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INTRODUCTION

Antibody-drug conjugates (ADCs) are engineered im-
munoconjugate drugs composed of three core compo-
nents: (1) a monoclonal antibody (mAb) and (2) one or 
more cytotoxic small molecules (known as payloads or 
warheads), attached via (3) a chemical linker (Figure 1). 

Predominantly developed as cancer therapies, this strategy 
aims to harness the advantages of both chemotherapeu-
tics and biologics while minimizing their disadvantages. 
Small molecule chemotherapy drugs provide the desired 
cell-killing capabilities but do not discriminate between 
on-target and off-target cells, which can cause unneces-
sary damage to healthy tissue and harmful side effects. 
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Abstract
Antibody-drug conjugates (ADCs) have gained traction in the oncology space 
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understanding of the pharmacokinetic and pharmacodynamic relationships of 
these complex molecules. Quantitative systems pharmacology (QSP) approaches 
can assist in this endeavor; recent computational QSP models incorporate ADC-
specific mechanisms and use data-driven simulations to predict experimental 
outcomes. Various modeling approaches and platforms have been developed at 
the in vitro, in vivo, and clinical scales, and can be further integrated to facilitate 
preclinical to clinical translation. These new tools can help researchers better un-
derstand the nature and mechanisms of these targeted therapies to help achieve a 
more favorable therapeutic window. This review delves into the world of systems 
pharmacology modeling of ADCs, discussing various modeling efforts in the field 
thus far.
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Antibodies can target specific cells by binding to particular 
antigens on the cell surface but may lack the cytotoxicity 
to effectively destroy cells compared to chemotherapeu-
tics.1–3 ADCs, therefore, strive to achieve the best of both 
worlds, maximizing efficacy while minimizing toxicity.

This targeted drug delivery to selected cells while spar-
ing others is remarkably similar to Nobel Laureate Paul 
Ehrlich’s early 20th century concept of the “magic bullet” 
for treating human diseases.4 The first animal studies of 
ADCs (in the 1960s) led to clinical trials in the 1980s; how-
ever, despite the promise of ADCs and several decades of 
development, success has been limited until recently. As 
of 2021, there have been 12 ADCs approved for clinical 
use, all for oncologic indications, with a majority receiving 
approval in 2019 and onward (Table 1). For other appli-
cations, such as immunomodulation, limited exploration 
has occurred in recent years.18 Clinical development has 
been terminated for over 55 ADCs19; these failures often 
stem from narrow therapeutic windows (i.e., the separa-
tion between toxic and efficacious doses is small or ab-
sent).20 Designing and engineering the ADC to expand the 

therapeutic window is no simple task. Yet, despite these 
hurdles, enthusiasm for ADCs remains high, with over 
80 ADC candidates in nearly 600 ongoing clinical trials.19 
This is driven by new ADC technologies (e.g., novel con-
jugation techniques, warhead types, improved selection, 
and optimization of antibodies), translational and clinical 
development strategies (e.g., alternative dosing schedules, 
patient selection, improved use of biomarker data, and 
combination therapies), and an improved understand-
ing of ADC therapeutic index.19,20 These approaches will 
contribute to the development of the next generation of 
ADCs.

Optimization of ADC design is complex, as each sub-
unit (antibody, linker, and warhead) can be considered 
both individually and in the context of the ADC as a whole.

Selection of the antigen target and optimization of 
the mAb is crucial. A recombinant immunoglobulin G 
(IgG) mAb serves as the base of the ADC and vehicle for 
the cytotoxic drug. The target antigen for the antibody 
should be abundantly expressed on the surfaces of tumor 
cells, but not on other cell types.20 The choice of the 

F I G U R E  1   Key ADC properties 
and mechanisms for QSP modeling. 
(a) The antibody, linker, and warhead 
components of ADCs each have 
different design properties that must be 
considered during modeling. Another key 
characteristic is the drug-to-antibody ratio 
(DAR), which typically varies between 
one and eight. (b) Key mechanisms of 
action of the ADC include binding to 
the target antigen, internalization into 
the cell, trafficking and recycling of the 
ADC, endosomal cleavage of the linker 
or lysosomal degradation of the ADC for 
warhead release, influx and efflux of the 
warhead, and cell killing effects at the site 
of action. ADC, antibody-drug conjugate; 
QSP, quantitative systems pharmacology.
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target antigen is key, as target-mediated drug disposition 
(TMDD) plays an important role in defining the phar-
macokinetics (PK) of the overall ADC.21 Whereas ADC-
antigen binding generally triggers internalization and 
facilitates delivery of the warhead to the site of action 
inside the cell, non-internalized ADCs can still produce 
strong cell-killing of the target cells and neighboring 
cells (bystander effect) by warhead release. Although an-
titumor activity of the naked mAb is not necessary, in 
some cases, the mAb can activate an immune response 
against the selected cells through antibody-dependent 
cell-mediated cytotoxicity (ADCC) or phagocytosis. One 
example is trastuzumab emtansine (T-DM1), which has 
DM1 warheads attached to the mAb trastuzumab (ap-
proved as a treatment in its own right) that targets HER2 
receptors in HER2-positive breast cancer. Therefore, the 
collective antitumor effects of both the mAb and the war-
head must be taken into account in such instances. Once 
the target antigen has been selected, the mAb itself can 
be further engineered to improve payload delivery (par-
ticularly via enhanced control of linker placement on the 
mAb) and to have high target-binding affinity, good re-
tention, and low immunogenicity and cross-reactivity.22 
Modifying the mAb’s ability to bind to Fc receptors (most 
notably neonatal Fc receptors or FcRns) can also alter 
the therapeutic index.23 ADCs can bind to FcRns inside 
endosomes, allowing for recycling of the ADC back to 
the cell surface where the higher physiologic pH triggers 
unbinding from the FcRn.22 This recycling mechanism 
impacts the PK profile of the ADC by reducing ADC 
clearance, which can help to improve the therapeutic 
index.24

Synthetic, covalent, chemical linkers connect the 
mAbs to the cytotoxic warheads to form the ADCs, which 
typically have a drug-to-antibody ratio (DAR) between 
one and eight, although most clinical-stage ADCs have an 
average DAR of 3.5–4.20 Stability of the linker is crucial, 
as the ADC must hold onto its payload while in systemic 
circulation, only releasing the warhead once inside the 
appropriate cell. Preventing deconjugation in the circu-
lation reduces off-target toxicity and increases delivery of 
the drug to the tumor. Both cleavable and noncleavable 
linkers have been explored, each with its own set of ad-
vantages and disadvantages. ADCs with linkers that are 
cleavable, via lysosomal proteases, acidic pH, or break-
down of disulfide bridges, run a higher risk of off-target 
toxicity, but may still be active for targets with poor inter-
nalization, whereas ADCs with noncleavable linkers must 
be internalized, so that the mAb can then undergo pro-
teolytic degradation to release the warhead for action.25 
Another important consideration is the position of the 
linker on the mAb; control over the linker position en-
ables site-specific conjugation of the warhead, allowing D

ru
g 

na
m

e
M

ak
er

In
di

ca
ti

on
T

ra
de

 
na

m
e

Y
ea

r 
ap

pr
ov

ed
A

nt
ib

od
y 

ta
rg

et
W

ar
he

ad
 c

la
ss

W
ar

he
ad

 m
ec

ha
ni

sm
 o

f 
ac

ti
on

Li
nk

er

H
as

 
pu

bl
is

he
d 

Q
SP

 m
od

el

Be
la

nt
am

ab
 

m
af

od
ot

in
G

la
xo

Sm
ith

K
lin

e
R

el
ap

se
d 

or
 re

fr
ac

to
ry

 
m

ul
tip

le
 m

ye
lo

m
a

Bl
en

re
p

A
ug

us
t 2

02
0

B-
ce

ll 
m

at
ur

at
io

n 
an

tig
en

 (B
C

M
A

 
or

 C
D

26
9)

M
al

ei
m

id
oc

ap
ro

yl
 

m
on

om
et

hy
l 

au
ri

st
at

in
 F

 
(m

cM
M

A
F)

In
hi

bi
ts

 c
el

l d
iv

is
io

n 
by

 b
lo

ck
in

g 
th

e 
po

ly
m

er
iz

at
io

n 
of

 
tu

bu
lin

Pr
ot

ea
se

-r
es

is
ta

nt
 

m
al

ei
m

id
oc

ap
ro

yl
 

lin
ke

r

N
o

Lo
nc

as
tu

xi
m

ab
 

te
si

ri
ne

A
D

C
 T

he
ra

pe
ut

ic
s

R
el

ap
se

d 
or

 re
fr

ac
to

ry
 

la
rg

e 
B-

ce
ll 

ly
m

ph
om

a

Zy
nl

on
ta

A
pr

il 
20

21
C

D
19

 (e
xp

re
ss

ed
 in

 
w

id
e 

ra
ng

e 
of

 B
 

ce
ll 

he
m

at
ol

og
ic

al
 

tu
m

or
s)

Py
rr

ol
ob

en
zo

di
az

ep
in

e 
(P

BD
) d

im
er

C
au

se
s f

or
m

at
io

n 
of

 
cr

os
sl

in
ks

 in
 D

N
A

, 
w

hi
ch

 b
lo

ck
s c

el
l 

di
vi

si
on

 a
nd

 c
au

se
s 

ap
op

to
si

s

C
at

he
ps

in
 B

-c
le

av
ab

le
 

va
lin

e-
al

an
in

e 
lin

ke
r

N
o

Ti
so

tu
m

ab
 

ve
do

tin
-tf

tv
Se

ag
en

R
ec

ur
re

nt
 o

r m
et

as
ta

tic
 

ce
rv

ic
al

 c
an

ce
r

Ti
vd

ak
Se

pt
em

be
r 2

02
1

Ti
ss

ue
 fa

ct
or

M
M

A
E

In
hi

bi
ts

 c
el

l d
iv

is
io

n 
by

 b
lo

ck
in

g 
th

e 
po

ly
m

er
iz

at
io

n 
of

 
tu

bu
lin

Pr
ot

ea
se

 (c
at

he
ps

in
) 

cl
ea

va
bl

e 
lin

ke
r 

(v
al

in
e-

ci
tr

ul
lin

e)

N
o

N
ot

e:
 L

is
t o

f A
pp

ro
ve

d 
A

D
C

s. 
Tw

el
ve

 a
nt

ib
od

y-
dr

ug
 c

on
ju

ga
te

s h
av

e 
be

en
 a

pp
ro

ve
d 

fo
r u

se
 b

y 
th

e 
FD

A
 a

s o
f t

he
 e

nd
 o

f 2
02

1,
 w

ith
 a

 n
ot

ic
ea

bl
e 

in
cr

ea
se

 in
 a

pp
ro

va
ls

 si
nc

e 
20

17
. H

ow
ev

er
, m

an
y 

of
 th

es
e 

A
D

C
s d

o 
no

t y
et

 
ha

ve
 a

 p
ub

lis
he

d 
Q

SP
 m

od
el

.
A

bb
re

vi
at

io
ns

: A
D

C
s, 

A
D

C
, a

nt
ib

od
y-

dr
ug

 c
on

ju
ga

te
; F

D
A

, U
S 

Fo
od

 a
nd

 D
ru

g 
A

dm
in

is
tr

at
io

n;
 M

M
A

E,
 m

on
om

et
hy

l a
ur

is
ta

tin
 E

; Q
SP

, q
ua

nt
ita

tiv
e 

sy
st

em
s p

ha
rm

ac
ol

og
y.

T
A

B
L

E
 1

 
(C

on
tin

ue
d)



      |  971SYSTEMS PHARMACOLOGY MODELS OF ADCS

for increased homogeneity of an ADC’s DAR and higher 
consistency in the amount of warhead delivered to target 
cells.

The cytotoxic agent (warhead) is a chemotherapy drug, 
optimized for high potency. As they lack specificity to 
tumor cells, warheads depend on the antibody to deliver 
them to the correct tissue. The mechanism of action of the 
drug used can vary, although many warheads bind to DNA 
or microtubules to cause cell death. These warheads can 
also serve as substrates for efflux transporters, which en-
able these drugs to escape the target cells and harm nearby 
healthy tissue (known as the bystander effect).2 Whereas 
these bystander effects undercut the ADC’s specificity 
and delivery of warhead to the target cells, they can also 
be beneficial, such as in solid tumors with heterogeneous 
expression of the target antigen, enabling the warhead to 
reach tumor cells that do not express the target antigen. 
Most ADCs currently in clinical trials use a limited number 
of drug families as warheads (calicheamicins, auristatins, 
maytansinoid, topoisomerase I inhibitors, and pyrroloben-
zodiazepines), as the warhead must fulfill numerous and 
sometimes contradictory criteria, such as high potency, 
high relative hydrophobicity, and having a suitable loca-
tion for attachment of the linker.20 The potency of these 
warheads can be modified, as can the number of warheads 
per ADC (DAR). Determining the best combination of 
DAR and potency to maximize efficacy and minimize tox-
icity is a key challenge in designing the ADC.

In combining the antibody, linker, and warhead, the 
challenge is to maximize efficacy and minimize toxicity. 
This task calls for a deep understanding of the biologi-
cal and pharmacological systems, processes, and mech-
anisms at play. Seeking answers through experimental 
methods alone can be laborious, expensive, or even in-
feasible. Computational modeling can probe questions 
and enhance insight through quantitative simulation of 
drug action and performance. Researchers have often 
used of PK and pharmacodynamic (PD) models, such as 
physiologically-based pharmacokinetic (PBPK) models, 
to aid in the drug development process. In particular, 
quantitative systems pharmacology (QSP) approaches in-
tegrate mechanistic knowledge with biomedical data at 
multiple scales to construct an interpretable and predic-
tive model.26,27 Hence, QSP models are tools that allow for 
maximum use of available preclinical and clinical data to 
improve understanding of the mechanism and derive hy-
potheses (Figure 2).

Due to the complexity of ADCs, the breakdown of an 
ADC molecule generates many different analytes, which 
can make data collection difficult. When using experi-
mental data for parametrization, certain key analytes 
must be measured. Each of these different bioanalyti-
cal measurements are crucial to developing robust QSP 

models of ADCs. For instance, in order to define the PK 
and exposure-response relationships, it is recommended 
to measure the levels of either conjugated antibody (an-
tibody with at least 1 warhead attached) or antibody-
conjugated drug (total warhead conjugated to antibody), 
plus total antibody and unconjugated drug.28 Typically, 
these analytes are measured in the plasma, tumor, and 
non-target tissues that are common sites of toxicity, as 
these measurements are important for determining 
therapeutic index and to model on-target and off-target 
effects.

Use of QSP approaches has increased in recent years, 
particularly to support decision making in drug develop-
ment, drug approvals, and clinical practice.29 A survey 
with respondents from over 30 pharmaceutical companies 
indicated the use of nonclinical QSP modeling in a ma-
jority of the companies in various therapeutic areas (with 
autoimmune disorders and oncology having the most QSP 
support), and this trend of increased QSP modeling ap-
plications is expected to continue.30 Efforts to build QSP 
models of ADCs not only arise from biotechnology and 
pharmaceutical companies, but also from academic re-
searchers, as well as academia-industry collaborations. 
Different types of models, including PK, PD, and spa-
tially detailed models have been developed for different 
purposes and to answer different questions. In addition, 
they have been applied to understand various ADCs and 
to simulate different scenarios, including in vitro cell cul-
ture, preclinical animal experiments, and clinical trials in 
humans.

Previous reviews have described a variety of PK-PD 
models applicable to ADCs at the discovery, preclinical 
development, and clinical development stages of drug de-
velopment.31 In this review, we examine computational 
models of ADCs classified within the umbrella of systems 
pharmacology with a focus on mechanism-based mod-
els,32 mainly those that build upon known cellular and 
intracellular processes of ADCs. Apart from one paper, we 
describe studies focused on modeling efficacy rather than 
toxicity.

We will highlight some of the key systems pharma-
cology models for ADCs developed in the past several 
years, describing model development and progres-
sion, key findings, and examples of model applications 
(Table 2). These models are organized in four key areas, 
grouped by their respective focuses, approaches, and 
insights (as noted in Figure  3): cellular mechanisms; 
spatial representation (including tumor heterogeneity); 
preclinical translation; and clinical translation. Several 
models cover more than one of these areas; where rele-
vant, we have included them in more than one category, 
or focused mainly on their main contribution to one spe-
cific category.
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GLOSSARY OF MODELED ADCs

Anti-5T4 ADC (A1mcMMAF): an in-house ADC targeting 
5T4, an oncofetal antigen expressed on tumor-initiating 
cells.

Brentuximab vedotin (SGN-35): CD30-targeting an-
tibody linked to monomethyl auristatin E (MMAE) war-
heads via valine-citrulline linkers, used for treatment of 
relapsed Hodgkin’s lymphoma (HL) and anaplastic large 
cell lymphoma (ALCL).

Inotuzumab ozogamicin: CD22-targeting antibody 
linked to N-Ac-γ-calicheamicin DMH molecules for tar-
geting B cell malignancies such as non-Hodgkin’s lym-
phoma (NHL) and acute lymphocytic leukemia (ALL).

Trastuzumab emtansine (T-DM1): HER2-targeting an-
tibody covalently linked to emtansine (DM1) warheads 
approved for use to treat HER2+ breast cancer.

Trastuzumab-vc-MMAE (T-vc-MMAE or T-MMAE): 
consists of MMAE warheads conjugated to trastuzumab 
with valine-citrulline peptide linkers, often used as a tool 
ADC.

Trastuzumab maytansinoid: a HER2-targeting ADC 
similar to T-DM1 (DM1 is a cytotoxic maytansinoid), 
which is used clinically for treating HER2+ breast cancer.

Anti-STEAP1-vc-MMAE ADC (DSTP3086S): STEAP1-
targeting antibody linked to monomethyl auristatin E 
(MMAE) warheads via valine-citrulline linkers, for target-
ing prostate cancer.

F I G U R E  2   Structure and key considerations for QSP modeling of ADCs. During QSP modeling of ADCs, the relevant data types 
may vary between different biological scales, as do the structures of the computational models themselves. Subsequently, the resulting 
simulations enable the exploration of different phenomena at the in vitro, in vivo, and clinical scales. Ab, antibody; ADC, antibody-drug 
conjugate; PBPK, physiologically-based pharmacokinetic; PK, pharmacokinetic.
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DEVELOPMENT OF SYSTEMS 
PHARMACOLOGY MODELS

Cellular mechanisms

Mechanistic modeling of brentuximab vedotin 
in cell culture5

One of the first system pharmacology models of ADCs 
was developed for the ADC brentuximab vedotin.5 Using 
experimental data from multiple sources for calibration 
and verification, the model captured the PKs (i.e., distri-
bution) of the ADC and of warhead at the cellular level 
both in vitro and in vivo, and was able to predict tumor 
warhead concentrations and tumor growth inhibition. 
The model of in vitro cell culture used simplifying as-
sumptions for some mechanisms, such as representing 
the multiple steps of bound ADC internalization and 
release of intracellular warhead as a single step. The 
model also included extracellular ADC binding to the 
antigen, and extracellular warhead escaping from inside 
the cell. In vitro experiments were simulated using data 
from an existing study in two CD30+ cell lines, and the 

simulated results were compared to data from a sepa-
rate experimental study. In later models and publica-
tions, more mechanistic detail was added, as we will 
see below. We will also discuss this paper further in the 
Clinical Translation section.

Comparing and refining pharmacodynamic 
models of cell growth and killing7

Researchers developed refined models of cell killing 
by comparing three existing representative PD models 
of tumor growth inhibition.7 These models represent 
tumor volume in a series of transit compartments to 
link the PKs to the tumor growth response. The existing 
models had differing cell growth and killing functions, 
but none fully captured the patterns seen in the data. 
Thus, the authors proposed new hybrid functions based 
on these three models, combining exponential, linear, 
and logistic cell growth and a saturable Michaelis–
Menten equation for cell killing. They also introduced 
the concept of “tumor static concentration” (TSC) to 
represent the minimum inhibitory concentration (i.e., 

F I G U R E  3   Characteristics of selected of systems pharmacology models of ADCs. Here, we highlight four examples from the 23 models 
covered in this review, for which key model characteristics are listed for comparison. In addition to exploring the PK and PD aspects 
of these models, we will focus on insights gained in four categories as noted on the figure: cellular mechanisms, spatial representation, 
preclinical translation, and clinical translation. The selected models each contributed significant insights in at least one of these categories, 
exemplifying the variety of insights that can be gained from QSP modeling. ADC, antibody-drug conjugate; N/A, not applicable; PBPK, 
physiologically-based pharmacokinetic; PD, pharmacodynamic; PK, pharmacokinetic; QSP, quantitative systems pharmacology.
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the concentration of drug at which tumor size neither 
grows nor shrinks). The TSC criteria acts as an efficacy 
index and was calculated for the existing models and for 
the novel hybrid models. This optimized PD model was 
later incorporated into several future ADC QSP mod-
els.11,13,17 This paper is discussed further in the Clinical 
Translation section.

Assessing tumor penetration using a 
customizable model platform with more 
detailed ADC receptor trafficking34

In 2015, Vasalou et al. developed a mechanistic ADC 
model framework that includes ADC binding and 
payload release kinetics, receptor dynamics, systemic 
distribution, vascular permeability, and interstitial 
transport.34 This model incorporated more detailed 
mechanisms of receptor trafficking than most models at 
the time, including intracellular trafficking between en-
dosomes and lysosomes, recycling of the ADC-receptor 
complex, and release of the warhead into the cytosol. 
The inclusion of these mechanisms allowed the authors 
to study ADC efficacy as a function of payload cleav-
age and intracellular kinetics. For instance, simulations 
demonstrated that ADCs with endosomal rather than 
lysosomal warhead release had elevated payload con-
centrations, leading to increased shrinkage of the tumor. 
Whereas these simulations were conducted for a generic 
ADC, the model is designed to be highly customizable, 
with parameters that can be adjusted based on the char-
acteristics of the ADC, target receptor, and tumor. This 
flexibility enables the model to serve as a platform for 
better interpretation of experimental data, selection of 
tumor properties, and optimization of ADC design. This 
detailed mechanistic model was paired with a Krogh 
cylinder model to describe solid tumor penetration in 
a mouse model; the spatial components are discussed 
below in the Spatial Effects section.

Experimental techniques to parameterize 
computational models with cellular and 
intracellular mechanisms for trastuzumab 
maytansinoid35

As models become more detailed, experiments are 
needed to identify parameters. The authors developed 
a set of generalizable techniques to parametrize a com-
putational model of the cellular processing of ADCs, 
using trastuzumab maytansinoid (which is used clini-
cally for treating HER2+ breast cancer) as the model 
ADC.35 These methods were based on flow cytometry 

and fluorescence imaging, and were used to quan-
tify the processes of ADC binding to target antigen, 
receptor-mediated internalization, proteolytic ADC 
degradation, efflux of the warhead, and effector com-
plex formation via warhead binding to the intracellular 
target. The experiments were performed in three high-
HER2-expressing cell lines: BT-474, NCI-N87, and SK-
BR-3. The internalization, degradation, and efflux rate 
constants were identified, and following a local sensitiv-
ity analysis with 10% perturbations from the established 
parameters, they determined internalization and efflux 
rates to be key parameters that influence levels of war-
head delivery. The resulting kinetic model of cellular-
level processes can be incorporated into larger PK-PD 
models, and, indeed, were, as described in a companion 
paper9 which we discuss in a later section below.

Extending a PK-PD model of T-DM1 to 
incorporate more intracellular mechanisms, 
including ADC degradation and 
passive diffusion9

Using the parameters derived from the in vitro experi-
ments, as described in the previous paper,35 Singh et al.9 
used the model to characterize pharmacokinetics of T-
DM1 in three HER2+ cell lines. The model also improved 
on the previous model35 of ADC with the addition of 
more intracellular details, including intracellular ADC 
degradation and passive diffusion of unconjugated drug 
across tumor cells. This cellular model was integrated 
with a tumor drug disposition model, enabling the pre-
diction of tumor warhead concentrations in the mouse 
xenografts. To quantify the ADC cellular processes, the 
authors analyzed the relative contribution of the antigen-
mediated and passive diffusion pathways in producing 
unconjugated drug inside the cell. This analysis was per-
formed for both the in vitro and in vivo systems, finding 
that receptor-mediated endocytosis and passive diffusion 
contributed differently to intracellular drug exposure 
at the different scales. Passive diffusion was the more 
prominent pathway in vitro, whereas receptor-mediated 
intake had a higher contribution in vivo. The global and 
local sensitivity analyses also showed that drug exposure 
in the system is sensitive to deconjugation and diffu-
sion of the drug across the membrane of the tumor cell, 
which is consistent with the results found in this group’s 
prior work. The authors also proposed an ideal system 
PK model for intracellular processing of ADCs, which 
involves more mechanistic details on specific intracellu-
lar compartments early endosomes, late endosomes, re-
cycling endosomes, and lysosomes; however, the data to 
achieve this was not available.
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Exploring the effects of bystander killing and 
tumor heterogeneity using a co-culture system36

To better understand the rate and extent of the bystander 
killing in a heterogeneous system, this model focused 
on the HER2-targeting Trastuzumab-vc-MMAE (T-vc-
MMAE) as an example of an ADC that exhibits bystander 
effects.36 Using a co-culture system comprising HER2-
negative cells (GFP-MCF7) and HER2-positive cells with 
different levels of receptor expression (NCI-N87, BT474, 
and SKBR3) to represent tumor heterogeneity, they iden-
tified a positive correlation between bystander effects 
and increased receptor expression levels (i.e., HER2-
negative cells were more likely to be killed by bystander 
effects if the HER2-positive cells they were cultured 
with had higher levels of HER2). They also observed a 
substantial time delay before bystander killing occurred 
in the antigen-negative cells. Further analysis of the 
co-culture system also suggested that bystander killing 
may decrease as the population of antigen positive cells 
shrinks. Based on these data, they developed a novel PD 
model to capture bystander effects, integrating cell dis-
tribution models that represented the antigen-positive 
and -negative cells in the system. This model could be 
integrated with a systems PK model for ADCs to link the 
systemic ADC concentrations and predict the outcomes 
from bystander effects.

Cellular PK model of trastuzumab-vc-MMAE 
suggests that intracellular exposure of the 
warhead is dictated by antigen expression, 
internalization, degradation, and efflux38

Singh and Shah sought to quantify the cellular PK of 
the HER2-targeting ADC trastuzumab-valine-citrulline-
monomethyl auristatin E (T-vc-MMAE), which consists 
of MMAE warheads conjugated to trastuzumab with 
valine-citrulline peptide linkers.38 Conducting cellular 
ADC disposition studies in low-HER2 expressing (GFP-
MCF7) and high-HER2 expressing (NCI-N87) cell lines, 
they incubated the cells with MMAE or T-vc-MMAE for 
2  h, and used three main analytical methods to meas-
ure unconjugated drug, total drug, and total antibody 
concentrations (liquid chromatography–tandem mass 
spectrometry, a forced deconjugation method, and an 
enzyme-linked immunosorbent assay respectively). 
Although similar levels of MMAE accumulated in both 
cell lines following MMAE exposure, the NCI-N87 cells 
had much higher intracellular exposure of MMAE fol-
lowing T-vc-MMAE exposure. This extensive data al-
lowed them to estimate MMAE influx rates, MMAE 
efflux rates, and T-vc-MMAE intracellular degradation 

rates, and to develop a novel single-cell drug disposition 
model to describe the three analytes (unconjugated drug, 
total drug, and total antibody). Their global sensitivity 
analysis revealed ADC internalization and degradation 
rates, HER2 expression, and MMAE efflux to be key pa-
rameters that dictated intracellular exposure to MMAE. 
This single-cell model provided a solid foundation for 
further exploring the bystander effects of ADCs, as dem-
onstrated in further studies by this group.39,41

Building a cell-level systems PK-PD model 
to describe in vitro bystander effects using 
intracellular target occupancy39

As an extension of their previous cellular ADC disposi-
tion study,38 Singh and Shah developed a cell-level sys-
tems PK-PD model to examine the in vitro bystander 
effects of ADCs, using T-vc-MMAE, which is known 
to have bystander effects, as the representative ADC.39 
These bystander effects are often desirable in a hetero-
geneous tumor environment, allowing for improvement 
of the overall ADC efficacy in cells with different target 
receptor expression levels. The team conducted in vitro 
experiments in high-HER2 expressing cells (NCI-N87), 
low-HER2 expressing cells (GFP-MCF7), and co-cultures 
with both cell lines to study these bystander effects. PK-
PD models with cellular mechanisms were developed for 
each cell type by integrating their previously published 
cell-level PK model38 to the cell-distribution PD model,36 
and the simulations captured the intracellular target (tu-
bulin) occupancy following exposure to T-vc-MMAE. The 
PK-PD models for both cell types were then mechanisti-
cally integrated to describe the bystander effects, and the 
subsequent dual model was able to reasonably reflect the 
observed experimental data, demonstrating that a simi-
larly high tubulin occupancy by MMAE was required to 
achieve the desired cytotoxic effects in both cell lines. 
Compared to previous models that explored bystander 
effects, the single-cell framework for this model enables 
multiple cell populations to be represented, and can be in-
corporated with a tumor drug disposition model to predict 
bystander effects in vivo.

Optimizing parameters for an existing cell-level 
systems PK model for trastuzumab-vc-MMAE41

Sharma et al. measured the PK profiles and internali-
zation rates of T-vc-MMAE, and receptor expression 
for four different HER2-expressing cell lines (with dif-
fering expression levels) to study the relationship be-
tween antigen expression levels and ADC exposure in 
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tumor cells.41 Using these data to calibrate the cellular 
PK model previously developed by their group,38 the au-
thors fitted intracellular degradation rates for two cell 
lines (SKBR-3 and MDA-MB-453). They found a strong 
linear correlation between HER2 expression levels and 
ADC exposure in tumor cells, and an inverse relation-
ship between HER2 expression level and internaliza-
tion rate. This inverse relationship may be due to the 
increased recycling of the HER2 complexes in high 
HER2-expressing cell lines as compared to low HER2-
expressing cell lines, as seen in another experimental 
study.43

Spatial effects

Some of the models discussed previously include a spatial 
component to the model,5,34 typically to describe drug pen-
etration in a solid tumor. Most of these models used Krogh 
cylinder geometry to represent drug distribution from a 
cylindrical blood vessel into a surrounding idealized cyl-
inder of tumor tissue, based on previously published mod-
els.44,45 The Krogh cylinder model enables representation 
of tissue-scale distributions of the ADC and antibodies, 
which is not reflected in the typical homogenous or “well-
mixed” compartments found in most compartmental or 
PBPK models. These spatial effects are further explored 
into the following models.

Using a customizable model platform with 
a Krogh cylinder model to explore the 
effects of tumor vascularization and the binding 
site barrier34

As an example of insights gained from these spatial mod-
els, the Vasalou 2015 model34 discussed in the Cellular 
Mechanisms section incorporated detailed mechanisms 
of receptor trafficking paired with Krogh cylinder geom-
etry, varying the Krogh cylinder radius to simulate tumors 
with differing levels of vascularization. They found that 
given the same ADC dose, tumors with higher degrees of 
vascularization can be reduced more quickly than tumors 
with less vascularization. Through their simulations, the 
researchers identified tumor attributes that would con-
tribute to decreased ADC efficacy, and also tested ADC 
design scenarios to overcome these barriers. As an exam-
ple, high receptor expression levels in the tumor can cause 
a “binding site barrier” when there is also rapid internali-
zation and low recycling rates – in other words, the ADC 
cannot penetrate as deeply into the tumor because it binds 
to (and is internalized by) cell-surface receptors close to 

the vasculature. However, antibodies with slightly lower 
affinities may allow for “looser” binding to overcome the 
“binding site barrier,” and therefore penetrate deeper in 
the tumor.

Investigating antibody-ADC co-administration 
to enhance tumor penetration of T-DM110

Cilliers et al. developed a multiscale model of T-DM1, 
integrating cellular mechanisms with a PBPK-based 
model to characterize the systemic drug disposition 
kinetics and heterogeneous tumor distribution of this 
ADC.10 The model was developed using experimental 
data on ADC distribution in mouse xenograft models. 
At the cellular scale, the model includes binding, inter-
nalization, and degradation of both the ADC and uncon-
jugated mAb. This was incorporated into a PBPK model 
that tracks systemic distribution of the ADC and mAb, 
and was validated experimentally. The tumor compart-
ment was represented by a Krogh cylinder tissue model 
with permeability and diffusion. This was the first group 
to use this model to examine spatial effects of tumor drug 
disposition alongside the effects of co-administration of 
ADC with unconjugated mAb; the unconjugated mAb 
was administered alongside the ADC at varying ratios 
both in silico and in vivo using immunofluorescence 
imaging. The authors found that such carrier doses can 
significantly help to improve penetration of the ADC 
into the tumor by overcoming the binding site barrier. 
Additionally, they explored the effects of DAR on tumor 
penetration by analyzing data from six publications, 
finding that the effect was sufficiently large such that at 
a constant dose of a sufficiently potent small molecule, 
ADCs with a lower DAR and a higher co-administered 
antibody dose were generally more successful in reduc-
ing tumor growth than those with a higher DAR and 
lower antibody dose; DAR-dependent clearance and 
deconjugation may also be key contributors to this phe-
nomenon. Used in conjunction with experimental data, 
this model can aid in exploring and understanding the 
impacts of the multiple mechanisms behind ADCs.

Using computational models to 
identify the optimal ADC dosing and warhead 
properties and assess the role of bystander 
effects on ADC efficacy12

Khera and colleagues expanded on their previous 
computational model10 to focus on ADC distribution 
within solid tumors and the role of bystander effects 
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on efficacy.12 The model predicts warhead distribution 
as a function of antibody dose, warhead dose, and war-
head properties. In particular, as heterogeneous tumor 
distribution of the ADC is linked to decreased efficacy, 
increasing the antibody dose can increase tumor pen-
etration, which decreases the heterogeneity of drug 
concentration and increases the resulting efficacy. By 
simulating warheads with bystander effects (MMAE) 
and those without (DM1), the team also found direct 
cell killing (via target antigen-mediated uptake of ADC) 
to be more efficient than bystander killing, although the 
properties of the warhead (including lipophilicity, mo-
lecular weight, radius, diffusivity, half-life, Damköhler 
number, and reported bystander effects) are an impor-
tant factor in determining whether it will be effective for 
bystander killing. Thus, this model can be used to iden-
tify the optimal ADC dosing and warhead physiochemi-
cal properties to improve delivery throughout the tumor 
and maximize efficacy.

Antibody co-administration may be 
synergistic in tumors with high antigen 
expression but not in those with low antigen 
expression14

Earlier models had explored antibody co-administration 
with ADCs to improve tumor penetration10 but had 
not explored the specific scenarios in which this strat-
egy would be most beneficial. To quantitatively ex-
plore ADC-antibody co-administration as a method 
to overcome the binding site barrier phenomenon, 
researchers conducted in vivo experiments and QSP 
modeling using T-DM1 and T-vc-MMAE.14 Whereas 
both ADCs have trastuzumab as the antibody carrier, 	
T-vc-MMAE is known to exhibit bystander effects while 
T-DM1 does not. Tumor growth inhibition data from 
mouse xenograft models carrying high HER2 (NCI-N87 
cells) and low HER2 (MDA-MB-453 cells) was used to 
build a semimechanistic PK-PD model to evaluate the 
effects of doses with trastuzumab co-administration (at 
1, 3, or 8-fold higher antibody) or without. Using an in-
teraction parameter to measure the benefit, the authors 
found the ADC interaction with the carrier dose was syn-
ergistic in high-antigen-expressing tumors, whereas in 
low-antigen-expressing tumors (and warheads that ex-
hibit bystander effect), the interactions had an additive 
or less than additive benefit. Thus, the researchers con-
clude that whereas the ADC-antibody co-administration 
approach can be useful in improving ADC effectiveness 
in some situations, it should not be applied without a 
cost–benefit analysis.

Agent-based model of T-DM1 to represent 
tumor heterogeneity and simulate antibody 	
co-administration15

Menezes et al. developed a hybrid agent-based model to 
capture the effects of different T-DM1 treatment regimens 
on a tumor subsection.15 The model includes central and 
peripheral tissue compartments, with tumor cells as indi-
vidual agents on a grid system undergoing cell division and 
both natural and drug-induced cell death. Notably, this 
is the first systems pharmacology model of ADCs to not 
only capture drug PK-PD and cell dynamics, but also in-
corporate heterogeneity in the tumor microenvironment, 
including variation in blood vessel density. This contrasts 
previous ADC models that used the Krogh cylinder model 
to represent the tumor compartment; which both can por-
tray the heterogeneous tissue distribution of the ADC, 
Krogh cylinders reflect a homogenous tumor cell popu-
lation, whereas the agent-based model enables cell-level 
heterogeneity in the microenvironment and vasculature 
to be included. Much like the Cilliers 2016 model,10 the 
researchers also explore the use of a trastuzumab carrier 
dose in conjunction with T-DM1 to improve ADC tumor 
disposition. The model shows increased efficacy in in-
stances where the increased number of cells reached by 
the ADC overcomes the diminished uptake of the war-
head caused by the presence of the unconjugated anti-
body, which matches experimental data from NCI-N87 
mouse xenograft tumors. Additionally, whereas fraction-
ated dosing is shown to be less effective than a single dose 
for co-administration, it can be useful when the increased 
tolerability enables a higher ADC dosage.

Expanding the agent-based model to 
quantify the effectiveness of antibody 	
co-administration and bystander killing16

Recently, Menezes et al. extended their hybrid agent-
based model described above to incorporate angiogenesis, 
heterogeneous receptor expression, heterogeneous tumor 
cell sensitivity to payloads, and bystander effects (for 
payloads that can diffuse to surrounding cells).16 Using 
this model, the researchers investigated the effectiveness 
of co-administration of unconjugated trastuzumab and 
ADC (for T-DM1 and T-MMAE), as well as bystander 
killing (for T-MMAE only). Simulations using this model 
showed both T-DM1 and T-MMAE benefitted from an-
tibody co-administration, including in tumors with in-
trinsic resistance to the payload. Additionally, whereas 
co-administration was particularly effective for payloads 
without bystander effects, such as T-DM1, this benefit is 
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receptor-expression-dependent, and the antibody carrier 
dose may even inhibit tumor cell killing at sufficiently 
low receptor expression levels. These results are consist-
ent with the findings of Singh et al.14 Model predictions 
also showed that at clinically tolerable doses, regimens 
with greater efficacy are more likely to result in resistant 
cell populations, emphasizing the need to seek alternative 
cell-killing mechanisms that will increase the durability of 
the treatment effect.

Preclinical translation

A preclinical, mechanism-based 
pharmacokinetic model of an anti-5T4 MMAF 
ADC identified key parameters or features 
associated with drug exposure33

The model of anti-5T4 ADC (A1mcMMAF) was de-
scribed in a 2014 paper in which the authors detailed the 
development of a mechanism-based PK model to predict 
tumor concentrations of the ADC and warhead, using 
experimental data from MDA-MB-435/5T4 and H1975 
human tumor xenografts in mice for model building and 
verification.33 They conducted a pathway analysis and 
local sensitivity analysis to determine parameters with 
the largest effect on the system, and found that payload 
dissociation and tumor size were key parameters af-
fecting cytotoxic drug exposure in both the plasma and 
tumor. The authors also noticed that the sensitivity of 
several key model outputs is dose-dependent. Thus, this 
model showed the importance of quantification to im-
prove the understanding of the processes driving ADC 
and warhead disposition, and can be further developed 
for clinical translation given the appropriate parameters, 
data, and translational strategy, as discussed in their pre-
vious work.5

Using analytical data to model stepwise 
deconjugation of warheads from the 	
T-DM1 ADC8

To better understand the PKs of T-DM1, particularly war-
head release and the effects of DAR, Bender et al. devel-
oped two modeling approaches using preclinical PK data 
from rats and cynomolgus monkeys.8 First, they built a 
mechanistic PK model of total trastuzumab and DAR con-
centrations with three compartments – a central and two 
peripheral compartments. Notably, this is one of the first 
models of ADC to incorporate stepwise deconjugation of 
the small molecule drug from the main trastuzumab body, 
starting from a DAR value of seven all the way to DAR 

zero (unconjugated trastuzumab). However, this model 
requires extensive amounts of experimental data, includ-
ing measurements of T-DM1 at each of the intermedi-
ate DAR moieties, in order to identify the rate constants 
for each step of the deconjugation process. To lower the 
data burden, they created a reduced three-compartment 
model, fit to total trastuzumab and T-DM1 concentra-
tions, with the warhead deconjugation represented by a 
single deconjugation parameter; this reduced model may 
be useful when data for the individual DAR moieties are 
not available. Depending on the situation, these two ap-
proaches provide more flexibility based on the analytical 
data available for the ADC.

A mechanism-based platform model to predict 
PKs of MMAE-based ADCs using DAR-specific 
analytes and DAR-dependent clearance37

Researchers developed a mechanism-based platform 
model to predict the PK behavior of MMAE-based ADCs, 
which can be used as a valuable tool for exploring mecha-
nisms behind ADC disposition for translational predic-
tions.37 Much like a previous model for T-DM1,8 this 
model included DAR-dependent clearance and explicit 
representation of all DAR species for the ADC, including 
sequential deconjugation as a higher DAR converts to a 
lower DAR species. They integrated rodent and cynomol-
gus monkey PK profiles into a cross-species model, which 
successfully captured PK profiles of the different analytes – 	
total antibody (including both unconjugated antibody and 
conjugated antibody), drug-conjugated antibody (anti-
body with at least one conjugated drug molecule), and/
or antibody-conjugated drug (drug that is conjugated to 
an antibody), simulating administration of both purified 
ADCs with defined DAR species and ADCs with mixtures 
of DAR. Additionally, the model predictions for human 
PKs of an anti-STEAP1-vc-MMAE ADC (DSTP3086S) 
matched well with the PK measurements from a phase I 
clinical trial. Thus, they were able to develop this model 
with ADC disposition mechanisms and apply it to datasets 
with different payload densities, ADC molecules, animal 
models, and analyte measurements.

Using mechanism-based PK-PD models to 
examine hematological toxicities of ADCs and 
simulate effects of linker design6

Whereas efficacy has been a major consideration in 
modeling of ADCs, toxicity is a central but less-studied 
phenomenon, central to translation to use in the clinic. T-
DM1 and brentuximab vedotin (SGN-35) are both known 
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to induce ADC-related thrombocytopenia and neutrope-
nia. To understand these hematological toxicities, using 
data from literature and mouse xenograft PK and PD stud-
ies, researchers built compartmental models (with central 
and peripheral compartments) with linear elimination 
and first order payload release.6 These mechanism-based 
models were able to accurately reflect the PK profiles and 
ADC-induced hematological toxicities of both ADCs. They 
also simulated the effects of the linker design on the asso-
ciated myelosuppression by changing the payload release 
rate constant, and by this showed that hematotoxicity may 
be improved by a fourfold increase in the deconjugation 
rate of T-DM1, or a 70% decrease in that of SGN-35. This 
model can serve as a platform for assessing hematological 
toxicities of ADCs, and shows more generally that toxic-
ity should not be ignored in modeling to focus solely on 
efficacy.

Developing a mathematical correlation 
between in vitro and in vivo ADC efficacy 
to improve identification of potential ADC 
candidates13

Researchers used data for 19 ADCs to establish an in vitro-
in vivo correlation (IVIVC) between the in vitro and in vivo 
efficacy of those ADCs.13 They developed a PK-PD model 
(similar to their previous models5,7 but less mechanism-
based) to characterize in vitro cytotoxicity data from 
HER2-expressing NCI-N87 cells and used it to calculate 
the “in vitro tumor static concentration” (TSCin vitro), a 
theoretical concentration of continuous ADC exposure at 
which the number of tumor cells will remain static. For 
the 19 ADCs tested, the TSCin vitro values were found to 
be between 0.1 and 100 nM. Similarly, the “in vivo tumor 
static concentration” (TSCin vivo) was found by incorporat-
ing tumor growth inhibition data from murine human 
tumor xenograft models (also using NCI-N87 cells) into 
the PK-PD model. The TSCin vivo values for the 19 ADCs 
were approximately in the range of 5–1000 nM. Whereas 
the models were based on the respective cytotoxicity and 
tumor xenograft studies and matched the experimental 
data well, it is difficult to compare the full parameter sets 
for the models to evaluate the results and in vitro-in vivo 
relationship. Thus, the TSC values were used as a repre-
sentative variable for the models’ parameter estimates 
and to look at the correlation between the different ADC 
parameter sets. Although the average TSCin vivo was ~ 27 
times higher than TSCin vitro, there was a good positive lin-
ear correlation between the two, suggesting that TSCin vitro 
is predictive of TSCin vivo Thus, this IVIVC can be used to 
rapidly identify promising early-stage ADC candidates 

and predict efficacious in vivo ADC concentrations from 
in vitro data, which can help to optimize the design of 
these preclinical studies. However, the ADCs tested 
(which included T-DM1) all had warheads with similar 
mechanisms of action, so this approach needs to be veri-
fied for warheads with differing mechanisms of action.

Extending the cell-level model to an in vivo 
systems PK-PD model to predict trastuzumab-
vc-MMAE efficacy as a function of intracellular 
target occupancy40

Building upon their previous single cell PK model,38 
Singh et al. developed an in vivo system PK-PD model 
that similarly predicts T-vc-MMAE efficacy as a function 
of intracellular target occupancy.40 This model integrated 
the previous single-cell PK-PD model with tumor distribu-
tion, and was validated using PK and efficacy data from 
mouse xenograft models with either high-HER2 express-
ing (NCI-N87) and low-HER2 expressing (GFP-MCF7) 
tumor cells. The NCI-N87 tumors had higher exposures 
to total trastuzumab, unconjugated MMAE, and total 
MMAE compared to the GFP-MCF7, as well as higher 
tubulin occupancy. However, the plasma PKs of all ADC 
analytes and prolonged retention of MMAE were similar 
between both tumor types, and the same set of PD param-
eters were used. This model was able to capture the in 
vivo PK data quite well and can serve as the framework 
for clinical translation of ADCs.

Quantifying heterogeneous bystander effects 
in vivo using a systems PK-PD model of 
trastuzumab-vc-MMAE42

Singh et al. also used a joint experimental-computational 
approach to explore the significance of heterogeneous by-
stander effects of ADCs in vivo.42 Using T-vc-MMAE as 
the model ADC, the researchers conducted mouse tumor 
xenograft studies (NCI-N87, GFP-MCF7, and co-culture) 
at varying ADC dosages, measuring plasma and tumor 
PK, as well as tumor growth inhibition. To account for the 
different cell populations found in the co-culture tumors, 
the authors expanded their previous tumor drug distribu-
tion model38 and later integrated it with a PD model where 
ADC efficacy is driven by intracellular tubulin occupancy. 
This system’s PK-PD model was built upon their previous 
models and was able to reproduce the results of the ex-
perimental data quite well, including the tumor growth 
profiles for multiple cell lines and dosages. They per-
formed additional simulations to explore alternate dosing 
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regimens, and much like other simulations previously 
conducted, found that fractionated dosing may improve 
overall ADC efficacy and bystander effect by extending 
intracellular tubulin occupancy. This model provides a 
platform for quantification of in vivo bystander effects in a 
heterogeneous tumor.

Clinical translation

PK-PD simulations of brentuximab vedotin in 
cell culture, mice, and humans highlight the 
importance of ADC and warhead distribution 
in predicting clinical outcomes5

Along with the cellular mechanistic modeling of bren-
tuximab vedotin discussed above,5 the authors also 
modeled the PKs of the warhead MMAE and the ADC 
in a xenograft mouse using a two-compartment model 
to represent the plasma and tumor, which was inte-
grated with a PD model representing tumor growth to 
describe the ADC’s preclinical efficacy. The PK param-
eters were obtained from literature-measured values of 
plasma and tumor PK and ADC concentration-time pro-
files, whereas PD parameters were derived from tumor 
growth inhibition data. This preclinical PK-PD model 
was then translated to a clinical PK-PD model by ad-
justing model parameters to reflect clinically observed 
values, using clinical PK data from two different clini-
cal trials. Resulting simulations were compared with 
clinical trial results, and accurately predicted tumor and 
plasma warhead concentrations, as well as progression-
free survival (PFS) and complete response rates. 
Through a sensitivity analysis, the authors also identi-
fied the drug efflux rate to be an important parameter 
that is often overlooked. As one of the first ADC models 
with preclinical-to-clinical translation, this work high-
lights the importance of ADC and warhead distribution 
in helping to predict clinical outcomes.

Comparing and refining PD models of cell 
growth and killing7

The hybrid PD model developed by Haddish-Berhane 
et al.7 was used to predict efficacy of T-DM1 in patients 
based on efficacy in mice. The predicted efficacious dose 
range was comparable to clinical dosing data, and the 
same translational strategy was also applied to a novel in-
house anti-5T4 ADC (the model for that ADC is described 
in more detail in the Cellular Mechanisms section). 
Considering the model performance for these two differ-
ent ADCs, they proposed an improved PD model where 

the tumor static concentration criterion can be used more 
generally to predict clinical dosing of ADCs from mouse 
efficacy data.

From mouse to human: Clinical translation of a 
multiscale, mechanism-based PK-PD model of 
inotuzumab ozogamicin17

Inotuzumab ozogamicin is a CD22-targeting antibody 
linked to N-Ac-γ-calicheamicin DMH molecules for target-
ing B cell malignancies, such as ’NHL and ALL. For this 
multiscale, mechanism-based approach,17 the preclinical 
model was built with preclinical data, and included ADC 
disposition and clearance in the plasma and tumor; the 
cellular-level mechanisms of ADC-Ag binding and war-
head release, binding, and efflux; and mouse xenograft 
tumor growth and inhibition. By integrating human PK 
profiles, antigen expression levels, tumor volumes, and 
tumor growth rates, the preclinical model was translated 
to the clinical scale. This clinical model was able to capture 
PFS rates observed in clinical studies, and model analysis 
showed that tumor growth, ADC PK, and warhead efflux 
to be sensitive parameters and potentially more useful than 
antigen expression as a predictor of outcome. The model 
for liquid tumors (ALL) was approximated by eliminating 
transport to the solid tumor used in NHL. Tumor warhead 
levels were found to be higher in patients with ALL than 
patients with NHL, which aligns with the increased acces-
sibility of blood tumors (ALL) compared to solid tumors 
(NHL). Model simulations also showed that whereas a 
more conventional dosing regimen works well for NHL, 
fractionated dosing may provide improved results for ALL. 
This model can be a useful tool to predict clinical outcomes 
from preclinical data, and serves as a foundation to build 
other ADC models used for clinical translation, including 
many of the other models described.

Applying preclinical to clinical translation of 
PK-PD models of T-DM1 to simulate clinical 
trials and potential dosing regimens11

Singh and Shah developed a general ADC PK-PD mod-
eling and simulation strategy to address translation issues, 
including differences between preclinical and clinical tu-
mors, by using human-specific parameters. This strategy 
has been applied to inotuzumab ozogamicin, as described 
previously.17 Using this same approach along with their 
previous preclinical tumor drug disposition model,9 the 
researchers conducted a similar case study using T-DM1, 
using tumor growth inhibition data from various mouse 
models to derive the efficacy parameters for the model.11 
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Combined with predicted human PK parameters (esti-
mated via allometric scaling of monkey PK parameters) 
and clinically observed breast cancer tumor volume and 
growth parameters, a translated PK-PD model of T-DM1 
was developed and used to simulate clinical trials to pre-
dict PFS and objective response rates (ORRs). The model 
worked well, and the predicted outcomes were compara-
ble to those from three separate clinical trials. Model pre-
dictions suggested that increasing the clinically approved 
dose would only provide a limited improvement in ORR, 
a fractionated dosing regimen may provide a more sub-
stantial improvement in efficacy, which is consistent with 
earlier findings on this topic.17 The authors hypothesized 
that this improved response resulted from the additional 
time for accumulation of the warhead in the tumor with 
the fractionated regimen, allowing more time for the cell 
killing effects to take place.

DISCUSSION

Each of the models discussed above has areas of strength 
focusing on unique aspects of ADC biology and phar-
macology. Together, they provide a solid foundation 
for computational modeling of ADCs. The complexity 
of the mechanisms included in the models increases as 
successive modeling papers built upon each other, with 
additional mechanistic detail, spatial effects, tumor het-
erogeneity, and bystander effects among the components 
explored in increasing detail. Some key collective insights 
include the importance of ADC and warhead distribution 
at the cellular and tumor scales to understanding overall 
ADC performance, the methods for preclinical to clinical 
translation using in vitro and in vivo data, and the varia-
tions in efficacy for novel dosing methods (such as carrier 
doses and fractionated dosing) depending on factors, such 
as antigen expression.

Although much progress has been made in QSP mod-
eling of ADCs, there continues to be opportunities for 
further development in each of these areas and others, 
such as greater mechanistic detail at the intracellular level 
that can provide a more complete picture of the biologi-
cal phenomena at work, deeper study into the effects of 
tumor heterogeneity, the full extent of bystander killing 
and healthy tissue sinks in humans, and modeling of ADC 
toxicity. Although this will require additional experimen-
tal data and collaboration, incorporating these features 
will increase our knowledge of the systems, processes, and 
mechanisms governing ADCs, leading to improved ratio-
nal ADC design and patient treatment outcomes.

More recent models generally have an increasing level 
of mechanistic detail due to availability of more detailed 
bioanalytical data, particularly on the intracellular level 

and for interaction between the warhead and the site of 
action. For instance, the role of physiological pH can be 
taken into account in the model parameters, as some war-
heads can become more or less active at differing pH levels, 
such as the open versus closed lactone forms for campto-
thecins.46 Additionally, more mechanistic detail can be in-
cluded in the warhead influx and efflux kinetic processes 
at the tumor cell membrane. In particular, active transport 
is difficult to measure and thus is often overlooked in cur-
rent models; in the future, specific drug transporters, such 
as P-glycoprotein (P-gp) or breast cancer resistance pro-
tein (BCRP) could be incorporated for relevant cell lines. 
Furthermore, any potential impact of drug–drug interac-
tions on tumor cell penetration (via bystander activity) can 
also be considered. Bystander killing has been explored in 
several of the aforementioned models, denoting its impor-
tance to ADC efficacy and toxicity. As more detailed exper-
imental measurements become available, more detailed 
mechanistic models can be developed to provide a more 
complete and robust representation of the system.

The importance of the immune system in cancer is well 
known.47 These interactions have been explored in QSP 
models for other immuno-oncology therapies.48 However, 
this has not yet been incorporated into QSP models of 
ADCs thus far. Integrating ADC models with existing im-
mune system models may help to investigate immune sys-
tem effects on ADCs and vice versa.49,50

Although ADCs can look extremely promising in 
preclinical experiments, one of the most challenging as-
pects of ADC development is the lack of understanding 
of the underlying differences between humans and ani-
mal models, which can cause ADCs to fail in the clinical 
phase despite earlier success in preclinical studies, lead-
ing to wasted time and resources. In most cases, mouse 
xenograft data has been used for preclinical in vivo mod-
eling, although some models incorporate data from mul-
tiple species.37 Some models also used IVIVC metrics as 
a method to assist in predicting drug performance earlier 
in the drug development process.13 Further work can be 
done to explore the interspecies differences that need to 
be accounted for during preclinical to clinical translation 
to better predict the clinical efficacy of early-stage ADCs.

Failure of ADCs in the clinic often results from the 
inability to reach the efficacious dose prior to the onset 
of dose limiting toxicities (DLTs). However, most QSP 
modeling efforts for ADCs thus far have generally been 
restricted to efficacy modeling; the lack of toxicity mod-
eling for ADCs is currently a gap in the field. Developing 
QSP models focused on understanding ADC toxicity will 
be crucial to minimizing toxic side effects and expanding 
the therapeutic window.

Due to availability of data and interest, most published 
QSP models for ADCs thus far are developed for approved 
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ADCs, with T-DM1 being the most well-studied, along 
with other trastuzumab-based ADCs or those with tubulin 
inhibitors, such as MMAE. Therefore, although the spe-
cific drugs focused on in these models may be different, 
the findings and methodologies can still be applied to the 
decision-making process for future ADCs undergoing the 
drug development process. Moving forward, researchers 
can incorporate QSP modeling for ADCs in earlier stages 
of the drug development process, which can allow for 
added insights earlier on in the discovery and design pro-
cess (e.g., when evaluating in vitro efficacy and toxicity of 
an ADC). Predictive models can help us simulate clinical 
outcomes with preclinical data. This cannot only help re-
searchers to identify key mechanisms and processes, but 
also avoid potential pitfalls to steer the direction of ADC 
development earlier in the process, from informing the 
design of the ADC itself, to proposing dosing regimens 
that enable improved efficacy or less toxicity. Similarly, 
building models for ADCs that have failed in clinical trials 
can help us gain a better understanding of why an ADC 
did not perform as expected.

QSP models are valuable in saving time, effort, and 
resources during the drug development process. This can 
include narrowing down therapeutic candidates during 
the discovery phase, predicting clinical efficacy from 
preclinical data to focus on the likely best candidates, or 
simulating many different dosing regimens to identify op-
timal strategies during clinical development. The ability 
to run simulations in silico allows researchers to test sce-
narios that may be impractical, expensive, or infeasible to 
perform experimentally. Compared to traditional PK-PD 
modeling, QSP models contain more mechanistic detail 
and therefore enable nuanced insights into the underlying 
biology that cannot be gained through PK-PD modeling 
alone. Complex molecules, like ADCs that have multiple 
design levers, and key contextual considerations that are 
critical to the ADC’s performance (e.g., tumor heteroge-
neity, bystander killing, target expression, etc.), require 
detailed mechanistic modeling to accurately quantify the 
processes involved and facilitate translation to human set-
tings where data is difficult to generate. Investments in 
such QSP models enable a much deeper understanding 
of the ADC’s interactions and the resulting efficacy and 
toxicity, leading to more informed decision making and 
improved therapy design.

CONCLUSION

System pharmacology models of ADCs have evolved 
greatly in recent years, from empirical and semimecha-
nistic PK-PD models, towards more complex, more in-
tegrated, and more mechanism-based models. Modeling 

efforts from both academic and industry groups have 
helped to quantify and provide insights into the ADC 
mechanisms and observed phenomena, by simulating the 
effect of key ADC design parameters, characterizing PK 
and biodistribution characteristics, quantifying bystander 
killing, and simulating novel dosing regimens. Future 
models that account for factors such as immune response 
may further improve in their ability to predict efficacy 
and toxicity of ADCs. Moving forward, these models will 
continue to be very important tools to support design of 
ADCs, enable preclinical to clinical translation, facilitate 
faster development, and ultimately develop safer and 
more effective ADCs.
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