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INTRODUCTION

Antibody-	drug	 conjugates	 (ADCs)	 are	 engineered	 im-
munoconjugate	 drugs	 composed	 of	 three	 core	 compo-
nents:	 (1)	 a	 monoclonal	 antibody	 (mAb)	 and	 (2)	 one	 or	
more	 cytotoxic	 small	 molecules	 (known	 as	 payloads	 or	
warheads),	attached	via	(3)	a	chemical	 linker	(Figure 1).	

Predominantly	developed	as	cancer	therapies,	this	strategy	
aims	 to	harness	 the	advantages	of	both	chemotherapeu-
tics	and	biologics	while	minimizing	 their	disadvantages.	
Small	molecule	chemotherapy	drugs	provide	the	desired	
cell-	killing	 capabilities	 but	 do	 not	 discriminate	 between	
on-	target	 and	 off-	target	 cells,	 which	 can	 cause	 unneces-
sary	 damage	 to	 healthy	 tissue	 and	 harmful	 side	 effects.	
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Abstract
Antibody-	drug	 conjugates	 (ADCs)	 have	 gained	 traction	 in	 the	 oncology	 space	
in	 the	 past	 few	 decades,	 with	 significant	 progress	 being	 made	 in	 recent	 years.	
Although	the	use	of	pharmacometric	modeling	is	well-	established	in	the	drug	de-
velopment	process,	there	is	an	increasing	need	for	a	better	quantitative	biological	
understanding	 of	 the	 pharmacokinetic	 and	 pharmacodynamic	 relationships	 of	
these	complex	molecules.	Quantitative	systems	pharmacology	(QSP)	approaches	
can	assist	in	this	endeavor;	recent	computational	QSP	models	incorporate	ADC-	
specific	 mechanisms	 and	 use	 data-	driven	 simulations	 to	 predict	 experimental	
outcomes.	Various	modeling	approaches	and	platforms	have	been	developed	at	
the	in	vitro,	in	vivo,	and	clinical	scales,	and	can	be	further	integrated	to	facilitate	
preclinical	to	clinical	translation.	These	new	tools	can	help	researchers	better	un-
derstand	the	nature	and	mechanisms	of	these	targeted	therapies	to	help	achieve	a	
more	favorable	therapeutic	window.	This	review	delves	into	the	world	of	systems	
pharmacology	modeling	of	ADCs,	discussing	various	modeling	efforts	in	the	field	
thus	far.
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Antibodies	can	target	specific	cells	by	binding	to	particular	
antigens	on	the	cell	surface	but	may	lack	the	cytotoxicity	
to	 effectively	 destroy	 cells	 compared	 to	 chemotherapeu-
tics.1–	3	ADCs,	therefore,	strive	to	achieve	the	best	of	both	
worlds,	maximizing	efficacy	while	minimizing	toxicity.

This	targeted	drug	delivery	to	selected	cells	while	spar-
ing	 others	 is	 remarkably	 similar	 to	 Nobel	 Laureate	 Paul	
Ehrlich’s	early	20th	century	concept	of	the	“magic	bullet”	
for	treating	human	diseases.4	The	first	animal	studies	of	
ADCs	(in	the	1960s)	led	to	clinical	trials	in	the	1980s;	how-
ever,	despite	the	promise	of	ADCs	and	several	decades	of	
development,	success	has	been	limited	until	recently.	As	
of	 2021,	 there	 have	 been	 12	 ADCs	 approved	 for	 clinical	
use,	all	for	oncologic	indications,	with	a	majority	receiving	
approval	 in	2019	and	onward	 (Table 1).	For	other	appli-
cations,	such	as	immunomodulation,	limited	exploration	
has	occurred	in	recent	years.18	Clinical	development	has	
been	terminated	for	over	55	ADCs19;	these	failures	often	
stem	from	narrow	therapeutic	windows	(i.e.,	 the	separa-
tion	 between	 toxic	 and	 efficacious	 doses	 is	 small	 or	 ab-
sent).20	Designing	and	engineering	the	ADC	to	expand	the	

therapeutic	window	is	no	simple	 task.	Yet,	despite	 these	
hurdles,	 enthusiasm	 for	 ADCs	 remains	 high,	 with	 over	
80	ADC	candidates	in	nearly	600	ongoing	clinical	trials.19	
This	is	driven	by	new	ADC	technologies	(e.g.,	novel	con-
jugation	 techniques,	 warhead	 types,	 improved	 selection,	
and	optimization	of	antibodies),	translational	and	clinical	
development	strategies	(e.g.,	alternative	dosing	schedules,	
patient	 selection,	 improved	 use	 of	 biomarker	 data,	 and	
combination	 therapies),	 and	 an	 improved	 understand-
ing	of	ADC	therapeutic	index.19,20	These	approaches	will	
contribute	 to	 the	development	of	 the	next	generation	of	
ADCs.

Optimization	of	ADC	design	is	complex,	as	each	sub-
unit	 (antibody,	 linker,	 and	 warhead)	 can	 be	 considered	
both	individually	and	in	the	context	of	the	ADC	as	a	whole.

Selection	 of	 the	 antigen	 target	 and	 optimization	 of	
the	 mAb	 is	 crucial.	 A	 recombinant	 immunoglobulin	 G	
(IgG)	mAb	serves	as	the	base	of	the	ADC	and	vehicle	for	
the	 cytotoxic	 drug.	The	 target	 antigen	 for	 the	 antibody	
should	be	abundantly	expressed	on	the	surfaces	of	tumor	
cells,	 but	 not	 on	 other	 cell	 types.20	 The	 choice	 of	 the	

F I G U R E  1  Key	ADC	properties	
and	mechanisms	for	QSP	modeling.	
(a)	The	antibody,	linker,	and	warhead	
components	of	ADCs	each	have	
different	design	properties	that	must	be	
considered	during	modeling.	Another	key	
characteristic	is	the	drug-	to-	antibody	ratio	
(DAR),	which	typically	varies	between	
one	and	eight.	(b)	Key	mechanisms	of	
action	of	the	ADC	include	binding	to	
the	target	antigen,	internalization	into	
the	cell,	trafficking	and	recycling	of	the	
ADC,	endosomal	cleavage	of	the	linker	
or	lysosomal	degradation	of	the	ADC	for	
warhead	release,	influx	and	efflux	of	the	
warhead,	and	cell	killing	effects	at	the	site	
of	action.	ADC,	antibody-	drug	conjugate;	
QSP,	quantitative	systems	pharmacology.
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target	antigen	is	key,	as	target-	mediated	drug	disposition	
(TMDD)	 plays	 an	 important	 role	 in	 defining	 the	 phar-
macokinetics	(PK)	of	the	overall	ADC.21	Whereas	ADC-	
antigen	 binding	 generally	 triggers	 internalization	 and	
facilitates	 delivery	 of	 the	 warhead	 to	 the	 site	 of	 action	
inside	the	cell,	non-	internalized	ADCs	can	still	produce	
strong	 cell-	killing	 of	 the	 target	 cells	 and	 neighboring	
cells	(bystander	effect)	by	warhead	release.	Although	an-
titumor	 activity	 of	 the	 naked	 mAb	 is	 not	 necessary,	 in	
some	cases,	 the	mAb	can	activate	an	immune	response	
against	 the	 selected	 cells	 through	 antibody-	dependent	
cell-	mediated	cytotoxicity	(ADCC)	or	phagocytosis.	One	
example	is	trastuzumab	emtansine	(T-	DM1),	which	has	
DM1	 warheads	 attached	 to	 the	 mAb	 trastuzumab	 (ap-
proved	as	a	treatment	in	its	own	right)	that	targets	HER2	
receptors	in	HER2-	positive	breast	cancer.	Therefore,	the	
collective	antitumor	effects	of	both	the	mAb	and	the	war-
head	must	be	taken	into	account	in	such	instances.	Once	
the	target	antigen	has	been	selected,	the	mAb	itself	can	
be	further	engineered	to	improve	payload	delivery	(par-
ticularly	via	enhanced	control	of	linker	placement	on	the	
mAb)	and	to	have	high	target-	binding	affinity,	good	re-
tention,	and	low	immunogenicity	and	cross-	reactivity.22	
Modifying	the	mAb’s	ability	to	bind	to	Fc	receptors	(most	
notably	 neonatal	 Fc	 receptors	 or	 FcRns)	 can	 also	 alter	
the	therapeutic	index.23	ADCs	can	bind	to	FcRns	inside	
endosomes,	 allowing	 for	 recycling	 of	 the	 ADC	 back	 to	
the	cell	surface	where	the	higher	physiologic	pH	triggers	
unbinding	 from	 the	 FcRn.22	 This	 recycling	 mechanism	
impacts	 the	 PK	 profile	 of	 the	 ADC	 by	 reducing	 ADC	
clearance,	 which	 can	 help	 to	 improve	 the	 therapeutic	
index.24

Synthetic,	 covalent,	 chemical	 linkers	 connect	 the	
mAbs	to	the	cytotoxic	warheads	to	form	the	ADCs,	which	
typically	 have	 a	 drug-	to-	antibody	 ratio	 (DAR)	 between	
one	and	eight,	although	most	clinical-	stage	ADCs	have	an	
average	DAR	of	3.5–	4.20	Stability	of	 the	linker	 is	crucial,	
as	the	ADC	must	hold	onto	its	payload	while	in	systemic	
circulation,	 only	 releasing	 the	 warhead	 once	 inside	 the	
appropriate	 cell.	 Preventing	 deconjugation	 in	 the	 circu-
lation	reduces	off-	target	toxicity	and	increases	delivery	of	
the	 drug	 to	 the	 tumor.	 Both	 cleavable	 and	 noncleavable	
linkers	have	been	explored,	each	with	 its	own	set	of	ad-
vantages	 and	 disadvantages.	 ADCs	 with	 linkers	 that	 are	
cleavable,	 via	 lysosomal	 proteases,	 acidic	 pH,	 or	 break-
down	of	disulfide	bridges,	run	a	higher	risk	of	off-	target	
toxicity,	but	may	still	be	active	for	targets	with	poor	inter-
nalization,	whereas	ADCs	with	noncleavable	linkers	must	
be	 internalized,	 so	 that	 the	 mAb	 can	 then	 undergo	 pro-
teolytic	 degradation	 to	 release	 the	 warhead	 for	 action.25	
Another	 important	 consideration	 is	 the	 position	 of	 the	
linker	 on	 the	 mAb;	 control	 over	 the	 linker	 position	 en-
ables	 site-	specific	 conjugation	 of	 the	 warhead,	 allowing	D
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for	increased	homogeneity	of	an	ADC’s	DAR	and	higher	
consistency	in	the	amount	of	warhead	delivered	to	target	
cells.

The	cytotoxic	agent	(warhead)	is	a	chemotherapy	drug,	
optimized	 for	 high	 potency.	 As	 they	 lack	 specificity	 to	
tumor	cells,	warheads	depend	on	 the	antibody	 to	deliver	
them	to	the	correct	tissue.	The	mechanism	of	action	of	the	
drug	used	can	vary,	although	many	warheads	bind	to	DNA	
or	microtubules	 to	cause	cell	death.	These	warheads	can	
also	serve	as	substrates	for	efflux	transporters,	which	en-
able	these	drugs	to	escape	the	target	cells	and	harm	nearby	
healthy	tissue	(known	as	 the	bystander	effect).2	Whereas	
these	 bystander	 effects	 undercut	 the	 ADC’s	 specificity	
and	delivery	of	warhead	to	the	target	cells,	 they	can	also	
be	beneficial,	such	as	in	solid	tumors	with	heterogeneous	
expression	of	the	target	antigen,	enabling	the	warhead	to	
reach	 tumor	 cells	 that	 do	 not	 express	 the	 target	 antigen.	
Most	ADCs	currently	in	clinical	trials	use	a	limited	number	
of	drug	families	as	warheads	(calicheamicins,	auristatins,	
maytansinoid,	topoisomerase	I	inhibitors,	and	pyrroloben-
zodiazepines),	as	the	warhead	must	fulfill	numerous	and	
sometimes	 contradictory	 criteria,	 such	 as	 high	 potency,	
high	 relative	 hydrophobicity,	 and	 having	 a	 suitable	 loca-
tion	 for	attachment	of	 the	 linker.20	The	potency	of	 these	
warheads	can	be	modified,	as	can	the	number	of	warheads	
per	 ADC	 (DAR).	 Determining	 the	 best	 combination	 of	
DAR	and	potency	to	maximize	efficacy	and	minimize	tox-
icity	is	a	key	challenge	in	designing	the	ADC.

In	 combining	 the	 antibody,	 linker,	 and	 warhead,	 the	
challenge	 is	 to	maximize	efficacy	and	minimize	 toxicity.	
This	 task	 calls	 for	 a	 deep	 understanding	 of	 the	 biologi-
cal	 and	 pharmacological	 systems,	 processes,	 and	 mech-
anisms	 at	 play.	 Seeking	 answers	 through	 experimental	
methods	 alone	 can	 be	 laborious,	 expensive,	 or	 even	 in-
feasible.	 Computational	 modeling	 can	 probe	 questions	
and	 enhance	 insight	 through	 quantitative	 simulation	 of	
drug	 action	 and	 performance.	 Researchers	 have	 often	
used	of	PK	and	pharmacodynamic	(PD)	models,	such	as	
physiologically-	based	 pharmacokinetic	 (PBPK)	 models,	
to	 aid	 in	 the	 drug	 development	 process.	 In	 particular,	
quantitative	systems	pharmacology	(QSP)	approaches	in-
tegrate	 mechanistic	 knowledge	 with	 biomedical	 data	 at	
multiple	scales	 to	construct	an	 interpretable	and	predic-
tive	model.26,27	Hence,	QSP	models	are	tools	that	allow	for	
maximum	use	of	available	preclinical	and	clinical	data	to	
improve	understanding	of	the	mechanism	and	derive	hy-
potheses	(Figure 2).

Due	to	the	complexity	of	ADCs,	the	breakdown	of	an	
ADC	molecule	generates	many	different	analytes,	which	
can	 make	 data	 collection	 difficult.	 When	 using	 experi-
mental	 data	 for	 parametrization,	 certain	 key	 analytes	
must	 be	 measured.	 Each	 of	 these	 different	 bioanalyti-
cal	measurements	are	crucial	to	developing	robust	QSP	

models	of	ADCs.	For	instance,	in	order	to	define	the	PK	
and	exposure-	response	relationships,	it	is	recommended	
to	measure	the	levels	of	either	conjugated	antibody	(an-
tibody	 with	 at	 least	 1	 warhead	 attached)	 or	 antibody-	
conjugated	drug	(total	warhead	conjugated	to	antibody),	
plus	 total	 antibody	 and	 unconjugated	 drug.28	Typically,	
these	analytes	are	measured	 in	 the	plasma,	 tumor,	and	
non-	target	 tissues	 that	 are	 common	 sites	 of	 toxicity,	 as	
these	 measurements	 are	 important	 for	 determining	
therapeutic	index	and	to	model	on-	target	and	off-	target	
effects.

Use	of	QSP	approaches	has	increased	in	recent	years,	
particularly	to	support	decision	making	in	drug	develop-
ment,	 drug	 approvals,	 and	 clinical	 practice.29	 A	 survey	
with	respondents	from	over	30	pharmaceutical	companies	
indicated	 the	use	of	nonclinical	QSP	modeling	 in	a	ma-
jority	of	the	companies	in	various	therapeutic	areas	(with	
autoimmune	disorders	and	oncology	having	the	most	QSP	
support),	 and	 this	 trend	 of	 increased	 QSP	 modeling	 ap-
plications	is	expected	to	continue.30	Efforts	to	build	QSP	
models	 of	 ADCs	 not	 only	 arise	 from	 biotechnology	 and	
pharmaceutical	 companies,	 but	 also	 from	 academic	 re-
searchers,	 as	 well	 as	 academia-	industry	 collaborations.	
Different	 types	 of	 models,	 including	 PK,	 PD,	 and	 spa-
tially	 detailed	 models	 have	 been	 developed	 for	 different	
purposes	and	 to	answer	different	questions.	 In	addition,	
they	have	been	applied	to	understand	various	ADCs	and	
to	simulate	different	scenarios,	including	in	vitro	cell	cul-
ture,	preclinical	animal	experiments,	and	clinical	trials	in	
humans.

Previous	 reviews	 have	 described	 a	 variety	 of	 PK-	PD	
models	 applicable	 to	 ADCs	 at	 the	 discovery,	 preclinical	
development,	and	clinical	development	stages	of	drug	de-
velopment.31	 In	 this	 review,	 we	 examine	 computational	
models	of	ADCs	classified	within	the	umbrella	of	systems	
pharmacology	 with	 a	 focus	 on	 mechanism-	based	 mod-
els,32	 mainly	 those	 that	 build	 upon	 known	 cellular	 and	
intracellular	processes	of	ADCs.	Apart	from	one	paper,	we	
describe	studies	focused	on	modeling	efficacy	rather	than	
toxicity.

We	will	highlight	some	of	 the	key	systems	pharma-
cology	 models	 for	 ADCs	 developed	 in	 the	 past	 several	
years,	 describing	 model	 development	 and	 progres-
sion,	key	findings,	and	examples	of	model	applications	
(Table 2).	These	models	are	organized	in	four	key	areas,	
grouped	 by	 their	 respective	 focuses,	 approaches,	 and	
insights	 (as	 noted	 in	 Figure  3):	 cellular	 mechanisms;	
spatial	representation	(including	tumor	heterogeneity);	
preclinical	 translation;	and	clinical	 translation.	Several	
models	cover	more	than	one	of	these	areas;	where	rele-
vant,	we	have	included	them	in	more	than	one	category,	
or	focused	mainly	on	their	main	contribution	to	one	spe-
cific	category.
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GLOSSARY OF MODELED ADCs

Anti-	5T4	ADC	(A1mcMMAF):	an	in-	house	ADC	targeting	
5T4,	 an	 oncofetal	 antigen	 expressed	 on	 tumor-	initiating	
cells.

Brentuximab	 vedotin	 (SGN-	35):	 CD30-	targeting	 an-
tibody	linked	to	monomethyl	auristatin	E	(MMAE)	war-
heads	via	valine-	citrulline	 linkers,	used	 for	 treatment	of	
relapsed	Hodgkin’s	lymphoma	(HL)	and	anaplastic	large	
cell	lymphoma	(ALCL).

Inotuzumab	 ozogamicin:	 CD22-	targeting	 antibody	
linked	 to	 N-	Ac-	γ-	calicheamicin	 DMH	 molecules	 for	 tar-
geting	 B	 cell	 malignancies	 such	 as	 non-	Hodgkin’s	 lym-
phoma	(NHL)	and	acute	lymphocytic	leukemia	(ALL).

Trastuzumab	emtansine	(T-	DM1):	HER2-	targeting	an-
tibody	 covalently	 linked	 to	 emtansine	 (DM1)	 warheads	
approved	for	use	to	treat	HER2+	breast	cancer.

Trastuzumab-	vc-	MMAE	 (T-	vc-	MMAE	 or	 T-	MMAE):	
consists	 of	 MMAE	 warheads	 conjugated	 to	 trastuzumab	
with	valine-	citrulline	peptide	linkers,	often	used	as	a	tool	
ADC.

Trastuzumab	 maytansinoid:	 a	 HER2-	targeting	 ADC	
similar	 to	 T-	DM1	 (DM1	 is	 a	 cytotoxic	 maytansinoid),	
which	is	used	clinically	for	treating	HER2+	breast	cancer.

Anti-	STEAP1-	vc-	MMAE	ADC	(DSTP3086S):	STEAP1-	
targeting	 antibody	 linked	 to	 monomethyl	 auristatin	 E	
(MMAE)	warheads	via	valine-	citrulline	linkers,	for	target-
ing	prostate	cancer.

F I G U R E  2  Structure	and	key	considerations	for	QSP	modeling	of	ADCs.	During	QSP	modeling	of	ADCs,	the	relevant	data	types	
may	vary	between	different	biological	scales,	as	do	the	structures	of	the	computational	models	themselves.	Subsequently,	the	resulting	
simulations	enable	the	exploration	of	different	phenomena	at	the	in	vitro,	in	vivo,	and	clinical	scales.	Ab,	antibody;	ADC,	antibody-	drug	
conjugate;	PBPK,	physiologically-	based	pharmacokinetic;	PK,	pharmacokinetic.



   | 973SYSTEMS PHARMACOLOGY MODELS OF ADCS

T
A

B
L

E
 2

	
Li

st
	o

f	A
D

C
	Q

SP
	m

od
el

s

M
od

el
R

ef
T

it
le

G
ro

up
A

D
C

 m
od

el
ed

Sc
al

e
K

ey
 in

si
gh

ts

Sh
ah

	e
t	a

l.	
(2

01
2)

5
Be

nc
h	

to
	b

ed
si

de
	tr

an
sl

at
io

n	
of

	a
nt

ib
od

y	
dr

ug
	c

on
ju

ga
te

s	u
si

ng
	a

	m
ul

tis
ca

le
	

m
ec

ha
ni

st
ic

	P
K

/P
D

	m
od

el
:	a

	c
as

e	
st

ud
y	

w
ith

	b
re

nt
ux

im
ab

-	v
ed

ot
in

Pf
iz

er
Br

en
tu

xi
m

ab
-	

ve
do

tin
In

	v
itr

o/
in

	v
iv

o/
cl

in
ic

al
Th

is	
m

od
el

	is
	o

ne
	o

f	t
he

	fi
rs

t	Q
SP

	m
od

el
s	t

ai
lo

re
d	

fo
r	A

D
Cs

	u
sin

g	
ce

ll-
	

le
ve

l	m
ec

ha
ni

sm
s	t

ha
t	l

ay
s	t

he
	fo

un
da

tio
n	

m
or

e	
m

an
y	

fu
tu

re
	m

od
el

s,	
an

d	
pr

ov
id

es
	a

	st
ra

te
gy

	fo
r	p

re
cl

in
ic

al
	to

	cl
in

ic
al

	tr
an

sla
tio

n	
by

	u
sin

g	
pr

ec
lin

ic
al

	d
at

a	
to

	p
re

di
ct

	cl
in

ic
al

	re
sp

on
se

.	D
isp

os
iti

on
	o

f	t
he

	A
D

C
	

an
d	

pa
yl

oa
d	

w
er

e	
id

en
tif

ie
d	

as
	k

ey
	p

ro
ce

ss
es

;	f
or

	in
st

an
ce

,	d
ru

g	
ef

flu
x	

ra
te

	w
as

	fo
un

d	
to

	b
e	

an
	im

po
rt

an
t	p

ar
am

et
er

	th
at

	is
	o

fte
n	

ov
er

lo
ok

ed

H
ad

di
sh

-	
Be

rh
an

e	
et

	a
l.	

(2
01

3)

7
O

n	
tr

an
sl

at
io

n	
of

	a
nt

ib
od

y	
dr

ug
	c

on
ju

ga
te

s	
ef

fic
ac

y	
fr

om
	m

ou
se

	e
xp

er
im

en
ta

l	
tu

m
or

s	t
o	

th
e	

cl
in

ic
:	a

	P
K

-	P
D

	a
pp

ro
ac

h

Pf
iz

er
T-

	D
M

1	
an

d	
an

	
an

ti-
	5T

4	
A

D
C

	
(A

1m
cM

M
A

F)

In
	v

iv
o/

cl
in

ic
al

C
om

pa
ri

so
n	

of
	th

re
e	

tr
an

sd
uc

tio
n	

m
od

el
s	r

ep
re

se
nt

in
g	

tu
m

or
	g

ro
w

th
	

in
hi

bi
tio

n	
en

ab
le

d	
th

e	
de

ve
lo

pm
en

t	a
	h

yb
ri

di
ze

d	
m

od
el

	th
at

	c
ou

ld
	

m
or

e	
ac

cu
ra

te
ly

	p
re

di
ct

	c
el

l	g
ro

w
th

	a
nd

	k
ill

in
g.

	T
he

	a
ut

ho
rs

	a
ls

o	
pr

es
en

te
d	

th
e	

“t
um

or
	st

at
ic

	c
on

ce
nt

ra
tio

n”
	c

ri
te

ri
a	

th
at

	c
an

	b
e	

us
ed

	
as

	a
	m

ea
su

re
	o

f	e
ffi

ca
cy

	fo
r	a

n	
A

D
C

Sh
ah

	e
t	a

l.	
(2

01
4)

33
A

	p
ri

or
i	p

re
di

ct
io

n	
of

	tu
m

or
	p

ay
lo

ad
	

co
nc

en
tr

at
io

ns
:	p

re
cl

in
ic

al
	c

as
e	

st
ud

y	
w

ith
	a

n	
au

ri
st

at
in

-	b
as

ed
	a

nt
i-	5

 T
4	

A
D

C

SU
N

Y	 Bu
ffa

lo
,	

Pf
iz

er

A
nt

i-	5
T4

	A
D

C
	

(A
1m

cM
M

A
F)

In
	v

itr
o/

in
	v

iv
o

Th
is

	is
	a

	m
ec

ha
ni

sm
-	b

as
ed

	P
K

	m
od

el
	o

f	A
1m

cM
M

A
F	

(b
as

ed
	o

n	
Sh

ah
	

et
	a

l.	
20

12
)	t

ha
t	c

an
	b

e	
us

ed
	to

	p
re

di
ct

	tu
m

or
	c

on
ce

nt
ra

tio
ns

	o
f	

th
e	

A
D

C
	a

nd
	p

ay
lo

ad
.	T

he
	a

ut
ho

rs
	n

ot
ic

ed
	th

at
	th

e	
se

ns
iti

vi
ty

	
of

	se
ve

ra
l	k

ey
	m

od
el

	o
ut

pu
ts

	is
	d

os
e-

	de
pe

nd
en

t,	
an

d	
fo

un
d	

th
at

	
pa

yl
oa

d	
di

ss
oc

ia
tio

n	
an

d	
tu

m
or

	si
ze

	w
er

e	
ke

y	
pa

ra
m

et
er

s

Be
nd

er
	e

t	a
l.	

(2
01

4)

8
A

	m
ec

ha
ni

st
ic

	P
K

	m
od

el
	e

lu
ci

da
tin

g	
th

e	
di

sp
os

iti
on

	o
f	t

ra
st

uz
um

ab
	e

m
ta

ns
in

e	
(T

-	D
M

1)
,	a

n	
A

D
C

	fo
r	t

re
at

m
en

t	o
f	

m
et

as
ta

tic
	b

re
as

t	c
an

ce
r

G
en

en
te

ch
T-

	D
M

1
In

	v
iv

o
Tw

o	
PK

	m
od

el
in

g	
ap

pr
oa

ch
es

	u
si

ng
	p

re
cl

in
ic

al
	d

at
a	

w
er

e	
ex

pl
or

ed
;	

th
e	

fir
st

	a
pp

ro
ac

h	
in

co
rp

or
at

es
	st

ep
w

is
e	

de
co

nj
ug

at
io

n	
of

	th
e	

sm
al

l	
m

ol
ec

ul
e	

dr
ug

	fr
om

	th
e	

m
ai

n	
tr

as
tu

zu
m

ab
	b

od
y,

	a
nd

	is
	o

ne
	o

f	
th

e	
fir

st
	m

od
el

s	o
f	A

D
C

	to
	d

o	
so

.	H
ow

ev
er

,	a
s	t

hi
s	i

s	v
er

y	
da

ta
-	

in
te

ns
iv

e,
	a

	se
co

nd
	a

pp
ro

ac
h	

us
in

g	
a	

re
du

ce
d	

m
od

el
	w

ith
	a

	si
ng

le
	

de
co

nj
ug

at
io

n	
pa

ra
m

et
er

	w
as

	a
ls

o	
pr

op
os

ed
	fo

r	s
itu

at
io

ns
	w

he
n	

le
ss

	a
na

ly
tic

al
	d

at
a	

is
	a

va
ila

bl
e

V
as

al
ou

	
et

	a
l.	

(2
01

5)

34
A

	m
ec

ha
ni

st
ic

	tu
m

or
	p

en
et

ra
tio

n	
m

od
el

	to
	

gu
id

e	
A

D
C

	d
es

ig
n

N
ov

ar
tis

G
en

er
al

	A
D

C
	

fr
am

ew
or

k
In

	v
itr

o/
in

	v
iv

o
O

ne
	o

f	t
he

	m
os

t	d
et

ai
le

d	
m

ec
ha

ni
st

ic
	m

od
el

s	f
or

	A
D

C
s	a

t	t
he

	ti
m

e,
	

th
is

	A
D

C
	m

od
el

	fr
am

ew
or

k	
in

cl
ud

es
	A

D
C

	b
in

di
ng

	a
nd

	p
ay

lo
ad

	
re

le
as

e	
ki

ne
tic

s,	
re

ce
pt

or
	d

yn
am

ic
s,	

sy
st

em
ic

	d
is

tr
ib

ut
io

n,
	

va
sc

ul
ar

	p
er

m
ea

bi
lit

y,
	a

nd
	in

te
rs

tit
ia

l	t
ra

ns
po

rt
.	T

he
	h

ig
hl

y	
cu

st
om

iz
ab

le
	n

at
ur

e	
en

ab
le

s	p
ar

am
et

er
s	t

o	
be

	a
dj

us
te

d	
ba

se
d	

on
	

th
e	

ch
ar

ac
te

ri
st

ic
s	o

f	t
he

	A
D

C
,	t

ar
ge

t	r
ec

ep
to

r,	
an

d	
tu

m
or

.	T
he

	
re

se
ar

ch
er

s	f
ou

nd
	tu

m
or

	a
ttr

ib
ut

es
	th

at
	c

ou
ld

	d
ec

re
as

e	
A

D
C

	
ef

fic
ac

y	
(e

.g
.,	

hi
gh

	re
ce

pt
or

	e
xp

re
ss

io
n	

ca
us

in
g	

a	
bi

nd
in

g	
si

te
	

ba
rr

ie
r)

	a
nd

	st
ra

te
gi

c	
A

D
C

	p
ro

pe
rt

ie
s	t

ha
t	c

ou
ld

	o
ve

rc
om

e	
th

em
	

(e
.g

.,	
us

in
g	

an
tib

od
ie

s	w
ith

	sl
ig

ht
ly

	lo
w

er
	a

ffi
ni

tie
s	t

o	
ov

er
co

m
e	

th
is

	
ba

rr
ie

r)

(C
on

tin
ue

s)



974 |   LAM et al.

M
od

el
R

ef
T

it
le

G
ro

up
A

D
C

 m
od

el
ed

Sc
al

e
K

ey
 in

si
gh

ts

M
aa

ss
	e

t	a
l.	

(2
01

6)

35
D

et
er

m
in

at
io

n	
of

	c
el

lu
la

r	p
ro

ce
ss

in
g	

ra
te

s	
fo

r	a
	tr

as
tu

zu
m

ab
-	m

ay
ta

ns
in

oi
d	

A
D

C
	

hi
gh

lig
ht

s	k
ey

	p
ar

am
et

er
s	f

or
	A

D
C

	
de

si
gn

M
IT

,	P
fiz

er
Tr

as
tu

zu
m

ab
-	

m
ay

ta
ns

in
oi

d	
A

D
C

	(T
M

-	A
D

C
)

In
	v

itr
o

R
es

ea
rc

he
rs

	d
ev

el
op

ed
	a

	se
t	o

f	g
en

er
al

iz
ab

le
	te

ch
ni

qu
es

	to
	p

ar
am

et
ri

ze
	

a	
co

m
pu

ta
tio

na
l	m

od
el

	o
f	t

he
	c

el
lu

la
r	p

ro
ce

ss
in

g	
of

	A
D

C
s,	

in
cl

ud
in

g	
A

D
C

	b
in

di
ng

	to
	th

e	
ta

rg
et

	a
nt

ig
en

,	r
ec

ep
to

r-
	m

ed
ia

te
d	

in
te

rn
al

iz
at

io
n,

	p
ro

te
ol

yt
ic

	A
D

C
	d

eg
ra

da
tio

n,
	p

ay
lo

ad
	e

ffl
ux

,	a
nd

	
pa

yl
oa

d	
bi

nd
in

g	
to

	th
e	

in
tr

ac
el

lu
la

r	t
ar

ge
t.	

Th
e	

re
su

lti
ng

	k
in

et
ic

	
m

od
el

	c
an

	b
e	

in
co

rp
or

at
ed

	in
to

	la
rg

er
	P

K
-	P

D
	m

od
el

s	a
s	d

es
cr

ib
ed

	
in

	th
e	

co
m

pa
ni

on
	p

ap
er

	(S
in

gh
	e

t	a
l.	

20
16

a)
.	I

nt
er

na
liz

at
io

n	
an

d	
ef

flu
x	

ra
te

s	w
er

e	
fo

un
d	

to
	b

e	
ke

y	
pa

ra
m

et
er

s	t
ha

t	i
nf

lu
en

ce
	le

ve
ls

	o
f	

pa
yl

oa
d	

de
liv

er
y

Si
ng

h	
et

	a
l.	

(2
01

6a
)

9
Ev

ol
ut

io
n	

of
	A

D
C

	tu
m

or
	d

is
po

si
tio

n	
m

od
el

	
to

	p
re

di
ct

	p
re

cl
in

ic
al

	tu
m

or
	P

K
s	o

f	
tr

as
tu

zu
m

ab
-	e

m
ta

ns
in

e	
(T

-	D
M

1)

SU
N

Y	 Bu
ffa

lo
,	

M
IT

,	
Pf

iz
er

T-
	D

M
1

In
	v

itr
o/

in
	v

iv
o

U
si

ng
	th

e	
pa

ra
m

et
er

s	d
er

iv
ed

	fr
om

	th
e	

in
	v

itr
o	

ex
pe

ri
m

en
ts

	a
s	

de
sc

ri
be

d	
in

	M
aa

ss
	e

t	a
l.	

20
16

,	t
he

	a
ut

ho
rs

	in
te

gr
at

ed
	th

is
	c

el
l-	

le
ve

l	m
ec

ha
ni

st
ic

	m
od

el
	w

ith
	a

	tu
m

or
	d

is
po

si
tio

n	
m

od
el

.	T
he

y	
fo

un
d	

th
at

	re
ce

pt
or

-	m
ed

ia
te

d	
en

do
cy

to
si

s	a
nd

	p
as

si
ve

	d
iff

us
io

n	
co

nt
ri

bu
te

d	
di

ffe
re

nt
ly

	to
	in

tr
ac

el
lu

la
r	d

ru
g	

ex
po

su
re

	a
t	t

he
	

di
ffe

re
nt

	sc
al

es
,	a

nd
	th

at
	d

ru
g	

ex
po

su
re

	in
	th

e	
sy

st
em

	is
	se

ns
iti

ve
	

to
	d

ec
on

ju
ga

tio
n	

an
d	

di
ffu

si
on

	o
f	t

he
	d

ru
g	

ac
ro

ss
	th

e	
m

em
br

an
e	

of
	

th
e	

tu
m

or
	c

el
l

Be
tts

	e
t	a

l.	
(2

01
6)

17
Pr

ec
lin

ic
al

	to
	c

lin
ic

al
	tr

an
sl

at
io

n	
of

	A
D

C
s	

us
in

g	
PK

-	P
D

	m
od

el
in

g:
	a

	re
tr

os
pe

ct
iv

e	
an

al
ys

is
	o

f	i
no

tu
zu

m
ab

	o
zo

ga
m

ic
in

Pf
iz

er
,	

Ja
ns

se
n,

	
Br

is
to

l-	
M

ey
er

s	
Sq

ui
bb

In
ot

uz
um

ab
	

oz
og

am
ic

in
,	a

	
C

D
22

-	ta
rg

et
in

g	
A

D
C

In
	v

itr
o/

in
	v

iv
o/

cl
in

ic
al

Th
is

	m
ul

tis
ca

le
,	m

ec
ha

ni
sm

-	b
as

ed
	P

K
-	P

D
	m

od
el

	in
cl

ud
es

	A
D

C
	

di
sp

os
iti

on
	a

nd
	c

le
ar

an
ce

	in
	th

e	
pl

as
m

a	
an

d	
tu

m
or

,	c
el

lu
la

r-
	le

ve
l	

m
ec

ha
ni

sm
s,	

an
d	

tu
m

or
	g

ro
w

th
	a

nd
	in

hi
bi

tio
n.

	M
od

el
	a

na
ly

si
s	

sh
ow

ed
	th

at
	tu

m
or

	g
ro

w
th

,	A
D

C
	P

K
,	a

nd
	p

ay
lo

ad
	e

ffl
ux

	to
	b

e	
se

ns
iti

ve
	p

ar
am

et
er

s	a
nd

	p
ot

en
tia

lly
	m

or
e	

us
ef

ul
	th

an
	a

nt
ig

en
	

ex
pr

es
si

on
	a

s	a
	p

re
di

ct
or

	o
f	o

ut
co

m
e.

	M
od

el
	si

m
ul

at
io

ns
	a

ls
o	

sh
ow

ed
	th

at
	w

hi
le

	a
	m

or
e	

co
nv

en
tio

na
l	d

os
in

g	
re

gi
m

en
	w

or
ks

	w
el

l	
fo

r	N
H

L,
	fr

ac
tio

na
te

d	
do

si
ng

	m
ay

	p
ro

vi
de

	im
pr

ov
ed

	re
su

lts
	fo

r	A
LL

C
ill

ie
rs

	e
t	a

l.	
(2

01
6)

10
M

ul
tis

ca
le

	m
od

el
in

g	
of

	A
D

C
s:	

co
nn

ec
tin

g	
tis

su
e	

an
d	

ce
llu

la
r	d

is
tr

ib
ut

io
n	

to
	w

ho
le

	
an

im
al

	P
K

s	a
nd

	p
ot

en
tia

l	i
m

pl
ic

at
io

ns
	

fo
r	e

ffi
ca

cy

U
ni

v.
	o

f	
M

ic
hi

ga
n

T-
	D

M
1

In
	v

itr
o/

in
	v

iv
o

Th
is

	m
ul

tis
ca

le
	m

od
el

	is
	th

e	
fir

st
	to

	in
te

gr
at

e	
ce

llu
la

r	m
ec

ha
ni

sm
s	

w
ith

	a
	P

B-
	PK

	m
od

el
	to

	c
ha

ra
ct

er
iz

e	
T-

	D
M

1.
	N

ot
ab

ly
,	t

he
	tu

m
or

	
co

m
pa

rt
m

en
t	w

as
	re

pr
es

en
te

d	
by

	a
	K

ro
gh

	c
yl

in
de

r	t
is

su
e	

m
od

el
,	

en
ab

lin
g	

re
pr

es
en

ta
tio

n	
of

	ti
ss

ue
-	s

ca
le

	d
is

tr
ib

ut
io

ns
	o

f	A
D

C
s	

an
d	

an
tib

od
ie

s,	
w

hi
ch

	is
	n

ot
	re

fle
ct

ed
	in

	th
e	

ty
pi

ca
l	“

w
el

l-	
st

ir
re

d”
	c

om
pa

rt
m

en
ts

	in
	P

BP
K

	m
od

el
s.	

Th
ey

	fo
un

d	
an

tib
od

y	
co

-	a
dm

in
is

tr
at

io
n	

ca
n	

he
lp

	to
	im

pr
ov

e	
A

D
C

	p
en

et
ra

tio
n	

in
to

	th
e	

tu
m

or
,	b

y	
ov

er
co

m
in

g	
th

e	
bi

nd
in

g	
si

te
	b

ar
ri

er
.	A

n	
an

al
ys

is
	o

f	s
ix

	
pu

bl
ic

at
io

ns
	su

gg
es

te
d	

th
at

	a
t	a

	c
on

st
an

t	d
os

e	
of

	a
	su

ffi
ci

en
tly

	
po

te
nt

	sm
al

l	m
ol

ec
ul

e,
	A

D
C

s	w
ith

	a
	lo

w
er

	D
A

R
	a

nd
	h

ig
he

r	
an

tib
od

y	
do

se
	w

er
e	

ge
ne

ra
lly

	m
or

e	
su

cc
es

sf
ul

	in
	re

du
ci

ng
	tu

m
or

	
gr

ow
th

	th
an

	th
os

e	
w

ith
	a

	w
ith

	a
	h

ig
he

r	D
A

R
	a

nd
	lo

w
er

	a
nt

ib
od

y	
do

se

T
A

B
L

E
 2

	
(C

on
tin

ue
d)



   | 975SYSTEMS PHARMACOLOGY MODELS OF ADCS

M
od

el
R

ef
T

it
le

G
ro

up
A

D
C

 m
od

el
ed

Sc
al

e
K

ey
 in

si
gh

ts

Si
ng

h	
et

	a
l.	

(2
01

6b
)

36
Q

ua
nt

ita
tiv

e	
ch

ar
ac

te
ri

za
tio

n	
of

	in
	v

itr
o	

by
st

an
de

r	e
ffe

ct
	o

f	A
D

C
s

SU
N

Y	 Bu
ffa

lo
Tr

as
tu

zu
m

ab
-	v

c-
	

M
M

A
E

In
	v

itr
o

To
	e

xp
lo

re
	th

e	
ra

te
	a

nd
	e

xt
en

t	o
f	t

he
	b

ys
ta

nd
er

	k
ill

in
g	

in
	a

	
he

te
ro

ge
ne

ou
s	s

ys
te

m
,	t

he
	a

ut
ho

rs
	u

se
d	

a	
co

-	c
ul

tu
re

	e
xp

er
im

en
ta

l	
sy

st
em

	a
nd

	d
is

co
ve

re
d	

a	
po

si
tiv

e	
co

rr
el

at
io

n	
be

tw
ee

n	
by

st
an

de
r	

ef
fe

ct
s	a

nd
	in

cr
ea

se
d	

re
ce

pt
or

	e
xp

re
ss

io
n	

le
ve

ls
,	a

	su
bs

ta
nt

ia
l	t

im
e	

de
la

y	
be

fo
re

	b
ys

ta
nd

er
	k

ill
in

g	
oc

cu
rr

ed
	in

	th
e	

an
tig

en
	n

eg
at

iv
e	

ce
lls

,	a
nd

	e
vi

de
nc

e	
th

at
	b

ys
ta

nd
er

	k
ill

in
g	

m
ay

	d
ec

re
as

e	
as

	th
e	

po
pu

la
tio

n	
of

	a
nt

ig
en

	p
os

iti
ve

	c
el

ls
	sh

ri
nk

s.	
Ba

se
d	

on
	th

is
	d

at
a,

	
th

ey
	d

ev
el

op
ed

	a
	n

ov
el

	P
D

	m
od

el
	to

	p
re

di
ct

	th
es

e	
by

st
an

de
r	e

ffe
ct

s,	
in

te
gr

at
in

g	
ce

ll	
di

st
ri

bu
tio

n	
m

od
el

s	t
ha

t	r
ep

re
se

nt
ed

	th
e	

an
tig

en
	

po
si

tiv
e	

an
d	

ne
ga

tiv
e	

ce
lls

	in
	th

e	
sy

st
em

Su
ku

m
ar

an
	

et
	a

l.	
(2

01
7)

37
D

ev
el

op
m

en
t	a

nd
	tr

an
sl

at
io

na
l	a

pp
lic

at
io

n	
of

	a
n	

in
te

gr
at

ed
,	m

ec
ha

ni
st

ic
	m

od
el

	o
f	

A
D

C
	P

K
s

G
en

en
te

ch
D

ST
P3

08
6S

	(a
nt

i-	
ST

EA
P1

-	v
c-

	
M

M
A

E)

In
	v

itr
o/

in
	v

iv
o/

cl
in

ic
al

Th
is

	m
ec

ha
ni

sm
-	b

as
ed

	p
la

tfo
rm

	m
od

el
	to

	p
re

di
ct

	P
K

	b
eh

av
io

r	o
f	

M
M

A
E-

	ba
se

d	
A

D
C

s	i
nc

lu
de

s	D
A

R
-	d

ep
en

de
nt

	c
le

ar
an

ce
	a

nd
	

ex
pl

ic
it	

re
pr

es
en

ta
tio

n	
of

	a
ll	

D
A

R
	sp

ec
ie

s	f
or

	th
e	

A
D

C
,	i

nc
lu

di
ng

	
se

qu
en

tia
l	d

ec
on

ju
ga

tio
n	

as
	a

	h
ig

he
r	D

A
R

	c
on

ve
rt

s	t
o	

a	
lo

w
er

	
D

A
R

	sp
ec

ie
s;	

th
e	

m
od

el
	sh

ow
ed

	th
at

	a
s	D

A
R

	in
cr

ea
se

s,	
an

tib
od

y	
cl

ea
ra

nc
e	

in
cr

ea
se

s	s
ha

rp
ly

.	T
he

	a
ut

ho
rs

	in
te

gr
at

ed
	ro

de
nt

	a
nd

	
cy

no
m

ol
gu

s	m
on

ke
y	

PK
	p

ro
fil

es
	in

to
	a

	c
ro

ss
-	s

pe
ci

es
	m

od
el

,	w
hi

ch
	

su
cc

es
sf

ul
ly

	c
ap

tu
re

d	
PK

	p
ro

fil
es

	o
f	t

he
	d

iff
er

en
t	a

na
ly

te
s,	

as
	w

el
l	

as
	m

ea
su

re
m

en
ts

	fr
om

	a
	p

ha
se

	I	
cl

in
ic

al
	tr

ia
l	f

ol
lo

w
in

g	
al

lo
m

et
ri

c	
sc

al
in

g	
of

	a
pp

ro
pr

ia
te

	p
ar

am
et

er
s

Si
ng

h	
an

d	
Sh

ah
	

(2
01

7a
)

11
A

pp
lic

at
io

n	
of

	a
	P

K
-	P

D
	m

od
el

in
g	

an
d	

si
m

ul
at

io
n-

	ba
se

d	
st

ra
te

gy
	fo

r	c
lin

ic
al

	
tr

an
sl

at
io

n	
of

	A
D

C
s:	

a	
ca

se
	st

ud
y	

w
ith

	
tr

as
tu

zu
m

ab
	e

m
ta

ns
in

e	
(T

-	D
M

1)

SU
N

Y	 Bu
ffa

lo
T-

	D
M

1
In

	v
iv

o/
cl

in
ic

al
U

si
ng

	th
e	

PK
-	P

D
	m

od
el

in
g	

ap
pr

oa
ch

	d
es

cr
ib

ed
	in

	B
et

ts
	e

t	a
l.	

20
16

	
al

on
g	

w
ith

	th
e	

pr
ec

lin
ic

al
	tu

m
or

	d
is

po
si

tio
n	

m
od

el
	fr

om
	S

in
gh

	
et

	a
l.	

20
16

a,
	th

e	
au

th
or

s	d
ev

el
op

ed
	a

	tr
an

sl
at

ed
	P

K
-	P

D
	m

od
el

	a
nd

	
co

nd
uc

te
d	

a	
ca

se
	st

ud
y	

w
ith

	T
-	D

M
1,

	si
m

ul
at

in
g	

cl
in

ic
al

	tr
ia

ls
	to

	
pr

ed
ic

t	P
FS

	a
nd

	O
R

R
s.	

Th
e	

si
m

ul
at

ed
	re

su
lts

	w
er

e	
co

m
pa

ra
bl

e	
to

	
th

os
e	

fr
om

	th
re

e	
se

pa
ra

te
	tr

ia
ls

,	a
nd

	su
gg

es
te

d	
th

at
	a

	fr
ac

tio
na

te
d	

do
si

ng
	re

gi
m

en
	m

ay
	p

ro
vi

de
	a

	m
or

e	
su

bs
ta

nt
ia

l	i
m

pr
ov

em
en

t	i
n	

O
R

R
	th

an
	in

cr
ea

si
ng

	th
e	

cl
in

ic
al

ly
	a

pp
ro

ve
d	

do
se

A
it-

	O
ud

hi
a	

et
	a

l.	
(2

01
7)

6
A

	m
ec

ha
ni

sm
-	b

as
ed

	P
K

-	P
D

	m
od

el
	fo

r	
he

m
at

ol
og

ic
al

	to
xi

ci
tie

s	i
nd

uc
ed

	b
y	

A
D

C
s

U
ni

v.
	o

f	
Fl

or
id

a,
	

SU
N

Y	
Bu

ffa
lo

Br
en

tu
xi

m
ab

	
ve

do
tin

	
(S

G
N

-	3
5)

	a
nd

	
ad

ot
ra

st
uz

um
ab

	
em

ta
ns

in
e	

(T
-	D

M
1)

In
	v

iv
o

R
es

ea
rc

he
rs

	d
ev

el
op

ed
	m

ec
ha

ni
sm

-	b
as

ed
	P

K
-	P

D
	m

od
el

s	t
o	

as
se

ss
	

th
e	

he
m

at
ol

og
ic

al
	to

xi
ci

tie
s	o

f	T
-	D

M
1	

an
d	

SG
N

-	3
5,

	b
ui

ld
in

g	
tw

o	
co

m
pa

rt
m

en
ta

l	m
od

el
s	w

ith
	li

ne
ar

	e
lim

in
at

io
n	

an
d	

fir
st

	
or

de
r	p

ay
lo

ad
	re

le
as

e,
	w

hi
ch

	w
er

e	
ab

le
	to

	a
cc

ur
at

el
y	

re
fle

ct
	th

e	
PK

	p
ro

fil
es

	a
nd

	A
D

C
-	in

du
ce

d	
he

m
at

ol
og

ic
al

	to
xi

ci
tie

s	o
f	b

ot
h	

A
D

C
s.	

Th
ey

	a
ls

o	
si

m
ul

at
ed

	th
e	

ef
fe

ct
s	o

f	t
he

	li
nk

er
	d

es
ig

n	
on

	th
e	

as
so

ci
at

ed
	m

ye
lo

su
pp

re
ss

io
n	

by
	c

ha
ng

in
g	

th
e	

pa
yl

oa
d	

re
le

as
e	

ra
te

	c
on

st
an

t,	
w

hi
ch

	fo
un

d	
he

m
at

ot
ox

ic
ity

	m
ay

	b
e	

im
pr

ov
ed

	b
y	

a	
fo

ur
fo

ld
	in

cr
ea

se
	in

	th
e	

de
co

nj
ug

at
io

n	
ra

te
	o

f	T
-	D

M
1,

	o
r	a

	7
0%

	
de

cr
ea

se
	in

	th
at

	o
f	S

G
N

-	3
5

TA
BL

E	
2	

(C
on

tin
ue

d)

(C
on

tin
ue

s)



976 |   LAM et al.

M
od

el
R

ef
T

it
le

G
ro

up
A

D
C

 m
od

el
ed

Sc
al

e
K

ey
 in

si
gh

ts

Si
ng

h	
an

d	
Sh

ah
	

(2
01

7b
)

38
M

ea
su

re
m

en
t	a

nd
	m

at
he

m
at

ic
al

	
ch

ar
ac

te
ri

za
tio

n	
of

	c
el

l-	l
ev

el
	

PK
s	o

f	A
D

C
s:	

a	
ca

se
	st

ud
y	

w
ith

	
Tr

as
tu

zu
m

ab
-	v

c-
	M

M
A

E

SU
N

Y	 Bu
ffa

lo
Tr

as
tu

zu
m

ab
-	v

c-
	

M
M

A
E

In
	v

itr
o

To
	q

ua
nt

ify
	th

e	
ce

ll-
	le

ve
l	P

K
s	o

f	t
he

	to
ol

	A
D

C
	T

-	v
c-

	M
M

A
E,

	th
e	

au
th

or
s	c

on
du

ct
ed

	c
el

lu
la

r	d
is

po
si

tio
n	

st
ud

ie
s	i

n	
lo

w
-	H

ER
2	

an
d	

hi
gh

-	H
ER

2	
ex

pr
es

si
ng

	c
el

l	l
in

es
,	u

si
ng

	th
re

e	
m

ai
n	

an
al

yt
ic

al
	

m
et

ho
ds

	to
	m

ea
su

re
	c

on
ce

nt
ra

tio
ns

	fo
r	t

hr
ee

	k
ey

	a
na

ly
te

s	
(u

nc
on

ju
ga

te
d	

dr
ug

,	t
ot

al
	d

ru
g,

	a
nd

	to
ta

l	a
nt

ib
od

y)
.	T

he
y	

us
ed

	th
is

	
ex

te
ns

iv
e	

da
ta

	to
	e

st
im

at
e	

ra
te

s	f
or

	p
ay

lo
ad

	in
flu

x,
	e

ffl
ux

,	a
nd

	A
D

C
	

in
tr

ac
el

lu
la

r	d
eg

ra
da

tio
n,

	b
ui

ld
in

g	
a	

no
ve

l	s
in

gl
e-

	ce
ll	

di
sp

os
iti

on
	

m
od

el
	to

	d
es

cr
ib

e	
th

e	
th

re
e	

ke
y	

an
al

yt
es

.	T
he

ir
	g

lo
ba

l	s
en

si
tiv

ity
	

an
al

ys
is

	re
ve

al
ed

	A
D

C
	in

te
rn

al
iz

at
io

n	
an

d	
de

gr
ad

at
io

n	
ra

te
s,	

H
ER

2	
ex

pr
es

si
on

,	a
nd

	p
ay

lo
ad

	e
ffl

ux
	to

	b
e	

ke
y	

pa
ra

m
et

er
s	i

nf
lu

en
ci

ng
	

in
tr

ac
el

lu
la

r	M
M

A
E	

ex
po

su
re

K
he

ra
	e

t	a
l.	

(2
01

8)

12
C

om
pu

ta
tio

na
l	t

ra
ns

po
rt

	a
na

ly
si

s	o
f	A

D
C

	
by

st
an

de
r	e

ffe
ct

s	a
nd

	p
ay

lo
ad

	tu
m

or
al

	
di

st
ri

bu
tio

n:
	im

pl
ic

at
io

ns
	fo

r	t
he

ra
py

U
ni

v.
	o

f	
M

ic
hi

ga
n

Tr
as

tu
zu

m
ab

-	v
c-

	
M

M
A

E	
an

d	
T-

	D
M

1

In
	v

itr
o/

in
	v

iv
o

Bu
ild

in
g	

on
	C

ill
ie

rs
	e

t	a
l.	

20
16

,	t
hi

s	c
om

pu
ta

tio
na

l	m
od

el
	fo

cu
se

s	o
n	

A
D

C
	so

lid
	tu

m
or

	d
is

tr
ib

ut
io

n	
an

d	
by

st
an

de
r	e

ffe
ct

s,	
pr

ed
ic

tin
g	

pa
yl

oa
d	

di
st

ri
bu

tio
n	

as
	a

	fu
nc

tio
n	

of
	a

nt
ib

od
y	

do
se

,	p
ay

lo
ad

	d
os

e,
	

an
d	

pa
yl

oa
d	

pr
op

er
tie

s.	
Th

e	
te

am
	fo

un
d	

th
at

	d
ir

ec
t	c

el
l	k

ill
in

g	
(v

ia
	

re
ce

pt
or

-	m
ed

ia
te

d	
A

D
C

	u
pt

ak
e)

	to
	b

e	
m

or
e	

ef
fic

ie
nt

	th
an

	b
ys

ta
nd

er
	

ki
lli

ng
,	t

ho
ug

h	
th

e	
pr

op
er

tie
s	o

f	t
he

	p
ay

lo
ad

	a
re

	a
n	

im
po

rt
an

t	f
ac

to
r	

in
	d

et
er

m
in

in
g	

th
is

.	T
he

	m
od

el
	c

an
	b

e	
us

ed
	to

	id
en

tif
y	

th
e	

op
tim

al
	

A
D

C
	d

os
in

g	
an

d	
pa

yl
oa

d	
ph

ys
io

ch
em

ic
al

	p
ro

pe
rt

ie
s	t

o	
im

pr
ov

e	
de

liv
er

y	
th

ro
ug

ho
ut

	th
e	

tu
m

or
	a

nd
	m

ax
im

iz
e	

ef
fic

ac
y

Sh
ah

	e
t	a

l.	
(2

01
8)

13
Es

ta
bl

is
hi

ng
	IV

IV
C

	fo
r	A

D
C

	e
ffi

ca
cy

:	a
	P

K
-	

PD
	m

od
el

in
g	

ap
pr

oa
ch

SU
N

Y	 Bu
ffa

lo
,	

Pf
iz

er

19
	d

iff
er

en
t	A

D
C

s,	
in

cl
ud

in
g	

	
T-

	D
M

1	
an

d	
ot

he
rs

	
w

ith
	si

m
ila

r	
m

ec
ha

ni
sm

s	o
f	

ac
tio

n

In
	v

itr
o/

in
	v

iv
o

D
at

a	
fo

r	1
9	

A
D

C
s	w

er
e	

us
ed

	to
	e

st
ab

lis
h	

an
	IV

IV
C

	b
et

w
ee

n	
th

e	
in

	v
itr

o	
an

d	
in

	v
iv

o	
ef

fic
ac

y	
of

	a
n	

A
D

C
.	T

he
	a

ut
ho

rs
	d

ev
el

op
ed

	a
	si

m
pl

e	
PK

-	
PD

	m
od

el
	c

ha
ra

ct
er

iz
ed

	u
si

ng
	e

xp
er

im
en

ta
l	d

at
a	

to
	c

al
cu

la
te

	th
e	

TS
C

	a
t	b

ot
h	

th
e	

in
	v

itr
o	

an
d	

in
	v

iv
o	

sc
al

es
.	T

he
	in

	v
itr

o	
an

d	
in

	v
iv

o	
TS

C
s	h

ad
	a

	p
os

iti
ve

	li
ne

ar
	re

la
tio

ns
hi

p,
	a

nd
	w

er
e	

us
ed

	to
	e

st
ab

lis
h	

th
e	

IV
IV

C
,	w

hi
ch

	c
an

	b
e	

us
ed

	to
	ra

pi
dl

y	
id

en
tif

y	
pr

om
is

in
g	

ea
rl

y-
	

st
ag

e	
A

D
C

	c
an

di
da

te
s	a

nd
	h

el
p	

to
	o

pt
im

iz
e	

th
e	

de
si

gn
	o

f	p
re

cl
in

ic
al

	
st

ud
ie

s

Si
ng

h	
an

d	
Sh

ah
	

(2
01

9)

39
A

	“
D

ua
l”

	c
el

l-	l
ev

el
	sy

st
em

s	P
K

-	P
D

	m
od

el
	to

	
ch

ar
ac

te
ri

ze
	th

e	
by

st
an

de
r	e

ffe
ct

	o
f	A

D
C

SU
N

Y	 Bu
ffa

lo
Tr

as
tu

zu
m

ab
-	v

c-
	

M
M

A
E

In
	v

itr
o

To
	e

xa
m

in
e	

th
e	

in
	v

itr
o	

by
st

an
de

r	e
ffe

ct
s	o

f	A
D

C
,	t

he
	a

ut
ho

rs
	

de
ve

lo
pe

d	
a	

ce
ll-

	le
ve

l	s
ys

te
m

s	P
K

-	P
D

	m
od

el
	fo

r	t
w

o	
ce

ll	
lin

es
	

(h
ig

h	
an

d	
lo

w
	H

ER
2	

ex
pr

es
si

ng
)	b

y	
in

te
gr

at
in

g	
th

ei
r	p

re
vi

ou
sl

y	
pu

bl
is

he
d	

ce
ll-

	le
ve

l	P
K

	m
od

el
	(S

in
gh

	a
nd

	S
ha

h	
20

17
b)

	to
	th

e	
ce

ll-
	

di
st

ri
bu

tio
n	

PD
	m

od
el

	(S
in

gh
	e

t	a
l.	

20
16

b)
.	T

he
	m

od
el

s	f
or

	b
ot

h	
ce

ll	
ty

pe
s	w

er
e	

m
ec

ha
ni

st
ic

al
ly

	in
te

gr
at

ed
	to

	d
es

cr
ib

e	
th

e	
by

st
an

de
r	

ef
fe

ct
s,	

an
d	

th
e	

su
bs

eq
ue

nt
	d

ua
l	m

od
el

	w
as

	a
bl

e	
to

	re
as

on
ab

ly
	

re
fle

ct
	th

e	
ob

se
rv

ed
	e

xp
er

im
en

ta
l	d

at
a,

	su
gg

es
tin

g	
th

at
	a

	si
m

ila
rl

y	
hi

gh
	tu

bu
lin

	o
cc

up
an

cy
	b

y	
M

M
A

E	
w

as
	re

qu
ir

ed
	to

	a
ch

ie
ve

	th
e	

de
si

re
d	

cy
to

to
xi

c	
ef

fe
ct

s	i
n	

bo
th

	c
el

l	l
in

es

T
A

B
L

E
 2

	
(C

on
tin

ue
d)



   | 977SYSTEMS PHARMACOLOGY MODELS OF ADCS

M
od

el
R

ef
T

it
le

G
ro

up
A

D
C

 m
od

el
ed

Sc
al

e
K

ey
 in

si
gh

ts

Si
ng

h	
et

	a
l.	

(2
01

9)

40
A

	c
el

l-	l
ev

el
	sy

st
em

s	P
K

-	P
D

	m
od

el
	to

	
ch

ar
ac

te
ri

ze
	in

	v
iv

o	
ef

fic
ac

y	
of

	A
D

C
s

SU
N

Y	 Bu
ffa

lo
Tr

as
tu

zu
m

ab
-	

va
lin

e-
	

ci
tr

ul
lin

e-
	

m
on

om
et

hy
l	

au
ri

st
at

in
	E

	
(T

-	v
c-

	M
M

A
E)

In
	v

itr
o/

in
	v

iv
o

By
	in

te
gr

at
in

g	
th

e	
pr

ev
io

us
	si

ng
le

-	c
el

l	P
K

-	P
D

	m
od

el
	(S

in
gh

	a
nd

	S
ha

h,
	

20
19

)	w
ith

	tu
m

or
	d

is
tr

ib
ut

io
n,

	th
e	

gr
ou

p	
de

ve
lo

pe
d	

an
	in

	v
iv

o	
sy

st
em

s	P
K

-	P
D

	m
od

el
	th

at
	si

m
ila

rl
y	

pr
ed

ic
ts

	T
-	v

c-
	M

M
A

E	
ef

fic
ac

y	
as

	a
	fu

nc
tio

n	
of

	in
tr

ac
el

lu
la

r	t
ar

ge
t	o

cc
up

an
cy

.	T
he

	h
ig

h-
	H

ER
2	

ex
pr

es
si

ng
	tu

m
or

s	h
ad

	h
ig

he
r	e

xp
os

ur
es

	to
	to

ta
l	t

ra
st

uz
um

ab
,	

un
co

nj
ug

at
ed

	M
M

A
E,

	a
nd

	to
ta

l	M
M

A
E	

co
m

pa
re

d	
to

	th
e	

lo
w

-	H
ER

2	
ex

pr
es

si
ng

	tu
m

or
s,	

as
	w

el
l	a

s	h
ig

he
r	t

ub
ul

in
	o

cc
up

an
cy

.	H
ow

ev
er

,	
th

e	
pl

as
m

a	
PK

	o
f	a

ll	
A

D
C

	a
na

ly
te

s	a
nd

	p
ro

lo
ng

ed
	re

te
nt

io
n	

of
	

M
M

A
E	

w
er

e	
si

m
ila

r	b
et

w
ee

n	
bo

th
	tu

m
or

	ty
pe

s

Si
ng

h	
et

	a
l.	

(2
02

0a
)

14
A

nt
ib

od
y	

co
-	a

dm
in

is
tr

at
io

n	
as

	a
	st

ra
te

gy
	to

	
ov

er
co

m
e	

bi
nd

in
g-

	si
te

	b
ar

ri
er

	fo
r	A

D
C

s:	
a	

qu
an

tit
at

iv
e	

in
ve

st
ig

at
io

n

SU
N

Y	 Bu
ffa

lo
,	

U
ni

v.
	o

f	
M

ic
hi

ga
n

T-
	D

M
1,

	
T-

	vc
-	M

M
A

E
In

	v
itr

o/
in

	v
iv

o
U

si
ng

	tw
o	

tr
as

tu
zu

m
ab

-	b
as

ed
	A

D
C

s	(
on

e	
w

ith
	a

nd
	o

ne
	w

ith
ou

t	
by

st
an

de
r	e

ffe
ct

s)
,	t

he
	re

se
ar

ch
er

s	c
on

du
ct

ed
	in

	v
iv

o	
ex

pe
ri

m
en

ts
	

an
d	

de
ve

lo
pe

d	
a	

se
m

im
ec

ha
ni

st
ic

	P
K

-	P
D

	m
od

el
	to

	e
va

lu
at

e	
th

e	
ef

fe
ct

s	o
f	A

D
C

	d
os

es
	w

ith
	a

nt
ib

od
y	

co
-	a

dm
in

is
tr

at
io

n	
(a

t	1
,	3

,	o
r	

8-
	fo

ld
	h

ig
he

r	a
nt

ib
od

y)
	o

r	w
ith

ou
t.	

C
o-

	ad
m

in
is

tr
at

io
n	

im
pr

ov
ed

	
ef

fic
ac

y	
in

	tu
m

or
s	w

ith
	h

ig
h	

an
tig

en
	e

xp
re

ss
io

n	
le

ve
ls

,	b
ut

	h
ad

	
lim

ite
d	

or
	n

eg
at

iv
e	

ef
fe

ct
	o

n	
tu

m
or

s	w
ith

	lo
w

er
	a

nt
ig

en
	e

xp
re

ss
io

n	
an

d	
fo

r	A
D

C
s	w

ith
	b

ys
ta

nd
er

	e
ffe

ct
s

M
en

ez
es

	
et

	a
l.	

(2
02

0)

15
A

n	
ag

en
t-	b

as
ed

	sy
st

em
s	p

ha
rm

ac
ol

og
y	

m
od

el
	o

f	t
he

	A
D

C
	k

ad
cy

la
	to

	p
re

di
ct

	
ef

fic
ac

y	
of

	d
iff

er
en

t	d
os

in
g	

re
gi

m
en

s

U
ni

v.
	o

f	
M

ic
hi

ga
n

T-
	D

M
1

In
	v

itr
o/

in
	v

iv
o

Th
is

	h
yb

ri
d	

ag
en

t-	b
as

ed
	m

od
el

	is
	th

e	
fir

st
	Q

SP
	m

od
el

	o
f	A

D
C

s	t
o	

in
co

rp
or

at
e	

he
te

ro
ge

ne
ity

	in
	th

e	
tu

m
or

	m
ic

ro
en

vi
ro

nm
en

t,	
in

cl
ud

in
g	

va
ri

at
io

n	
in

	b
lo

od
	v

es
se

l	d
en

si
ty

.	T
he

	m
od

el
	sh

ow
s	t

ha
t	

an
tib

od
y	

ca
rr

ie
r	d

os
es

	c
an

	in
cr

ea
se

	e
ffi

ca
cy

	w
he

n	
th

e	
ad

di
tio

na
l	

ce
lls

	re
ac

he
d	

by
	th

e	
A

D
C

	o
ve

rc
om

e	
th

e	
di

m
in

is
he

d	
pa

yl
oa

d	
up

ta
ke

	
ca

us
ed

	b
y	

th
e	

pr
es

en
ce

	o
f	t

he
	u

nc
on

ju
ga

te
d	

an
tib

od
y.

	F
ra

ct
io

na
te

d	
do

si
ng

	is
	sh

ow
n	

to
	b

e	
le

ss
	e

ffe
ct

iv
e	

th
an

	a
	si

ng
le

	d
os

e	
fo

r	c
o-

	
ad

m
in

is
tr

at
io

n,
	b

ut
	it

	c
an

	b
e	

us
ef

ul
	w

he
n	

th
e	

in
cr

ea
se

d	
to

le
ra

bi
lit

y	
is

	n
ee

de
d

Sh
ar

m
a	

et
	a

l.	
(2

02
0)

41
Ev

al
ua

tio
n	

of
	q

ua
nt

ita
tiv

e	
re

la
tio

ns
hi

p	
be

tw
ee

n	
ta

rg
et

	e
xp

re
ss

io
n	

an
d	

A
D

C
	

ex
po

su
re

	in
si

de
	c

an
ce

r	c
el

ls

SU
N

Y	 Bu
ffa

lo
T-

	vc
-	M

M
A

E
In

	v
itr

o
To

	st
ud

y	
th

e	
lin

k	
be

tw
ee

n	
an

tig
en

	e
xp

re
ss

io
n	

le
ve

ls
	a

nd
	A

D
C

	
ex

po
su

re
	in

	tu
m

or
	c

el
ls

,	t
he

	a
ut

ho
rs

	m
ea

su
re

d	
th

e	
PK

	p
ro

fil
es

	
an

d	
in

te
rn

al
iz

at
io

n	
ra

te
s	o

f	T
-	v

c-
	M

M
A

E,
	a

nd
	re

ce
pt

or
	e

xp
re

ss
io

n	
fo

r	f
ou

r	d
iff

er
en

t	H
ER

2-
	ex

pr
es

si
ng

	c
el

l	l
in

es
.	T

he
	d

at
a	

w
as

	u
se

d	
to

	c
al

ib
ra

te
	th

ei
r	p

re
vi

ou
s	c

el
l-	l

ev
el

	sy
st

em
s	P

K
	m

od
el

	(S
in

gh
	

an
d	

Sh
ah

	2
01

7b
)	b

y	
fit

tin
g	

in
tr

ac
el

lu
la

r	d
eg

ra
da

tio
n	

ra
te

s	f
or

	tw
o	

ce
ll	

lin
es

.	T
he

y	
fo

un
d	

a	
st

ro
ng

	li
ne

ar
	c

or
re

la
tio

n	
be

tw
ee

n	
H

ER
2	

ex
pr

es
si

on
	le

ve
ls

	a
nd

	A
D

C
	e

xp
os

ur
e	

in
	tu

m
or

	c
el

ls
,	a

nd
	a

n	
in

ve
rs

e	
re

la
tio

ns
hi

p	
be

tw
ee

n	
H

ER
2	

ex
pr

es
si

on
	le

ve
l	a

nd
	in

te
rn

al
iz

at
io

n	
ra

te

TA
BL

E	
2	

(C
on

tin
ue

d)

(C
on

tin
ue

s)



978 |   LAM et al.

M
od

el
R

ef
T

it
le

G
ro

up
A

D
C

 m
od

el
ed

Sc
al

e
K

ey
 in

si
gh

ts

Si
ng

h	
et

	a
l.	

(2
02

0b
)

42
Ev

ol
ut

io
n	

of
	th

e	
sy

st
em

s	P
K

-	P
D

	m
od

el
	

fo
r	A

D
C

s	t
o	

ch
ar

ac
te

ri
ze

	tu
m

or
	

he
te

ro
ge

ne
ity

	a
nd

	in
	v

iv
o	

by
st

an
de

r	
ef

fe
ct

SU
N

Y	 Bu
ffa

lo
T-

	vc
-	M

M
A

E
In

	v
itr

o/
in

	v
iv

o
Th

e	
re

se
ar

ch
er

s	u
se

d	
a	

jo
in

t	e
xp

er
im

en
ta

l-	c
om

pu
ta

tio
na

l	a
pp

ro
ac

h	
to

	
ex

pl
or

e	
th

e	
si

gn
ifi

ca
nc

e	
of

	h
et

er
og

en
eo

us
	b

ys
ta

nd
er

	e
ffe

ct
s	o

f	A
D

C
s	

in
	v

iv
o	

by
	c

on
du

ct
in

g	
m

ou
se

	tu
m

or
	x

en
og

ra
ft	

st
ud

ie
s	a

t	v
ar

yi
ng

	
A

D
C

	d
os

ag
es

,	m
ea

su
ri

ng
	p

la
sm

a	
an

d	
tu

m
or

	P
K

	a
s	w

el
l	a

s	t
um

or
	

gr
ow

th
	in

hi
bi

tio
n.

	T
hi

s	s
ys

te
m

s	P
K

-	P
D

	m
od

el
	w

as
	b

ui
lt	

up
on

	
th

ei
r	p

re
vi

ou
s	m

od
el

s	t
o	

ac
co

un
t	f

or
	d

iff
er

en
t	c

el
l	p

op
ul

at
io

ns
	a

nd
	

re
ve

al
ed

	th
at

	fr
ac

tio
na

te
d	

do
si

ng
	m

ay
	im

pr
ov

e	
A

D
C

	e
ffi

ca
cy

	a
nd

	
by

st
an

de
r	e

ffe
ct

M
en

ez
es

	
et

	a
l.	

(2
02

2)

16
Si

m
ul

at
in

g	
th

e	
se

le
ct

io
n	

of
	re

si
st

an
t	c

el
ls

	
w

ith
	b

ys
ta

nd
er

	k
ill

in
g	

an
d	

an
tib

od
y	

co
-	

ad
m

in
is

tr
at

io
n	

in
	h

et
er

og
en

eo
us

	h
um

an
	

ep
id

er
m

al
	g

ro
w

th
	fa

ct
or

	re
ce

pt
or

	
2–

	po
si

tiv
e	

tu
m

or
s

U
ni

v.
	o

f	
M

ic
hi

ga
n

T-
	D

M
1,

	T
-	M

M
A

E
In

	v
itr

o/
in

	v
iv

o
Th

e	
au

th
or

s	e
xt

en
de

d	
th

ei
r	p

re
vi

ou
s	h

yb
ri

d	
ag

en
t-	b

as
ed

	m
od

el
	to

	
in

co
rp

or
at

e	
an

gi
og

en
es

is
,	h

et
er

og
en

eo
us

	re
ce

pt
or

	e
xp

re
ss

io
n,

	
tu

m
or

	c
el

l	s
en

si
tiv

ity
	to

	p
ay

lo
ad

s,	
an

d	
by

st
an

de
r	p

ay
lo

ad
	th

at
	c

an
	

di
ffu

se
	to

	su
rr

ou
nd

in
g	

ce
lls

.	U
si

ng
	th

is
	m

od
el

,	t
he

y	
in

ve
st

ig
at

ed
	

th
e	

ef
fe

ct
iv

en
es

s	o
f	c

o-
	ad

m
in

is
tr

at
io

n	
of

	u
nc

on
ju

ga
te

d	
an

tib
od

y	
w

ith
	A

D
C

,	a
s	w

el
l	a

s	b
ys

ta
nd

er
	k

ill
in

g.
	S

im
ul

at
io

ns
	u

si
ng

	th
is

	
m

od
el

	sh
ow

ed
	b

ot
h	

T-
	D

M
1	

an
d	

T-
	M

M
A

E	
be

ne
fit

te
d	

fr
om

	c
o-

	
ad

m
in

is
tr

at
io

n,
	in

cl
ud

in
g	

in
	tu

m
or

s	w
ith

	in
tr

in
si

c	
re

si
st

an
ce

	to
	th

e	
pa

yl
oa

d.
	A

dd
iti

on
al

ly
,	w

he
re

as
	c

o-
	ad

m
in

is
tr

at
io

n	
w

as
	p

ar
tic

ul
ar

ly
	

ef
fe

ct
iv

e	
fo

r	p
ay

lo
ad

s	w
ith

ou
t	b

ys
ta

nd
er

	e
ffe

ct
s,	

su
ch

	a
s	T

-	D
M

1,
	

th
is

	b
en

ef
it	

w
as

	re
du

ce
d	

w
ith

	lo
w

er
	re

ce
pt

or
	e

xp
re

ss
io

n

N
ot

e:
	L

is
t	o

f	A
D

C
	Q

SP
	M

od
el

s.	
A

	to
ta

l	o
f	2

3	
m

od
el

s	a
re

	c
ov

er
ed

	in
	th

is
	re

vi
ew

.	W
he

re
as

	th
e	

se
le

ct
ed

	m
od

el
s	a

re
	n

ot
	e

xh
au

st
iv

e,
	it

	p
ro

vi
de

s	a
	c

om
pr

eh
en

si
ve

	o
ve

rv
ie

w
	o

f	t
he

	k
ey

	in
si

gh
ts

	g
ai

ne
d	

fr
om

	Q
SP

	m
od

el
s	t

hu
s	

fa
r.

A
bb

re
vi

at
io

ns
:	A

D
C

,	a
nt

ib
od

y-
	dr

ug
	c

on
ju

ga
te

;	A
LL

,	a
cu

te
	ly

m
ph

oc
yt

ic
	le

uk
em

ia
;	D

A
R

,	d
ru

g-
	to

-	a
nt

ib
od

y	
ra

tio
;	I

V
IV

C
,	i

n	
vi

tr
o-

	in
	v

iv
o	

co
rr

el
at

io
n;

	M
M

A
E,

	m
on

om
et

hy
l	a

ur
is

ta
tin

	E
;	N

H
L,

	n
on

-	H
od

gk
in

’s	
ly

m
ph

om
a;

	
O

R
R

,	o
bj

ec
tiv

e	
re

sp
on

se
	ra

te
;	P

BP
K

,	p
hy

si
ol

og
ic

al
ly

-	b
as

ed
	p

ha
rm

ac
ok

in
et

ic
;	P

D
,	p

ha
rm

ac
od

yn
am

ic
;	P

FS
,	p

ro
gr

es
si

on
-	fr

ee
	su

rv
iv

al
;	P

K
,	p

ha
rm

ac
ok

in
et

ic
;	T

SC
,	t

um
or

	st
at

ic
	c

on
ce

nt
ra

tio
n;

	Q
SP

,	q
ua

nt
ita

tiv
e	

sy
st

em
s	

ph
ar

m
ac

ol
og

y.

T
A

B
L

E
 2

	
(C

on
tin

ue
d)



   | 979SYSTEMS PHARMACOLOGY MODELS OF ADCS

DEVELOPMENT OF SYSTEMS 
PHARMACOLOGY MODELS

Cellular mechanisms

Mechanistic	modeling	of	brentuximab	vedotin	
in	cell	culture5

One	of	 the	 first	system	pharmacology	models	of	ADCs	
was	developed	for	the	ADC	brentuximab	vedotin.5	Using	
experimental	data	from	multiple	sources	for	calibration	
and	verification,	the	model	captured	the	PKs	(i.e.,	distri-
bution)	of	the	ADC	and	of	warhead	at	the	cellular	level	
both	in	vitro	and	in	vivo,	and	was	able	to	predict	tumor	
warhead	 concentrations	 and	 tumor	 growth	 inhibition.	
The	 model	 of	 in	 vitro	 cell	 culture	 used	 simplifying	 as-
sumptions	 for	some	mechanisms,	such	as	representing	
the	 multiple	 steps	 of	 bound	 ADC	 internalization	 and	
release	 of	 intracellular	 warhead	 as	 a	 single	 step.	 The	
model	 also	 included	 extracellular	 ADC	 binding	 to	 the	
antigen,	and	extracellular	warhead	escaping	from	inside	
the	cell.	In	vitro	experiments	were	simulated	using	data	
from	an	existing	study	in	two	CD30+	cell	lines,	and	the	

simulated	 results	 were	 compared	 to	 data	 from	 a	 sepa-
rate	 experimental	 study.	 In	 later	 models	 and	 publica-
tions,	 more	 mechanistic	 detail	 was	 added,	 as	 we	 will	
see	below.	We	will	also	discuss	this	paper	further	in	the	
Clinical Translation	section.

Comparing	and	refining	pharmacodynamic	
models	of	cell	growth	and	killing7

Researchers	 developed	 refined	 models	 of	 cell	 killing	
by	 comparing	 three	 existing	 representative	 PD	 models	
of	 tumor	 growth	 inhibition.7	 These	 models	 represent	
tumor	 volume	 in	 a	 series	 of	 transit	 compartments	 to	
link	the	PKs	to	the	tumor	growth	response.	The	existing	
models	had	differing	cell	growth	and	killing	functions,	
but	 none	 fully	 captured	 the	 patterns	 seen	 in	 the	 data.	
Thus,	the	authors	proposed	new	hybrid	functions	based	
on	 these	 three	 models,	 combining	 exponential,	 linear,	
and	 logistic	 cell	 growth	 and	 a	 saturable	 Michaelis–	
Menten	 equation	 for	 cell	 killing.	 They	 also	 introduced	
the	 concept	 of	 “tumor	 static	 concentration”	 (TSC)	 to	
represent	 the	 minimum	 inhibitory	 concentration	 (i.e.,	

F I G U R E  3  Characteristics	of	selected	of	systems	pharmacology	models	of	ADCs.	Here,	we	highlight	four	examples	from	the	23	models	
covered	in	this	review,	for	which	key	model	characteristics	are	listed	for	comparison.	In	addition	to	exploring	the	PK	and	PD	aspects	
of	these	models,	we	will	focus	on	insights	gained	in	four	categories	as	noted	on	the	figure:	cellular	mechanisms,	spatial	representation,	
preclinical	translation,	and	clinical	translation.	The	selected	models	each	contributed	significant	insights	in	at	least	one	of	these	categories,	
exemplifying	the	variety	of	insights	that	can	be	gained	from	QSP	modeling.	ADC,	antibody-	drug	conjugate;	N/A,	not	applicable;	PBPK,	
physiologically-	based	pharmacokinetic;	PD,	pharmacodynamic;	PK,	pharmacokinetic;	QSP,	quantitative	systems	pharmacology.
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the	 concentration	 of	 drug	 at	 which	 tumor	 size	 neither	
grows	nor	shrinks).	The	TSC	criteria	acts	as	an	efficacy	
index	and	was	calculated	for	the	existing	models	and	for	
the	novel	hybrid	models.	This	optimized	PD	model	was	
later	 incorporated	 into	 several	 future	 ADC	 QSP	 mod-
els.11,13,17	This	paper	is	discussed	further	in	the	Clinical 
Translation	section.

Assessing	tumor	penetration	using	a	
customizable	model	platform	with	more	
detailed	ADC	receptor	trafficking34

In	 2015,	 Vasalou	 et	 al.	 developed	 a	 mechanistic	 ADC	
model	 framework	 that	 includes	 ADC	 binding	 and	
payload	 release	 kinetics,	 receptor	 dynamics,	 systemic	
distribution,	 vascular	 permeability,	 and	 interstitial	
transport.34	 This	 model	 incorporated	 more	 detailed	
mechanisms	of	receptor	trafficking	than	most	models	at	
the	time,	including	intracellular	trafficking	between	en-
dosomes	and	lysosomes,	recycling	of	the	ADC-	receptor	
complex,	 and	 release	 of	 the	 warhead	 into	 the	 cytosol.	
The	inclusion	of	these	mechanisms	allowed	the	authors	
to	 study	 ADC	 efficacy	 as	 a	 function	 of	 payload	 cleav-
age	and	intracellular	kinetics.	For	instance,	simulations	
demonstrated	 that	 ADCs	 with	 endosomal	 rather	 than	
lysosomal	 warhead	 release	 had	 elevated	 payload	 con-
centrations,	leading	to	increased	shrinkage	of	the	tumor.	
Whereas	these	simulations	were	conducted	for	a	generic	
ADC,	the	model	is	designed	to	be	highly	customizable,	
with	parameters	that	can	be	adjusted	based	on	the	char-
acteristics	of	the	ADC,	target	receptor,	and	tumor.	This	
flexibility	 enables	 the	model	 to	 serve	as	a	platform	 for	
better	 interpretation	 of	 experimental	 data,	 selection	 of	
tumor	properties,	and	optimization	of	ADC	design.	This	
detailed	 mechanistic	 model	 was	 paired	 with	 a	 Krogh	
cylinder	 model	 to	 describe	 solid	 tumor	 penetration	 in	
a	 mouse	 model;	 the	 spatial	 components	 are	 discussed	
below	in	the	Spatial Effects	section.

Experimental	techniques	to	parameterize	
computational	models	with	cellular	and	
intracellular	mechanisms	for	trastuzumab	
maytansinoid35

As	 models	 become	 more	 detailed,	 experiments	 are	
needed	 to	 identify	 parameters.	 The	 authors	 developed	
a	set	of	generalizable	techniques	to	parametrize	a	com-
putational	 model	 of	 the	 cellular	 processing	 of	 ADCs,	
using	 trastuzumab	 maytansinoid	 (which	 is	 used	 clini-
cally	 for	 treating	 HER2+	 breast	 cancer)	 as	 the	 model	
ADC.35	 These	 methods	 were	 based	 on	 flow	 cytometry	

and	 fluorescence	 imaging,	 and	 were	 used	 to	 quan-
tify	 the	 processes	 of	 ADC	 binding	 to	 target	 antigen,	
receptor-	mediated	 internalization,	 proteolytic	 ADC	
degradation,	 efflux	 of	 the	 warhead,	 and	 effector	 com-
plex	formation	via	warhead	binding	to	the	intracellular	
target.	The	experiments	were	performed	in	three	high-	
HER2-	expressing	cell	 lines:	BT-	474,	NCI-	N87,	and	SK-	
BR-	3.	The	 internalization,	degradation,	and	efflux	 rate	
constants	were	identified,	and	following	a	local	sensitiv-
ity	analysis	with	10%	perturbations	from	the	established	
parameters,	they	determined	internalization	and	efflux	
rates	to	be	key	parameters	that	influence	levels	of	war-
head	 delivery.	 The	 resulting	 kinetic	 model	 of	 cellular-	
level	 processes	 can	 be	 incorporated	 into	 larger	 PK-	PD	
models,	and,	indeed,	were,	as	described	in	a	companion	
paper9	which	we	discuss	in	a	later	section	below.

Extending	a	PK-	PD	model	of	T-	DM1	to	
incorporate	more	intracellular	mechanisms,	
including	ADC	degradation	and	
passive	diffusion9

Using	 the	 parameters	 derived	 from	 the	 in	 vitro	 experi-
ments,	as	described	in	the	previous	paper,35	Singh	et	al.9	
used	 the	 model	 to	 characterize	 pharmacokinetics	 of	 T-	
DM1	in	three	HER2+	cell	lines.	The	model	also	improved	
on	 the	 previous	 model35	 of	 ADC	 with	 the	 addition	 of	
more	 intracellular	 details,	 including	 intracellular	 ADC	
degradation	and	passive	diffusion	of	unconjugated	drug	
across	 tumor	 cells.	 This	 cellular	 model	 was	 integrated	
with	a	 tumor	drug	disposition	model,	 enabling	 the	pre-
diction	 of	 tumor	 warhead	 concentrations	 in	 the	 mouse	
xenografts.	 To	 quantify	 the	 ADC	 cellular	 processes,	 the	
authors	analyzed	the	relative	contribution	of	the	antigen-	
mediated	 and	 passive	 diffusion	 pathways	 in	 producing	
unconjugated	drug	inside	the	cell.	This	analysis	was	per-
formed	for	both	the	in	vitro	and	in	vivo	systems,	finding	
that	receptor-	mediated	endocytosis	and	passive	diffusion	
contributed	 differently	 to	 intracellular	 drug	 exposure	
at	 the	 different	 scales.	 Passive	 diffusion	 was	 the	 more	
prominent	pathway	in	vitro,	whereas	receptor-	mediated	
intake	had	a	higher	contribution	in	vivo.	The	global	and	
local	sensitivity	analyses	also	showed	that	drug	exposure	
in	 the	 system	 is	 sensitive	 to	 deconjugation	 and	 diffu-
sion	of	the	drug	across	the	membrane	of	the	tumor	cell,	
which	is	consistent	with	the	results	found	in	this	group’s	
prior	 work.	 The	 authors	 also	 proposed	 an	 ideal	 system	
PK	 model	 for	 intracellular	 processing	 of	 ADCs,	 which	
involves	more	mechanistic	details	on	specific	intracellu-
lar	compartments	early	endosomes,	 late	endosomes,	 re-
cycling	endosomes,	and	lysosomes;	however,	the	data	to	
achieve	this	was	not	available.
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Exploring	the	effects	of	bystander	killing	and	
tumor	heterogeneity	using	a	co-	culture	system36

To	better	understand	the	rate	and	extent	of	the	bystander	
killing	 in	 a	 heterogeneous	 system,	 this	 model	 focused	
on	 the	 HER2-	targeting	 Trastuzumab-	vc-	MMAE	 (T-	vc-	
MMAE)	as	an	example	of	an	ADC	that	exhibits	bystander	
effects.36	 Using	 a	 co-	culture	 system	 comprising	 HER2-	
negative	cells	(GFP-	MCF7)	and	HER2-	positive	cells	with	
different	levels	of	receptor	expression	(NCI-	N87,	BT474,	
and	SKBR3)	to	represent	tumor	heterogeneity,	they	iden-
tified	 a	 positive	 correlation	 between	 bystander	 effects	
and	 increased	 receptor	 expression	 levels	 (i.e.,	 HER2-	
negative	cells	were	more	likely	to	be	killed	by	bystander	
effects	 if	 the	 HER2-	positive	 cells	 they	 were	 cultured	
with	 had	 higher	 levels	 of	 HER2).	 They	 also	 observed	 a	
substantial	time	delay	before	bystander	killing	occurred	
in	 the	 antigen-	negative	 cells.	 Further	 analysis	 of	 the	
co-	culture	 system	 also	 suggested	 that	 bystander	 killing	
may	decrease	as	the	population	of	antigen	positive	cells	
shrinks.	Based	on	these	data,	they	developed	a	novel	PD	
model	 to	capture	bystander	effects,	 integrating	cell	dis-
tribution	 models	 that	 represented	 the	 antigen-	positive	
and	 -	negative	 cells	 in	 the	 system.	 This	 model	 could	 be	
integrated	with	a	systems	PK	model	for	ADCs	to	link	the	
systemic	ADC	concentrations	and	predict	the	outcomes	
from	bystander	effects.

Cellular	PK	model	of	trastuzumab-	vc-	MMAE	
suggests	that	intracellular	exposure	of	the	
warhead	is	dictated	by	antigen	expression,	
internalization,	degradation,	and	efflux38

Singh	 and	 Shah	 sought	 to	 quantify	 the	 cellular	 PK	 of	
the	HER2-	targeting	ADC	trastuzumab-	valine-	citrulline-	
monomethyl	auristatin	E	(T-	vc-	MMAE),	which	consists	
of	 MMAE	 warheads	 conjugated	 to	 trastuzumab	 with	
valine-	citrulline	 peptide	 linkers.38	 Conducting	 cellular	
ADC	disposition	studies	in	low-	HER2	expressing	(GFP-	
MCF7)	and	high-	HER2	expressing	(NCI-	N87)	cell	lines,	
they	incubated	the	cells	with	MMAE	or	T-	vc-	MMAE	for	
2  h,	 and	 used	 three	 main	 analytical	 methods	 to	 meas-
ure	 unconjugated	 drug,	 total	 drug,	 and	 total	 antibody	
concentrations	 (liquid	 chromatography–	tandem	 mass	
spectrometry,	 a	 forced	 deconjugation	 method,	 and	 an	
enzyme-	linked	 immunosorbent	 assay	 respectively).	
Although	similar	 levels	of	MMAE	accumulated	in	both	
cell	lines	following	MMAE	exposure,	the	NCI-	N87	cells	
had	 much	 higher	 intracellular	 exposure	 of	 MMAE	 fol-
lowing	 T-	vc-	MMAE	 exposure.	 This	 extensive	 data	 al-
lowed	 them	 to	 estimate	 MMAE	 influx	 rates,	 MMAE	
efflux	 rates,	 and	 T-	vc-	MMAE	 intracellular	 degradation	

rates,	and	to	develop	a	novel	single-	cell	drug	disposition	
model	to	describe	the	three	analytes	(unconjugated	drug,	
total	 drug,	 and	 total	 antibody).	 Their	 global	 sensitivity	
analysis	 revealed	 ADC	 internalization	 and	 degradation	
rates,	HER2	expression,	and	MMAE	efflux	to	be	key	pa-
rameters	that	dictated	intracellular	exposure	to	MMAE.	
This	 single-	cell	 model	 provided	 a	 solid	 foundation	 for	
further	exploring	the	bystander	effects	of	ADCs,	as	dem-
onstrated	in	further	studies	by	this	group.39,41

Building	a	cell-	level	systems	PK-	PD	model	
to	describe	in	vitro	bystander	effects	using	
intracellular	target	occupancy39

As	 an	 extension	 of	 their	 previous	 cellular	 ADC	 disposi-
tion	 study,38	 Singh	 and	 Shah	 developed	 a	 cell-	level	 sys-
tems	 PK-	PD	 model	 to	 examine	 the	 in	 vitro	 bystander	
effects	 of	 ADCs,	 using	 T-	vc-	MMAE,	 which	 is	 known	
to	 have	 bystander	 effects,	 as	 the	 representative	 ADC.39	
These	 bystander	 effects	 are	 often	 desirable	 in	 a	 hetero-
geneous	 tumor	 environment,	 allowing	 for	 improvement	
of	 the	overall	ADC	efficacy	 in	cells	with	different	 target	
receptor	 expression	 levels.	 The	 team	 conducted	 in	 vitro	
experiments	 in	 high-	HER2	 expressing	 cells	 (NCI-	N87),	
low-	HER2	expressing	cells	(GFP-	MCF7),	and	co-	cultures	
with	both	cell	 lines	to	study	these	bystander	effects.	PK-	
PD	models	with	cellular	mechanisms	were	developed	for	
each	 cell	 type	 by	 integrating	 their	 previously	 published	
cell-	level	PK	model38	to	the	cell-	distribution	PD	model,36	
and	the	simulations	captured	the	intracellular	target	(tu-
bulin)	occupancy	following	exposure	to	T-	vc-	MMAE.	The	
PK-	PD	models	for	both	cell	types	were	then	mechanisti-
cally	integrated	to	describe	the	bystander	effects,	and	the	
subsequent	dual	model	was	able	to	reasonably	reflect	the	
observed	 experimental	 data,	 demonstrating	 that	 a	 simi-
larly	high	tubulin	occupancy	by	MMAE	was	required	to	
achieve	 the	 desired	 cytotoxic	 effects	 in	 both	 cell	 lines.	
Compared	 to	 previous	 models	 that	 explored	 bystander	
effects,	 the	 single-	cell	 framework	 for	 this	model	enables	
multiple	cell	populations	to	be	represented,	and	can	be	in-
corporated	with	a	tumor	drug	disposition	model	to	predict	
bystander	effects	in	vivo.

Optimizing	parameters	for	an	existing	cell-	level	
systems	PK	model	for	trastuzumab-	vc-	MMAE41

Sharma	 et	 al.	 measured	 the	 PK	 profiles	 and	 internali-
zation	 rates	 of	 T-	vc-	MMAE,	 and	 receptor	 expression	
for	 four	different	HER2-	expressing	cell	 lines	 (with	dif-
fering	 expression	 levels)	 to	 study	 the	 relationship	 be-
tween	 antigen	 expression	 levels	 and	 ADC	 exposure	 in	
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tumor	cells.41	Using	these	data	to	calibrate	the	cellular	
PK	model	previously	developed	by	their	group,38	the	au-
thors	 fitted	 intracellular	 degradation	 rates	 for	 two	 cell	
lines	(SKBR-	3	and	MDA-	MB-	453).	They	found	a	strong	
linear	correlation	between	HER2	expression	levels	and	
ADC	exposure	 in	 tumor	cells,	and	an	 inverse	 relation-
ship	 between	 HER2	 expression	 level	 and	 internaliza-
tion	 rate.	 This	 inverse	 relationship	 may	 be	 due	 to	 the	
increased	 recycling	 of	 the	 HER2	 complexes	 in	 high	
HER2-	expressing	 cell	 lines	 as	 compared	 to	 low	 HER2-	
expressing	 cell	 lines,	 as	 seen	 in	 another	 experimental	
study.43

Spatial effects

Some	of	the	models	discussed	previously	include	a	spatial	
component	to	the	model,5,34	typically	to	describe	drug	pen-
etration	in	a	solid	tumor.	Most	of	these	models	used	Krogh	
cylinder	 geometry	 to	 represent	 drug	 distribution	 from	 a	
cylindrical	blood	vessel	into	a	surrounding	idealized	cyl-
inder	of	tumor	tissue,	based	on	previously	published	mod-
els.44,45	The	Krogh	cylinder	model	enables	representation	
of	 tissue-	scale	 distributions	 of	 the	 ADC	 and	 antibodies,	
which	is	not	reflected	in	the	typical	homogenous	or	“well-	
mixed”	 compartments	 found	 in	 most	 compartmental	 or	
PBPK	 models.	 These	 spatial	 effects	 are	 further	 explored	
into	the	following	models.

Using	a	customizable	model	platform	with	
a	Krogh	cylinder	model	to	explore	the	
effects	of	tumor	vascularization	and	the	binding	
site	barrier34

As	an	example	of	insights	gained	from	these	spatial	mod-
els,	 the	 Vasalou	 2015	 model34	 discussed	 in	 the	 Cellular 
Mechanisms	 section	 incorporated	 detailed	 mechanisms	
of	receptor	trafficking	paired	with	Krogh	cylinder	geom-
etry,	varying	the	Krogh	cylinder	radius	to	simulate	tumors	
with	 differing	 levels	 of	 vascularization.	 They	 found	 that	
given	the	same	ADC	dose,	tumors	with	higher	degrees	of	
vascularization	can	be	reduced	more	quickly	than	tumors	
with	less	vascularization.	Through	their	simulations,	the	
researchers	 identified	 tumor	 attributes	 that	 would	 con-
tribute	 to	 decreased	 ADC	 efficacy,	 and	 also	 tested	 ADC	
design	scenarios	to	overcome	these	barriers.	As	an	exam-
ple,	high	receptor	expression	levels	in	the	tumor	can	cause	
a	“binding	site	barrier”	when	there	is	also	rapid	internali-
zation	and	low	recycling	rates	–		in	other	words,	the	ADC	
cannot	penetrate	as	deeply	into	the	tumor	because	it	binds	
to	 (and	 is	 internalized	by)	cell-	surface	receptors	close	 to	

the	vasculature.	However,	antibodies	with	slightly	lower	
affinities	may	allow	for	“looser”	binding	to	overcome	the	
“binding	site	barrier,”	and	therefore	penetrate	deeper	 in	
the	tumor.

Investigating	antibody-	ADC	co-	administration	
to	enhance	tumor	penetration	of	T-	DM110

Cilliers	 et	 al.	 developed	 a	 multiscale	 model	 of	 T-	DM1,	
integrating	 cellular	 mechanisms	 with	 a	 PBPK-	based	
model	 to	 characterize	 the	 systemic	 drug	 disposition	
kinetics	 and	 heterogeneous	 tumor	 distribution	 of	 this	
ADC.10	 The	 model	 was	 developed	 using	 experimental	
data	 on	 ADC	 distribution	 in	 mouse	 xenograft	 models.	
At	the	cellular	scale,	the	model	includes	binding,	inter-
nalization,	and	degradation	of	both	the	ADC	and	uncon-
jugated	mAb.	This	was	incorporated	into	a	PBPK	model	
that	tracks	systemic	distribution	of	the	ADC	and	mAb,	
and	was	validated	experimentally.	The	tumor	compart-
ment	was	represented	by	a	Krogh	cylinder	tissue	model	
with	permeability	and	diffusion.	This	was	the	first	group	
to	use	this	model	to	examine	spatial	effects	of	tumor	drug	
disposition	alongside	the	effects	of	co-	administration	of	
ADC	 with	 unconjugated	 mAb;	 the	 unconjugated	 mAb	
was	 administered	 alongside	 the	 ADC	 at	 varying	 ratios	
both	 in	 silico	 and	 in	 vivo	 using	 immunofluorescence	
imaging.	The	authors	found	that	such	carrier	doses	can	
significantly	 help	 to	 improve	 penetration	 of	 the	 ADC	
into	 the	 tumor	by	overcoming	 the	binding	site	barrier.	
Additionally,	they	explored	the	effects	of	DAR	on	tumor	
penetration	 by	 analyzing	 data	 from	 six	 publications,	
finding	that	the	effect	was	sufficiently	large	such	that	at	
a	constant	dose	of	a	sufficiently	potent	small	molecule,	
ADCs	with	a	lower	DAR	and	a	higher	co-	administered	
antibody	dose	were	generally	more	successful	in	reduc-
ing	 tumor	 growth	 than	 those	 with	 a	 higher	 DAR	 and	
lower	 antibody	 dose;	 DAR-	dependent	 clearance	 and	
deconjugation	may	also	be	key	contributors	to	this	phe-
nomenon.	Used	in	conjunction	with	experimental	data,	
this	model	can	aid	in	exploring	and	understanding	the	
impacts	of	the	multiple	mechanisms	behind	ADCs.

Using	computational	models	to	
identify	the	optimal	ADC	dosing	and	warhead	
properties	and	assess	the	role	of	bystander	
effects	on	ADC	efficacy12

Khera	 and	 colleagues	 expanded	 on	 their	 previous	
computational	 model10	 to	 focus	 on	 ADC	 distribution	
within	 solid	 tumors	 and	 the	 role	 of	 bystander	 effects	
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on	efficacy.12	The	model	predicts	warhead	distribution	
as	a	function	of	antibody	dose,	warhead	dose,	and	war-
head	properties.	In	particular,	as	heterogeneous	tumor	
distribution	of	the	ADC	is	linked	to	decreased	efficacy,	
increasing	 the	 antibody	 dose	 can	 increase	 tumor	 pen-
etration,	 which	 decreases	 the	 heterogeneity	 of	 drug	
concentration	 and	 increases	 the	 resulting	 efficacy.	 By	
simulating	 warheads	 with	 bystander	 effects	 (MMAE)	
and	 those	 without	 (DM1),	 the	 team	 also	 found	 direct	
cell	killing	(via	target	antigen-	mediated	uptake	of	ADC)	
to	be	more	efficient	than	bystander	killing,	although	the	
properties	of	 the	warhead	(including	 lipophilicity,	mo-
lecular	weight,	 radius,	diffusivity,	half-	life,	Damköhler	
number,	and	reported	bystander	effects)	are	an	 impor-
tant	factor	in	determining	whether	it	will	be	effective	for	
bystander	killing.	Thus,	this	model	can	be	used	to	iden-
tify	the	optimal	ADC	dosing	and	warhead	physiochemi-
cal	properties	to	improve	delivery	throughout	the	tumor	
and	maximize	efficacy.

Antibody	co-	administration	may	be	
synergistic	in	tumors	with	high	antigen	
expression	but	not	in	those	with	low	antigen	
expression14

Earlier	models	had	explored	antibody	co-	administration	
with	 ADCs	 to	 improve	 tumor	 penetration10	 but	 had	
not	explored	 the	 specific	 scenarios	 in	which	 this	 strat-
egy	 would	 be	 most	 beneficial.	 To	 quantitatively	 ex-
plore	 ADC-	antibody	 co-	administration	 as	 a	 method	
to	 overcome	 the	 binding	 site	 barrier	 phenomenon,	
researchers	 conducted	 in	 vivo	 experiments	 and	 QSP	
modeling	 using	 T-	DM1	 and	 T-	vc-	MMAE.14	 Whereas	
both	 ADCs	 have	 trastuzumab	 as	 the	 antibody	 carrier,		
T-	vc-	MMAE	is	known	to	exhibit	bystander	effects	while	
T-	DM1	 does	 not.	 Tumor	 growth	 inhibition	 data	 from	
mouse	xenograft	models	carrying	high	HER2	(NCI-	N87	
cells)	and	 low	HER2	 (MDA-	MB-	453	cells)	was	used	 to	
build	 a	 semimechanistic	 PK-	PD	 model	 to	 evaluate	 the	
effects	of	doses	with	trastuzumab	co-	administration	(at	
1,	3,	or	8-	fold	higher	antibody)	or	without.	Using	an	in-
teraction	parameter	to	measure	the	benefit,	the	authors	
found	the	ADC	interaction	with	the	carrier	dose	was	syn-
ergistic	 in	 high-	antigen-	expressing	 tumors,	 whereas	 in	
low-	antigen-	expressing	 tumors	 (and	 warheads	 that	 ex-
hibit	bystander	effect),	the	interactions	had	an	additive	
or	less	than	additive	benefit.	Thus,	the	researchers	con-
clude	that	whereas	the	ADC-	antibody	co-	administration	
approach	can	be	useful	in	improving	ADC	effectiveness	
in	 some	 situations,	 it	 should	 not	 be	 applied	 without	 a	
cost–	benefit	analysis.

Agent-	based	model	of	T-	DM1	to	represent	
tumor	heterogeneity	and	simulate	antibody		
co-	administration15

Menezes	et	al.	developed	a	hybrid	agent-	based	model	 to	
capture	the	effects	of	different	T-	DM1	treatment	regimens	
on	a	tumor	subsection.15	The	model	includes	central	and	
peripheral	tissue	compartments,	with	tumor	cells	as	indi-
vidual	agents	on	a	grid	system	undergoing	cell	division	and	
both	 natural	 and	 drug-	induced	 cell	 death.	 Notably,	 this	
is	 the	 first	systems	pharmacology	model	of	ADCs	to	not	
only	capture	drug	PK-	PD	and	cell	dynamics,	but	also	in-
corporate	heterogeneity	in	the	tumor	microenvironment,	
including	variation	in	blood	vessel	density.	This	contrasts	
previous	ADC	models	that	used	the	Krogh	cylinder	model	
to	represent	the	tumor	compartment;	which	both	can	por-
tray	 the	 heterogeneous	 tissue	 distribution	 of	 the	 ADC,	
Krogh	 cylinders	 reflect	 a	 homogenous	 tumor	 cell	 popu-
lation,	whereas	 the	agent-	based	model	enables	cell-	level	
heterogeneity	 in	 the	 microenvironment	 and	 vasculature	
to	be	 included.	Much	 like	 the	Cilliers	2016	model,10	 the	
researchers	also	explore	the	use	of	a	trastuzumab	carrier	
dose	in	conjunction	with	T-	DM1	to	improve	ADC	tumor	
disposition.	 The	 model	 shows	 increased	 efficacy	 in	 in-
stances	where	 the	 increased	number	of	cells	 reached	by	
the	 ADC	 overcomes	 the	 diminished	 uptake	 of	 the	 war-
head	 caused	 by	 the	 presence	 of	 the	 unconjugated	 anti-
body,	 which	 matches	 experimental	 data	 from	 NCI-	N87	
mouse	xenograft	tumors.	Additionally,	whereas	fraction-
ated	dosing	is	shown	to	be	less	effective	than	a	single	dose	
for	co-	administration,	it	can	be	useful	when	the	increased	
tolerability	enables	a	higher	ADC	dosage.

Expanding	the	agent-	based	model	to	
quantify	the	effectiveness	of	antibody		
co-	administration	and	bystander	killing16

Recently,	 Menezes	 et	 al.	 extended	 their	 hybrid	 agent-	
based	model	described	above	to	incorporate	angiogenesis,	
heterogeneous	receptor	expression,	heterogeneous	tumor	
cell	 sensitivity	 to	 payloads,	 and	 bystander	 effects	 (for	
payloads	 that	 can	 diffuse	 to	 surrounding	 cells).16	 Using	
this	model,	the	researchers	investigated	the	effectiveness	
of	 co-	administration	 of	 unconjugated	 trastuzumab	 and	
ADC	 (for	 T-	DM1	 and	 T-	MMAE),	 as	 well	 as	 bystander	
killing	(for	T-	MMAE	only).	Simulations	using	this	model	
showed	 both	 T-	DM1	 and	 T-	MMAE	 benefitted	 from	 an-
tibody	 co-	administration,	 including	 in	 tumors	 with	 in-
trinsic	 resistance	 to	 the	 payload.	 Additionally,	 whereas	
co-	administration	was	particularly	effective	 for	payloads	
without	bystander	effects,	such	as	T-	DM1,	this	benefit	is	
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receptor-	expression-	dependent,	 and	 the	 antibody	 carrier	
dose	 may	 even	 inhibit	 tumor	 cell	 killing	 at	 sufficiently	
low	receptor	expression	levels.	These	results	are	consist-
ent	with	 the	 findings	of	Singh	et	al.14	Model	predictions	
also	 showed	 that	 at	 clinically	 tolerable	 doses,	 regimens	
with	greater	efficacy	are	more	likely	to	result	in	resistant	
cell	populations,	emphasizing	the	need	to	seek	alternative	
cell-	killing	mechanisms	that	will	increase	the	durability	of	
the	treatment	effect.

Preclinical translation

A	preclinical,	mechanism-	based	
pharmacokinetic	model	of	an	anti-	5T4	MMAF	
ADC	identified	key	parameters	or	features	
associated	with	drug	exposure33

The	 model	 of	 anti-	5T4	 ADC	 (A1mcMMAF)	 was	 de-
scribed	in	a	2014	paper	in	which	the	authors	detailed	the	
development	of	a	mechanism-	based	PK	model	to	predict	
tumor	 concentrations	 of	 the	 ADC	 and	 warhead,	 using	
experimental	 data	 from	 MDA-	MB-	435/5T4	 and	 H1975	
human	tumor	xenografts	in	mice	for	model	building	and	
verification.33	 They	 conducted	 a	 pathway	 analysis	 and	
local	 sensitivity	 analysis	 to	 determine	 parameters	 with	
the	largest	effect	on	the	system,	and	found	that	payload	
dissociation	 and	 tumor	 size	 were	 key	 parameters	 af-
fecting	cytotoxic	drug	exposure	in	both	the	plasma	and	
tumor.	 The	 authors	 also	 noticed	 that	 the	 sensitivity	 of	
several	key	model	outputs	is	dose-	dependent.	Thus,	this	
model	 showed	 the	 importance	 of	 quantification	 to	 im-
prove	 the	 understanding	 of	 the	 processes	 driving	 ADC	
and	warhead	disposition,	and	can	be	further	developed	
for	clinical	translation	given	the	appropriate	parameters,	
data,	and	translational	strategy,	as	discussed	in	their	pre-
vious	work.5

Using	analytical	data	to	model	stepwise	
deconjugation	of	warheads	from	the		
T-	DM1	ADC8

To	better	understand	the	PKs	of	T-	DM1,	particularly	war-
head	release	and	the	effects	of	DAR,	Bender	et	al.	devel-
oped	two	modeling	approaches	using	preclinical	PK	data	
from	 rats	 and	 cynomolgus	 monkeys.8	 First,	 they	 built	 a	
mechanistic	PK	model	of	total	trastuzumab	and	DAR	con-
centrations	with	three	compartments	–		a	central	and	two	
peripheral	compartments.	Notably,	this	is	one	of	the	first	
models	of	ADC	to	incorporate	stepwise	deconjugation	of	
the	small	molecule	drug	from	the	main	trastuzumab	body,	
starting	 from	 a	 DAR	 value	 of	 seven	 all	 the	 way	 to	 DAR	

zero	 (unconjugated	 trastuzumab).	 However,	 this	 model	
requires	extensive	amounts	of	experimental	data,	includ-
ing	 measurements	 of	 T-	DM1	 at	 each	 of	 the	 intermedi-
ate	DAR	moieties,	in	order	to	identify	the	rate	constants	
for	each	step	of	 the	deconjugation	process.	To	lower	the	
data	burden,	 they	created	a	 reduced	 three-	compartment	
model,	 fit	 to	 total	 trastuzumab	 and	 T-	DM1	 concentra-
tions,	 with	 the	 warhead	 deconjugation	 represented	 by	 a	
single	deconjugation	parameter;	this	reduced	model	may	
be	useful	when	data	for	the	individual	DAR	moieties	are	
not	available.	Depending	on	the	situation,	 these	two	ap-
proaches	provide	more	flexibility	based	on	the	analytical	
data	available	for	the	ADC.

A	mechanism-	based	platform	model	to	predict	
PKs	of	MMAE-	based	ADCs	using	DAR-	specific	
analytes	and	DAR-	dependent	clearance37

Researchers	 developed	 a	 mechanism-	based	 platform	
model	to	predict	the	PK	behavior	of	MMAE-	based	ADCs,	
which	can	be	used	as	a	valuable	tool	for	exploring	mecha-
nisms	 behind	 ADC	 disposition	 for	 translational	 predic-
tions.37	 Much	 like	 a	 previous	 model	 for	 T-	DM1,8	 this	
model	 included	 DAR-	dependent	 clearance	 and	 explicit	
representation	of	all	DAR	species	for	the	ADC,	including	
sequential	deconjugation	as	a	higher	DAR	converts	 to	a	
lower	DAR	species.	They	integrated	rodent	and	cynomol-
gus	monkey	PK	profiles	into	a	cross-	species	model,	which	
successfully	captured	PK	profiles	of	the	different	analytes	–			
total	antibody	(including	both	unconjugated	antibody	and	
conjugated	 antibody),	 drug-	conjugated	 antibody	 (anti-
body	 with	 at	 least	 one	 conjugated	 drug	 molecule),	 and/
or	 antibody-	conjugated	 drug	 (drug	 that	 is	 conjugated	 to	
an	antibody),	simulating	administration	of	both	purified	
ADCs	with	defined	DAR	species	and	ADCs	with	mixtures	
of	 DAR.	 Additionally,	 the	 model	 predictions	 for	 human	
PKs	 of	 an	 anti-	STEAP1-	vc-	MMAE	 ADC	 (DSTP3086S)	
matched	well	with	the	PK	measurements	from	a	phase	I	
clinical	trial.	Thus,	they	were	able	to	develop	this	model	
with	ADC	disposition	mechanisms	and	apply	it	to	datasets	
with	different	payload	densities,	ADC	molecules,	animal	
models,	and	analyte	measurements.

Using	mechanism-	based	PK-	PD	models	to	
examine	hematological	toxicities	of	ADCs	and	
simulate	effects	of	linker	design6

Whereas	 efficacy	 has	 been	 a	 major	 consideration	 in	
modeling	 of	 ADCs,	 toxicity	 is	 a	 central	 but	 less-	studied	
phenomenon,	central	to	translation	to	use	in	the	clinic.	T-	
DM1	and	brentuximab	vedotin	(SGN-	35)	are	both	known	
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to	 induce	ADC-	related	 thrombocytopenia	and	neutrope-
nia.	 To	 understand	 these	 hematological	 toxicities,	 using	
data	from	literature	and	mouse	xenograft	PK	and	PD	stud-
ies,	researchers	built	compartmental	models	(with	central	
and	 peripheral	 compartments)	 with	 linear	 elimination	
and	first	order	payload	release.6	These	mechanism-	based	
models	were	able	to	accurately	reflect	the	PK	profiles	and	
ADC-	induced	hematological	toxicities	of	both	ADCs.	They	
also	simulated	the	effects	of	the	linker	design	on	the	asso-
ciated	myelosuppression	by	changing	the	payload	release	
rate	constant,	and	by	this	showed	that	hematotoxicity	may	
be	improved	by	a	fourfold	increase	in	the	deconjugation	
rate	of	T-	DM1,	or	a	70%	decrease	in	that	of	SGN-	35.	This	
model	can	serve	as	a	platform	for	assessing	hematological	
toxicities	of	ADCs,	and	shows	more	generally	that	toxic-
ity	should	not	be	ignored	in	modeling	to	focus	solely	on	
efficacy.

Developing	a	mathematical	correlation	
between	in	vitro	and	in	vivo	ADC	efficacy	
to	improve	identification	of	potential	ADC	
candidates13

Researchers	used	data	for	19	ADCs	to	establish	an	in	vitro-
	in	vivo	correlation	(IVIVC)	between	the	in	vitro	and	in	vivo	
efficacy	of	those	ADCs.13	They	developed	a	PK-	PD	model	
(similar	 to	 their	previous	models5,7	but	 less	mechanism-	
based)	 to	 characterize	 in	 vitro	 cytotoxicity	 data	 from	
HER2-	expressing	 NCI-	N87	 cells	 and	 used	 it	 to	 calculate	
the	 “in	 vitro	 tumor	 static	 concentration”	 (TSCin	 vitro),	 a	
theoretical	concentration	of	continuous	ADC	exposure	at	
which	the	number	of	 tumor	cells	will	remain	static.	For	
the	 19	 ADCs	 tested,	 the	 TSCin	 vitro	 values	 were	 found	 to	
be	between	0.1	and	100	nM.	Similarly,	the	“in	vivo	tumor	
static	concentration”	(TSCin	vivo)	was	found	by	incorporat-
ing	 tumor	 growth	 inhibition	 data	 from	 murine	 human	
tumor	 xenograft	 models	 (also	 using	 NCI-	N87	 cells)	 into	
the	PK-	PD	model.	The	TSCin	vivo	values	for	the	19	ADCs	
were	approximately	in	the	range	of	5–	1000	nM.	Whereas	
the	models	were	based	on	the	respective	cytotoxicity	and	
tumor	 xenograft	 studies	 and	 matched	 the	 experimental	
data	well,	it	is	difficult	to	compare	the	full	parameter	sets	
for	the	models	to	evaluate	the	results	and	in	vitro-	in	vivo	
relationship.	Thus,	the	TSC	values	were	used	as	a	repre-
sentative	 variable	 for	 the	 models’	 parameter	 estimates	
and	to	look	at	the	correlation	between	the	different	ADC	
parameter	sets.	Although	the	average	TSCin	vivo	was	~	27	
times	higher	than	TSCin	vitro,	there	was	a	good	positive	lin-
ear	correlation	between	the	two,	suggesting	that	TSCin	vitro	
is	predictive	of	TSCin	vivo	Thus,	this	IVIVC	can	be	used	to	
rapidly	 identify	 promising	 early-	stage	 ADC	 candidates	

and	predict	efficacious	in	vivo	ADC	concentrations	from	
in	 vitro	 data,	 which	 can	 help	 to	 optimize	 the	 design	 of	
these	 preclinical	 studies.	 However,	 the	 ADCs	 tested	
(which	 included	 T-	DM1)	 all	 had	 warheads	 with	 similar	
mechanisms	of	action,	so	this	approach	needs	to	be	veri-
fied	for	warheads	with	differing	mechanisms	of	action.

Extending	the	cell-	level	model	to	an	in	vivo	
systems	PK-	PD	model	to	predict	trastuzumab-	
vc-	MMAE	efficacy	as	a	function	of	intracellular	
target	occupancy40

Building	 upon	 their	 previous	 single	 cell	 PK	 model,38	
Singh	 et	 al.	 developed	 an	 in	 vivo	 system	 PK-	PD	 model	
that	similarly	predicts	T-	vc-	MMAE	efficacy	as	a	function	
of	intracellular	target	occupancy.40	This	model	integrated	
the	previous	single-	cell	PK-	PD	model	with	tumor	distribu-
tion,	and	was	validated	using	PK	and	efficacy	data	 from	
mouse	xenograft	models	with	either	high-	HER2	express-
ing	 (NCI-	N87)	 and	 low-	HER2	 expressing	 (GFP-	MCF7)	
tumor	 cells.	 The	 NCI-	N87	 tumors	 had	 higher	 exposures	
to	 total	 trastuzumab,	 unconjugated	 MMAE,	 and	 total	
MMAE	 compared	 to	 the	 GFP-	MCF7,	 as	 well	 as	 higher	
tubulin	occupancy.	However,	the	plasma	PKs	of	all	ADC	
analytes	and	prolonged	retention	of	MMAE	were	similar	
between	both	tumor	types,	and	the	same	set	of	PD	param-
eters	 were	 used.	 This	 model	 was	 able	 to	 capture	 the	 in	
vivo	PK	data	quite	well	and	can	serve	as	 the	framework	
for	clinical	translation	of	ADCs.

Quantifying	heterogeneous	bystander	effects	
in	vivo	using	a	systems	PK-	PD	model	of	
trastuzumab-	vc-	MMAE42

Singh	et	al.	also	used	a	joint	experimental-	computational	
approach	to	explore	the	significance	of	heterogeneous	by-
stander	 effects	 of	 ADCs	 in	 vivo.42	 Using	 T-	vc-	MMAE	 as	
the	model	ADC,	the	researchers	conducted	mouse	tumor	
xenograft	studies	(NCI-	N87,	GFP-	MCF7,	and	co-	culture)	
at	 varying	 ADC	 dosages,	 measuring	 plasma	 and	 tumor	
PK,	as	well	as	tumor	growth	inhibition.	To	account	for	the	
different	cell	populations	found	in	the	co-	culture	tumors,	
the	authors	expanded	their	previous	tumor	drug	distribu-
tion	model38	and	later	integrated	it	with	a	PD	model	where	
ADC	efficacy	is	driven	by	intracellular	tubulin	occupancy.	
This	system’s	PK-	PD	model	was	built	upon	their	previous	
models	 and	 was	 able	 to	 reproduce	 the	 results	 of	 the	 ex-
perimental	 data	 quite	 well,	 including	 the	 tumor	 growth	
profiles	 for	 multiple	 cell	 lines	 and	 dosages.	 They	 per-
formed	additional	simulations	to	explore	alternate	dosing	
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regimens,	 and	 much	 like	 other	 simulations	 previously	
conducted,	 found	 that	 fractionated	 dosing	 may	 improve	
overall	 ADC	 efficacy	 and	 bystander	 effect	 by	 extending	
intracellular	 tubulin	 occupancy.	 This	 model	 provides	 a	
platform	for	quantification	of	in	vivo	bystander	effects	in	a	
heterogeneous	tumor.

Clinical translation

PK-	PD	simulations	of	brentuximab	vedotin	in	
cell	culture,	mice,	and	humans	highlight	the	
importance	of	ADC	and	warhead	distribution	
in	predicting	clinical	outcomes5

Along	with	 the	cellular	mechanistic	modeling	of	bren-
tuximab	 vedotin	 discussed	 above,5	 the	 authors	 also	
modeled	the	PKs	of	 the	warhead	MMAE	and	the	ADC	
in	a	xenograft	mouse	using	a	 two-	compartment	model	
to	 represent	 the	 plasma	 and	 tumor,	 which	 was	 inte-
grated	 with	 a	 PD	 model	 representing	 tumor	 growth	 to	
describe	the	ADC’s	preclinical	efficacy.	The	PK	param-
eters	were	obtained	from	literature-	measured	values	of	
plasma	and	tumor	PK	and	ADC	concentration-	time	pro-
files,	whereas	PD	parameters	were	derived	from	tumor	
growth	 inhibition	 data.	 This	 preclinical	 PK-	PD	 model	
was	 then	 translated	 to	 a	 clinical	 PK-	PD	 model	 by	 ad-
justing	 model	 parameters	 to	 reflect	 clinically	 observed	
values,	using	clinical	PK	data	 from	two	different	clini-
cal	 trials.	 Resulting	 simulations	 were	 compared	 with	
clinical	trial	results,	and	accurately	predicted	tumor	and	
plasma	warhead	concentrations,	as	well	as	progression-	
free	 survival	 (PFS)	 and	 complete	 response	 rates.	
Through	a	 sensitivity	analysis,	 the	authors	also	 identi-
fied	 the	drug	efflux	 rate	 to	be	an	 important	parameter	
that	is	often	overlooked.	As	one	of	the	first	ADC	models	
with	preclinical-	to-	clinical	 translation,	 this	work	high-
lights	the	importance	of	ADC	and	warhead	distribution	
in	helping	to	predict	clinical	outcomes.

Comparing	and	refining	PD	models	of	cell	
growth	and	killing7

The	 hybrid	 PD	 model	 developed	 by	 Haddish-	Berhane	
et	al.7	was	used	 to	predict	efficacy	of	T-	DM1	 in	patients	
based	on	efficacy	in	mice.	The	predicted	efficacious	dose	
range	 was	 comparable	 to	 clinical	 dosing	 data,	 and	 the	
same	translational	strategy	was	also	applied	to	a	novel	in-	
house	anti-	5T4	ADC	(the	model	for	that	ADC	is	described	
in	 more	 detail	 in	 the	 Cellular Mechanisms	 section).	
Considering	the	model	performance	for	these	two	differ-
ent	ADCs,	 they	proposed	an	 improved	PD	model	where	

the	tumor	static	concentration	criterion	can	be	used	more	
generally	to	predict	clinical	dosing	of	ADCs	from	mouse	
efficacy	data.

From	mouse	to	human:	Clinical	translation	of	a	
multiscale,	mechanism-	based	PK-	PD	model	of	
inotuzumab	ozogamicin17

Inotuzumab	 ozogamicin	 is	 a	 CD22-	targeting	 antibody	
linked	to	N-	Ac-	γ-	calicheamicin	DMH	molecules	for	target-
ing	B	cell	malignancies,	such	as	 ’NHL	and	ALL.	For	this	
multiscale,	 mechanism-	based	 approach,17	 the	 preclinical	
model	was	built	with	preclinical	data,	and	included	ADC	
disposition	 and	 clearance	 in	 the	 plasma	 and	 tumor;	 the	
cellular-	level	 mechanisms	 of	 ADC-	Ag	 binding	 and	 war-
head	 release,	 binding,	 and	 efflux;	 and	 mouse	 xenograft	
tumor	 growth	 and	 inhibition.	 By	 integrating	 human	 PK	
profiles,	 antigen	 expression	 levels,	 tumor	 volumes,	 and	
tumor	growth	rates,	the	preclinical	model	was	translated	
to	the	clinical	scale.	This	clinical	model	was	able	to	capture	
PFS	rates	observed	in	clinical	studies,	and	model	analysis	
showed	that	tumor	growth,	ADC	PK,	and	warhead	efflux	
to	be	sensitive	parameters	and	potentially	more	useful	than	
antigen	expression	as	a	predictor	of	outcome.	The	model	
for	liquid	tumors	(ALL)	was	approximated	by	eliminating	
transport	to	the	solid	tumor	used	in	NHL.	Tumor	warhead	
levels	were	found	to	be	higher	in	patients	with	ALL	than	
patients	with	NHL,	which	aligns	with	the	increased	acces-
sibility	of	blood	 tumors	 (ALL)	compared	 to	 solid	 tumors	
(NHL).	 Model	 simulations	 also	 showed	 that	 whereas	 a	
more	 conventional	 dosing	 regimen	 works	 well	 for	 NHL,	
fractionated	dosing	may	provide	improved	results	for	ALL.	
This	model	can	be	a	useful	tool	to	predict	clinical	outcomes	
from	preclinical	data,	and	serves	as	a	foundation	to	build	
other	ADC	models	used	for	clinical	translation,	including	
many	of	the	other	models	described.

Applying	preclinical	to	clinical	translation	of	
PK-	PD	models	of	T-	DM1	to	simulate	clinical	
trials	and	potential	dosing	regimens11

Singh	 and	 Shah	 developed	 a	 general	 ADC	 PK-	PD	 mod-
eling	and	simulation	strategy	to	address	translation	issues,	
including	differences	between	preclinical	and	clinical	tu-
mors,	by	using	human-	specific	parameters.	This	strategy	
has	been	applied	to	inotuzumab	ozogamicin,	as	described	
previously.17	Using	 this	 same	approach	along	with	 their	
previous	 preclinical	 tumor	 drug	 disposition	 model,9	 the	
researchers	conducted	a	similar	case	study	using	T-	DM1,	
using	tumor	growth	inhibition	data	 from	various	mouse	
models	to	derive	the	efficacy	parameters	for	the	model.11	
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Combined	 with	 predicted	 human	 PK	 parameters	 (esti-
mated	 via	 allometric	 scaling	 of	 monkey	 PK	 parameters)	
and	clinically	observed	breast	cancer	 tumor	volume	and	
growth	parameters,	a	translated	PK-	PD	model	of	T-	DM1	
was	developed	and	used	to	simulate	clinical	trials	to	pre-
dict	PFS	and	objective	response	rates	(ORRs).	The	model	
worked	well,	and	the	predicted	outcomes	were	compara-
ble	to	those	from	three	separate	clinical	trials.	Model	pre-
dictions	suggested	that	increasing	the	clinically	approved	
dose	would	only	provide	a	limited	improvement	in	ORR,	
a	 fractionated	 dosing	 regimen	 may	 provide	 a	 more	 sub-
stantial	improvement	in	efficacy,	which	is	consistent	with	
earlier	findings	on	this	topic.17	The	authors	hypothesized	
that	this	improved	response	resulted	from	the	additional	
time	for	accumulation	of	the	warhead	in	the	tumor	with	
the	fractionated	regimen,	allowing	more	time	for	the	cell	
killing	effects	to	take	place.

DISCUSSION

Each	of	the	models	discussed	above	has	areas	of	strength	
focusing	 on	 unique	 aspects	 of	 ADC	 biology	 and	 phar-
macology.	 Together,	 they	 provide	 a	 solid	 foundation	
for	 computational	 modeling	 of	 ADCs.	 The	 complexity	
of	 the	 mechanisms	 included	 in	 the	 models	 increases	 as	
successive	 modeling	 papers	 built	 upon	 each	 other,	 with	
additional	 mechanistic	 detail,	 spatial	 effects,	 tumor	 het-
erogeneity,	and	bystander	effects	among	the	components	
explored	in	increasing	detail.	Some	key	collective	insights	
include	the	importance	of	ADC	and	warhead	distribution	
at	the	cellular	and	tumor	scales	to	understanding	overall	
ADC	performance,	the	methods	for	preclinical	to	clinical	
translation	using	in	vitro	and	in	vivo	data,	and	the	varia-
tions	in	efficacy	for	novel	dosing	methods	(such	as	carrier	
doses	and	fractionated	dosing)	depending	on	factors,	such	
as	antigen	expression.

Although	much	progress	has	been	made	in	QSP	mod-
eling	 of	 ADCs,	 there	 continues	 to	 be	 opportunities	 for	
further	 development	 in	 each	 of	 these	 areas	 and	 others,	
such	as	greater	mechanistic	detail	at	the	intracellular	level	
that	can	provide	a	more	complete	picture	of	the	biologi-
cal	phenomena	at	work,	deeper	study	 into	 the	effects	of	
tumor	 heterogeneity,	 the	 full	 extent	 of	 bystander	 killing	
and	healthy	tissue	sinks	in	humans,	and	modeling	of	ADC	
toxicity.	Although	this	will	require	additional	experimen-
tal	 data	 and	 collaboration,	 incorporating	 these	 features	
will	increase	our	knowledge	of	the	systems,	processes,	and	
mechanisms	governing	ADCs,	leading	to	improved	ratio-
nal	ADC	design	and	patient	treatment	outcomes.

More	recent	models	generally	have	an	increasing	level	
of	mechanistic	detail	due	 to	availability	of	more	detailed	
bioanalytical	 data,	 particularly	 on	 the	 intracellular	 level	

and	 for	 interaction	 between	 the	 warhead	 and	 the	 site	 of	
action.	 For	 instance,	 the	 role	 of	 physiological	 pH	 can	 be	
taken	into	account	in	the	model	parameters,	as	some	war-
heads	can	become	more	or	less	active	at	differing	pH	levels,	
such	as	the	open	versus	closed	lactone	forms	for	campto-
thecins.46	Additionally,	more	mechanistic	detail	can	be	in-
cluded	in	the	warhead	influx	and	efflux	kinetic	processes	
at	the	tumor	cell	membrane.	In	particular,	active	transport	
is	difficult	to	measure	and	thus	is	often	overlooked	in	cur-
rent	models;	in	the	future,	specific	drug	transporters,	such	
as	 P-	glycoprotein	 (P-	gp)	 or	 breast	 cancer	 resistance	 pro-
tein	(BCRP)	could	be	incorporated	for	relevant	cell	 lines.	
Furthermore,	any	potential	 impact	of	drug–	drug	 interac-
tions	on	tumor	cell	penetration	(via	bystander	activity)	can	
also	be	considered.	Bystander	killing	has	been	explored	in	
several	of	the	aforementioned	models,	denoting	its	impor-
tance	to	ADC	efficacy	and	toxicity.	As	more	detailed	exper-
imental	 measurements	 become	 available,	 more	 detailed	
mechanistic	 models	 can	 be	 developed	 to	 provide	 a	 more	
complete	and	robust	representation	of	the	system.

The	importance	of	the	immune	system	in	cancer	is	well	
known.47	These	 interactions	 have	 been	 explored	 in	 QSP	
models	for	other	immuno-	oncology	therapies.48	However,	
this	 has	 not	 yet	 been	 incorporated	 into	 QSP	 models	 of	
ADCs	thus	far.	Integrating	ADC	models	with	existing	im-
mune	system	models	may	help	to	investigate	immune	sys-
tem	effects	on	ADCs	and	vice	versa.49,50

Although	 ADCs	 can	 look	 extremely	 promising	 in	
preclinical	experiments,	one	of	 the	most	challenging	as-
pects	of	ADC	development	 is	 the	 lack	of	understanding	
of	 the	 underlying	 differences	 between	 humans	 and	 ani-
mal	models,	which	can	cause	ADCs	to	fail	in	the	clinical	
phase	despite	earlier	success	 in	preclinical	studies,	 lead-
ing	 to	 wasted	 time	 and	 resources.	 In	 most	 cases,	 mouse	
xenograft	data	has	been	used	for	preclinical	in	vivo	mod-
eling,	although	some	models	incorporate	data	from	mul-
tiple	species.37	Some	models	also	used	IVIVC	metrics	as	
a	method	to	assist	in	predicting	drug	performance	earlier	
in	the	drug	development	process.13	Further	work	can	be	
done	 to	explore	 the	 interspecies	differences	 that	need	 to	
be	accounted	for	during	preclinical	to	clinical	translation	
to	better	predict	the	clinical	efficacy	of	early-	stage	ADCs.

Failure	 of	 ADCs	 in	 the	 clinic	 often	 results	 from	 the	
inability	 to	 reach	 the	 efficacious	 dose	 prior	 to	 the	 onset	
of	 dose	 limiting	 toxicities	 (DLTs).	 However,	 most	 QSP	
modeling	 efforts	 for	 ADCs	 thus	 far	 have	 generally	 been	
restricted	 to	efficacy	modeling;	 the	 lack	of	 toxicity	mod-
eling	for	ADCs	is	currently	a	gap	in	the	field.	Developing	
QSP	models	focused	on	understanding	ADC	toxicity	will	
be	crucial	to	minimizing	toxic	side	effects	and	expanding	
the	therapeutic	window.

Due	to	availability	of	data	and	interest,	most	published	
QSP	models	for	ADCs	thus	far	are	developed	for	approved	
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ADCs,	 with	 T-	DM1	 being	 the	 most	 well-	studied,	 along	
with	other	trastuzumab-	based	ADCs	or	those	with	tubulin	
inhibitors,	 such	as	MMAE.	Therefore,	although	 the	spe-
cific	drugs	 focused	on	 in	 these	models	may	be	different,	
the	findings	and	methodologies	can	still	be	applied	to	the	
decision-	making	process	for	future	ADCs	undergoing	the	
drug	 development	 process.	 Moving	 forward,	 researchers	
can	incorporate	QSP	modeling	for	ADCs	in	earlier	stages	
of	 the	 drug	 development	 process,	 which	 can	 allow	 for	
added	insights	earlier	on	in	the	discovery	and	design	pro-
cess	(e.g.,	when	evaluating	in	vitro	efficacy	and	toxicity	of	
an	ADC).	Predictive	models	can	help	us	simulate	clinical	
outcomes	with	preclinical	data.	This	cannot	only	help	re-
searchers	to	identify	key	mechanisms	and	processes,	but	
also	avoid	potential	pitfalls	to	steer	the	direction	of	ADC	
development	 earlier	 in	 the	 process,	 from	 informing	 the	
design	 of	 the	 ADC	 itself,	 to	 proposing	 dosing	 regimens	
that	 enable	 improved	 efficacy	 or	 less	 toxicity.	 Similarly,	
building	models	for	ADCs	that	have	failed	in	clinical	trials	
can	help	us	gain	a	better	understanding	of	why	an	ADC	
did	not	perform	as	expected.

QSP	 models	 are	 valuable	 in	 saving	 time,	 effort,	 and	
resources	during	the	drug	development	process.	This	can	
include	 narrowing	 down	 therapeutic	 candidates	 during	
the	 discovery	 phase,	 predicting	 clinical	 efficacy	 from	
preclinical	data	to	focus	on	the	likely	best	candidates,	or	
simulating	many	different	dosing	regimens	to	identify	op-
timal	 strategies	 during	 clinical	 development.	The	 ability	
to	run	simulations	in	silico	allows	researchers	to	test	sce-
narios	that	may	be	impractical,	expensive,	or	infeasible	to	
perform	 experimentally.	 Compared	 to	 traditional	 PK-	PD	
modeling,	 QSP	 models	 contain	 more	 mechanistic	 detail	
and	therefore	enable	nuanced	insights	into	the	underlying	
biology	 that	 cannot	 be	 gained	 through	 PK-	PD	 modeling	
alone.	Complex	molecules,	like	ADCs	that	have	multiple	
design	levers,	and	key	contextual	considerations	that	are	
critical	 to	 the	ADC’s	performance	 (e.g.,	 tumor	heteroge-
neity,	 bystander	 killing,	 target	 expression,	 etc.),	 require	
detailed	mechanistic	modeling	to	accurately	quantify	the	
processes	involved	and	facilitate	translation	to	human	set-
tings	 where	 data	 is	 difficult	 to	 generate.	 Investments	 in	
such	 QSP	 models	 enable	 a	 much	 deeper	 understanding	
of	 the	ADC’s	 interactions	and	 the	 resulting	efficacy	and	
toxicity,	 leading	 to	 more	 informed	 decision	 making	 and	
improved	therapy	design.

CONCLUSION

System	 pharmacology	 models	 of	 ADCs	 have	 evolved	
greatly	 in	 recent	 years,	 from	 empirical	 and	 semimecha-
nistic	 PK-	PD	 models,	 towards	 more	 complex,	 more	 in-
tegrated,	 and	 more	 mechanism-	based	 models.	 Modeling	

efforts	 from	 both	 academic	 and	 industry	 groups	 have	
helped	 to	 quantify	 and	 provide	 insights	 into	 the	 ADC	
mechanisms	and	observed	phenomena,	by	simulating	the	
effect	 of	 key	 ADC	 design	 parameters,	 characterizing	 PK	
and	biodistribution	characteristics,	quantifying	bystander	
killing,	 and	 simulating	 novel	 dosing	 regimens.	 Future	
models	that	account	for	factors	such	as	immune	response	
may	 further	 improve	 in	 their	 ability	 to	 predict	 efficacy	
and	toxicity	of	ADCs.	Moving	forward,	these	models	will	
continue	to	be	very	 important	 tools	 to	support	design	of	
ADCs,	enable	preclinical	to	clinical	translation,	facilitate	
faster	 development,	 and	 ultimately	 develop	 safer	 and	
more	effective	ADCs.
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