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Double agent mTOR

Remodeled Cortical Inhibition Prevents Motor Seizures in Generalized Epilepsy
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Objective: Deletions of CACNA1A, encoding the a1 subunit of CaV 2.1 channels, cause epilepsy with ataxia in humans.
Whereas the deletion of Cacna1a in g-aminobutyric acidergic (GABAergic) interneurons (INs) derived from the medial
ganglionic eminence (MGE) impairs cortical inhibition and causes generalized seizures in Nkx2.1Cre;Cacna1ac/c mice, the
targeted deletion of Cacna1a in somatostatin-expressing INs (SOM-INs), a subset of MGE-derived INs, does not result in
seizures, indicating a crucial role of parvalbumin-expressing (PV) INs. Here, we identify the cellular and network consequences
of Cacna1a deletion specifically in PV-INs. Methods: We generated PVCre;Cacna1ac/c mutant mice carrying a conditional
Cacna1a deletion in PV neurons and evaluated the cortical cellular and network outcomes of this mutation by combining
immunohistochemical assays, in vitro electrophysiology, 2-photon imaging, and in vivo video-electroencephalographic
recordings. Results: PVCre;Cacna1ac/c mice display reduced cortical perisomatic inhibition and frequent absences, but only
rare motor seizures. Compared to Nkx2.1Cre;Cacna1ac/c mice, PVCre;Cacna1ac/c mice have a net increase in cortical
inhibition, with a gain of dendritic inhibition through sprouting of SOM-IN axons, largely preventing motor seizures. This
beneficial compensatory remodeling of cortical GABAergic innervation is mechanistic target of rapamycin complex 1
(mTORC1)-dependent, and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show
that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures.
Interpretation: Our findings provide novel evidence suggesting that the remodeling of cortical inhibition, with an mTOR-
dependent gain of dendritic inhibition, determines the seizure phenotype in generalized epilepsy and that mTOR inhibition can
be detrimental in epilepsies not primarily due to mTOR hyperactivation.

Commentary

The mechanistic target of rapamycin (mTOR) pathway regu-

lates neuronal plasticity, increases cell metabolism, and pro-

motes neuronal growth. Mutations that increase mTOR

signaling can cause tumor formation, but are also associated

with a range of neurological disorders including autism, corti-

cal dysplasia, and epilepsy. Increased mTOR pathway activa-

tion has also been observed in tissue collected from patients

with temporal lobe epilepsy, but without identified mTOR

pathway mutations,1 consistent with animal research indicating

that mTOR signaling is enhanced in acquired epilepsy.2

Research in the mTOR field was originally driven by the

chance discovery of the bacterial metabolite rapamycin in a

soil sample from Easter Island, located in the South Pacific

Ocean. Rapamycin is a powerful inhibitor of the mTOR path-

way and has served as a useful pharmacologic tool. Clinical

trials with rapamycin analogues have achieved promising

results in controlling seizures and central nervous system tumor

formation in tuberous sclerosis complex, a disease caused by

inactivating mutations in the mTOR pathway suppressors

TSC1 and TSC2.3 Preclinical studies in animal models of

acquired epilepsy—predicated on the observation that epilep-

togenic brain insults increase mTOR pathway activation—have

also achieved promising results, often producing dramatic

reductions in severe frequency. Intriguingly, however, a num-

ber of well-designed studies found no effect of rapamycin in

several common seizure models.4

Work by Jiang and colleagues has unexpectedly led to a

potential explanation for these discrepant effects of mTOR

antagonism. They examined epilepsy-causing mutations in the

gene encoding the a1 subunit of voltage-dependent calcium

channels CaV2.1. Prior work from the group demonstrated that

CaV2.1 loss from interneurons (INs) was sufficient to repro-

duce an epileptic phenotype in mice.5 In the present study, they

sought to identify which specific IN populations were critical.

Mutations affecting both parvalbumin (PV)-expressing and
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somatostatin (SOM)-expressing g-aminobutyric acidergic INs

led to epilepsy in the animals, while mutations affecting just

PV-expressing INs produced a milder epilepsy phenotype.

Mutations affecting just SOM-expressing INs didn’t produce

seizures at all.5 Loss of CaV2.1 from PV INs impaired their

synaptic efficiency, leading to a net reduction in inhibitory

control of their targets: excitatory pyramidal cells. It makes

sense, therefore, that loss of CaV2.1 from PV INs would be

proconvulsant. Somatostatin-expressing INs, on the other hand,

primarily target other INs, so it also makes sense that mutations

targeted to just this population would not produce seizures.

More curious, however, is why targeting the mutation to both

PV- or SOM-expressing INs would produce a more severe

epilepsy that targeting PV alone.

To begin to resolve this paradox, the group conducted elec-

trophysiological studies in PV-targeted CaV2.1 mutants. These

studies revealed that while synaptic efficiency at PV >> pyr-

amidal cell synapses was reduced in PV-targeted mutants,

overall inhibitory input to pyramidal cells was increased.

Through a combination of elegant electrophysiological and

anatomical work, the investigators discovered that in PV-

targeted mutants, unaffected SOM-expressing INs undergo

sprouting, providing compensatory inhibitory input to pyrami-

dal cells. In animals in which both PV- and SOM-expressing

INs are mutated, compensatory changes among the latter neu-

rons are presumably blocked. Having observed that SOM neu-

rons sprout in PV-targeted mutants, the investigators queried

whether this growth was mediated by mTOR. Rapamycin treat-

ment of PV-targeted mutants prevented SOM-expressing IN

sprouting and greatly exacerbated the seizure phenotype in the

animals. Rather than being antiepileptogenic in this model of

epilepsy, mTOR inhibition blocked an anticonvulsant sprout-

ing response.

The study by Jiang and colleagues highlights a key chal-

lenge for the epilepsy field, in which proconvulsant manipula-

tions can be flipped to anticonvulsant manipulations based on

the cellular and network properties of the affected neuronal

populations. While this now appears clear in the CaV2.1

model, it may well be true for other models. The pilocarpine

model of epilepsy—which has been used for decades in epi-

lepsy research—provides a good example. Somatostatin neu-

rons exhibit robust sprouting in pilocarpine-treated mice,6 and

rapamycin treatment of the animals is ineffective at controlling

seizures.7 Although a causal relationship has yet to be con-

firmed, rapamycin treatment blocks SOM neuron sprouting in

this model,8 suggesting that the treatment may be preventing a

similar compensatory change to that observed by Jiang and

colleagues, and therefore, obscuring any positive effects of the

drug. Sprouting of SOM neurons has been described in other

animal models of epilepsy and in humans with the disease,9,10

suggesting that this is a common phenomenon. Notably, in

children with tuberous sclerosis treated with the mTOR antago-

nist everolimus, seizure frequency was reduced in 13 of 20

patients, but increased in 3 patients.3 Blockade of compensa-

tory neuronal growth could contribute to the negative

outcomes.

Taken together, the data suggest that mTOR signaling may

mediate both proepileptogenic changes and compensatory inhi-

bitory changes. If true, the utility of mTOR antagonism as a

therapeutic strategy for epilepsy could be limited to a smaller

number of epileptic conditions in which mTOR-mediated

pathologic changes are dominant. Alternatively, it may be pos-

sible to further refine the use of these drugs to enhance their

utility. Jiang and colleagues observed that SOM neuron sprout-

ing was absent in 3-week-old mice and was blocked by rapa-

mycin treatment given between weeks 3 to 6. Although

additional studies are needed, if mTOR-mediated proepilepto-

genic effects are temporally dissociated from mTOR-mediated

compensatory changes, it may be possible to develop a timed

treatment regimen that could still be effective in epilepsy con-

ditions in which mTOR plays both sides. Inhibition of mTOR

signaling among only select neuronal populations—possibly

using viral delivery strategies—might also be effective. Target-

ing only excitatory neurons for mTOR inhibition, for example,

would allow compensatory changes among inhibitory neurons

to proceed.

The work by Jiang and colleagues provides several take-

home messages for thinking about epileptogenesis. Firstly, it

demonstrates the key importance of cellular specificity.

Depending on the cell population targeted, the same mutation

or therapy can produce both pro- and antiepileptogenic effects.

Secondly, the temporal dynamics of epileptogenesis is critical,

with agents likely producing different effects when applied

during different disease stages. Finally, the study clearly

demonstrates a phenomenon that has long been suspected in

the epilepsy field: that proepileptogenic changes can occur

concurrently with anticonvulsant compensatory changes. Opti-

mal therapeutic strategies for epilepsy, therefore, will require

an understanding of both processes and the development of

strategies to limit the former, while facilitating the latter.

By Steve C. Danzer
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