11 0.03

Modularity 0.285 0.284 0.297 0.33 0.29 0.64

Neg:Pos cohesion 0.69 0.68 0.71 0.34 0.38 0.40

NC slope—remove random
nodes

−0.09 −0.16 −0.09 −0.05 −0.05 −0.01

AvgD slope—remove
random nodes

−0.06 −0.14 −0.07 −0.07 −0.07 −0.03

MDP of NC—remove
Top10/%

1.73 1.60 2.33 1.22 1.85 3.27

MDP of NC—remove
Hub/%

0.46 0.47 0.56 1.54 1.54 1.02

MDP of AvgD—remove
Top10 /%

1.26 1.38 1.86 1.94 2.48 3.17

MDP of AvgD—remove
Hub /%

0.46 0.48 0.57 1.61 1.57 1.20

NC slope—remove random nodes, slope of the regression of NC with removal of random
nodes; MDP of NC—remove Hub, mean declined proportions of natural connectivity
since removing hub nodes; MDP of NC—remove Top 10, mean declined proportions of
natural connectivity since removing Top 10 nodes.

The soil extracellular enzyme activities
and microbial functional

In general, soil αg, βx, nag, and ap enzyme activities
enhanced with the years of solar park establishment, lap
decreased in Y1 but achieved the highest value in Y6, and
βg revealed a contrary trend with other enzymes which had
significant growth in Y1 but dropped to the lowest in Y6
(Figure 5A). These findings indicated a potential promotion of
SP on soil EEAs. Mantel analysis was carried out to disentangle
the explicit relationships between explained variables and soil
C, N, and P enzyme activities. As shown in Figure 5B and
Supplementary Figure 4, carbon, nitrogen, and phosphorus
EEAs all had significant correlations with environmental
characteristics, alpha and beta diversities, and partial network
attributes of both prokaryotes and fungi. VPA showed major
portions (>80%) of the soil EEAs variations were explained
by environmental properties, microbial diversity, and microbial
network attributes (Figure 5C). Network attributes contributed
most to the variance of soil EEAs, but environmental properties
explained the most alone. The diversity and network attributes
of fungi explained more variance of soil EEAs than that of
prokaryotes (Figure 5C).

Discussion

Responses of soil microbial matrix to SP were analyzed from
different aspects: microbial diversity and community structure,
complexity and stability of microbial co-occurrence network,
and microbial function potentials.

Soil microbial diversity and community
structure

Soil evaporation under the solar park declined due to the
interception of shortwave radiation by the photovoltaic panel
(Weinstock and Appelbaum, 2009), which further promoted
the soil water content under the solar park. The decrease in
prokaryotic diversity under SP possibly stemmed from higher
soil moisture, which has been observed in many studies that
increased soil water content (Tan et al., 2020) or enhancing
precipitation regime significantly reduced soil bacterial diversity
(Zhang et al., 2016). The negative correlation between SWC
and alpha diversity (Supplementary Figure 2) indicates that
parts of soil prokaryotic taxa that survived in the dry ecosystem
may not adapt to the moist conditions (Zhao et al., 2018).
No significant difference in fungal diversity was found in this
study (Figure 2), which may result from their morphological
life form: fungi are generally considered more resistant to
soil water fluctuation than bacteria (Barnard et al., 2013).
A global fungi diversity survey from 15,000 topsoil samples
suggested that the crucial factors influencing fungi diversity
differed among phylogenetic and functional groups of fungi
and that soil pH was typically the most effective edaphic
predictor of fungal richness in genera (Tedersoo et al., 2014).
We found that solar park influenced the local microclimate
most and vegetation but had little effect on soil pH (Table 1).
That may also be the reason for no significant difference in
fungi diversity.

We found significant impacts of soil water content on
the prokaryotic community composition and a significant
reduction of soil water evaporation in solar park habitats
(Table 1 and Supplementary Figure 5). These results suggested
that regulations of SP on the structure of the microbial
residents via the mediation of habitat arid index attributed
to reduced soil water evaporation and/or absorption of solar
radiation in desert grassland. Prior studies have found the
significant impacts of the solar park on soil archaea and
prokaryotic community composition, and this study found
significant separation among fungi communities after solar park
installment (Figure 2), indicating that SP could mediate not
only prokaryotic communities but fungal communities. Given
the intimated correlations between environmental properties
and fungal taxa, the variations of fungal community structures
could mainly be because the changed environment in SP
habitats mediated the relative abundance of fungal taxa, such
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FIGURE 4

The network stability of three networks. Figures in the first row are the results of prokaryotes and figures in the second row are the results of
fungi. Images in panel (A) are the AvgD and NC with the removal of random nodes, images in panel (B) are the total declined proportions of
AvgD and NC since removing all keystone nodes, images in panel (C) are the negative and positive cohesion, and images in panel (D) are the
node vulnerability. *, **, and *** indicate significant differences at 0.05, 0.01, and 0.001 level, respectively.

as phyla Ascomycota and Mortierellomycota (Supplementary
Figure 1). Mantel test showed that soil water content, plant
diversity, and biomass had great correlations with soil fungal
community structure (Supplementary Table 2), which is
consistent with the results of precipitation control experiments
(Xiao et al., 2020).

Complexity and stability of microbial
co-occurrence networks

The distinct responses of prokaryotic and fungal
communities to solar parks in water-limited areas provide
fundamental information for our understanding of microbial
network robustness under the background of global climate
change. In the present study, we used a series of network
topological parameters and diverse indicators related to
network robustness to reveal the microbial interactions (if
correlations between taxa are treated as putative interactions).
Our results supported the proposed hypothesis that changed
environmental factors induced by solar parks had a time
effect on the complexity and robustness of soil microbial
co-occurrence networks. This hypothesis was based, in part,
on previous findings that altered soil water contents and
years could strongly impact the complexity and robustness
of co-occurrence relationships among microbes (Yuan et al.,
2021; Li et al., 2022). Indeed, the overall topological properties
of prokaryotic networks changed with SP years and showed
a unimodal pattern rather than a linear model. The results

are similar to prior reports that robustness of co-occurrence
relationships had a dramatic shift in the second year since
watering and then network robustness tended to recover to
the previous trends observed in the first year (Shi et al., 2020).
These results suggest that the prokaryotic network may have
pulse responses in the case of emerging soil water content
increase, but they will return to the initial state with the
adaptation to the soil water conditions. This trend has also been
observed in the responses of microbial community composition
and CO2 emissions to SWC variation (Barnard et al., 2013).
Higher SWC promoted dominant species abundance and made
them outcompete disadvantaged species, which weakened
the robustness of the network (Shi et al., 2020). With the
extension of the precipitation period, SWC would turn into
a stress factor for the soil microbes and then result in more
competing relationships among microbes, which enhanced
the network robustness in the fourth year. In this study, we
tend to assume changing interactions among microbes rather
than microbial community composition altered network
robustness (Ratzke et al., 2020). Several biogeographic studies
and field experiments have pointed out that, as with larger
organisms, microbes are dispersal-limited (Hanson et al., 2012).
Outstanding dispersal abilities are capable of promoting species
interactions (Lemes et al., 2022). Increased soil water availability
in SP habitats enhanced the dispersal ability of prokaryotic
species and provided them more opportunities to interact with
each other, which may explain higher network connectivity.
High connectivity resulted in a decrease in the robustness of the
Y1 network (Pietro et al., 2018). The recovery of the Y6 network
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FIGURE 5

Soil C, N, and P EEAs and their correlations with environmental characteristics and microbial matrix. Images in panel (A) are the Soil C, N, and P
EEAs, images in panel (B) are the correlations among soil EEAs, environmental characteristics, and microbial matrix, and images in panel (C) are
the variance portioning analysis. Features with suffix “.pro” and “.fun” indicate prokaryotic and fungal features, respectively. *, **, and ** indicate
significant differences at 0.05, 0.01, and 0.001 level, respectively.

may be attributed to microbial adaptation to the habitat.
Adaptive behavior of species in response to environmental
changes (Strona and Lafferty, 2016) can often form new links.
Food-web structures have been observed adaptive networks
(Nuwagaba et al., 2015), which promote stability (Nuwagaba
et al., 2017). Several studies have reported that microbes are
capable of adapting to shifting environments after long periods
of exposure (Tan et al., 2022). Therefore, we assumed that
microbial adaptation to higher SWC modified the network
interactions and then enhanced the network robustness after 6
years of exposure to SP. These assumptions were evidenced by
similar network nodes and changing interactive relationships
among microbes across three networks (Figure 3E).

Different models of fungi networks detected that network
complexity and robustness had few shifts a year since SP
installment, indicating a stronger network resistance of fungi
than the prokaryotic network to environmental changes (de
Vries et al., 2018). This result is consistent with the prior
assumption that prokaryotes are typically more sensitive than
fungi to water variation (Manzoni et al., 2012). Y6 showed a
more robust fungal network relative to Y1 and Y0, as evidenced
by less connectivity and larger modularity, and an increased
ratio of negative cohesion to positive cohesion. In addition,
relatively flat drops of NC and AvgD in the Y6 network
compared with Y1 and Y0 since the loss of random nodes
may indicate increasing robustness of the fungal network to
random species extinction. Recent experimental works have

suggested that keystone taxa exert direct impacts on soil
fungal network stability (Shen et al., 2022). The differences
in declined proportions of NC and AvgD between removal of
hub nodes and removal of Top 10 nodes could be attributed
to the large differences in network features among the three
networks, especially modularity. The modularity of the Y6
fungal network was two-fold that of the other two networks. The
high modularity ensures perturbations experienced by members
are harder to propagate through the entire community, and
thus the loss of hub nodes has fewer effects on network
robustness (Grilli et al., 2016). The greater loss of NC and
AvgD after removal of Top 10 nodes in Y6 may result from
the higher proportions of the node degree of Top 10 nodes
to all nodes in Y6 (24.5%) relative to Y1 (15.7%) and Y0
(19.5%), given that the algorithm estimating network robustness
is correlated with nodes degree. The results suggest that the
impacts of keystone nodes on microbial co-occurrence network
robustness depend on the definition of keystone nodes and
network complexity.

Biogeochemical cycle and microbial
function

In this study, we combined changes in soil extracellular
enzyme activities to illustrate the impact of the solar park on
microbial function potentials and link them with environmental
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factors, microbial matrix including alpha diversity, community
structures, and network topological features to disentangle the
dominant driving factors.

Soil extracellular enzymes play a crucial role in soil
biological processes such as the degradation and mineralization
of organic carbon, and the nutrient cycle including C, N,
and P (Baldrian, 2009). Moreover, the rapid responses of
soil EEAs to external disturbances make them a sensitive
indicator of soil quality evaluation (Asadishad et al., 2018;
Cao et al., 2020). Our results revealed that SP increased
most soil EEAs except βg related to carbon, nitrogen, and
phosphorous cycle (Figure 5A). The decreased βg enzyme
activities may attribute to reduced microbial taxa abundance
for observed significantly lower EC 3.2.1.2 in the Y6 habitat
based on results of functional prediction of the KEGG pathway
(Supplementary Figure 4). The increasing soil EEAs in SP
habitats could attribute to their positive correlations with
soil nutrients conditions including SWC, SOC, TN, MBC,
and MBN (Figure 5B), which was in agreement with prior
studies that improved nutrients condition could promote soil
enzyme activities (Xiao et al., 2019). Meanwhile, we found
diversity and community structure of both soil prokaryotes
and fungi also affected soil EEAs (Figure 5B), indicating soil
microbial communities play a critical role in mediating soil
EEAs (Roux et al., 2013; Xu et al., 2021). Many researchers
are increasingly aware that microbial communities mediate soil
enzyme activities in the means of regulating taxa abundance
related to soil enzyme synthesis and activity in the disturbed
environment (Burns et al., 2013). This study found significant
correlations between microbial taxa abundance at the phyla
level and soil EEAs (Supplementary Figure 6), such as the
significant positive correlation between phyla Ascomycota and
βg enzyme activity. Ascomycota comprises multiple fungal taxa
that can produce a set of enzymes that decompose cellulose to
glucose (Karkehabadi et al., 2014; Méndez-Líter et al., 2020).
These results suggested that solar parks could regulate soil
EEAs via changing relative abundances of prokaryotes and
fungal species related to soil extracellular enzyme production
(Krishnan et al., 2011).

An intriguing question is whether the network topological
features affect microbial functional potentials. We used various
analyses to address it. First, the Mantel test showed that
the network features linked tightly with C, N, and P cycle
EEAs, particularly C cycle EEAs (Figure 5C). Recent studies
in diverse ecosystems have found similar trends that the
topological characteristics of co-occurrence networks could be
associated with the observed microbial functional potentials
or ecological functions. An experiment conducted on the
grassland ecosystem reported more than half of carbon
(C) degradation genes had significant correlations with soil
microbial network indices after long-term warming (Yuan et al.,
2021). An investigation of anaerobic digestion system showed
that microbial network properties such as GD and AvgCC

correlated with high-hydrolysis efficiency (51.8–80.5%) and
methanogenesis efficiency (51.6–77.1%) (Guo et al., 2022). VPA
also revealed that topological features totally explained 55%
variances of soil EEAs, more than environmental parameters
(51%) and microbial diversity (49%) (Figure 5B). This result
indicates that the microbial co-occurrence network could
regulate microbial functions and it is possible that the changes
in network complexity serve as early indications of microbial
functions. Notably, these results indicate only the intimate
correlations between microbial co-occurrence network features
and microbial functions, and more and deep investigations
should be carried out to disentangle the mechanism.

These differential responses of soil EEAs to SP may
indicate that the regulation of environmental changes on soil
microbial function potentials has two ways: one is the bottom-
up regulation caused by shifts of vegetation composition and
soil environment, and the other one is the top-down controls
exerted by the producers of soil enzymes, soil microbes,
through changing diversity, and community composition and
interactive relationships.

Conclusion

In conclusion, our results indicate that solar park could alter
soil prokaryotic and fungal diversity, community structure, co-
occurrence network, and function potential. Soil water content
was the major factor regulating prokaryotic community.
Fungal communities were more intensively affected by soil
nutrients and vegetation. Prokaryotic network exhibited
a unimodal model to solar park installment while fungal
network presented more resistance. The network topological
features, in addition to habitat environment or microbial
community structures, had significant correlations with
microbial functional potentials.
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