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Abstract

Antibody-drug conjugates (ADCs) have gained traction in the oncology space
in the past few decades, with significant progress being made in recent years.
Although the use of pharmacometric modeling is well-established in the drug de-
velopment process, there is an increasing need for a better quantitative biological
understanding of the pharmacokinetic and pharmacodynamic relationships of
these complex molecules. Quantitative systems pharmacology (QSP) approaches
can assist in this endeavor; recent computational QSP models incorporate ADC-
specific mechanisms and use data-driven simulations to predict experimental
outcomes. Various modeling approaches and platforms have been developed at
the in vitro, in vivo, and clinical scales, and can be further integrated to facilitate
preclinical to clinical translation. These new tools can help researchers better un-
derstand the nature and mechanisms of these targeted therapies to help achieve a
more favorable therapeutic window. This review delves into the world of systems
pharmacology modeling of ADCs, discussing various modeling efforts in the field
thus far.

INTRODUCTION

Antibody-drug conjugates (ADCs) are engineered im-
munoconjugate drugs composed of three core compo-
nents: (1) a monoclonal antibody (mAb) and (2) one or
more cytotoxic small molecules (known as payloads or
warheads), attached via (3) a chemical linker (Figure 1).

Predominantly developed as cancer therapies, this strategy
aims to harness the advantages of both chemotherapeu-
tics and biologics while minimizing their disadvantages.
Small molecule chemotherapy drugs provide the desired
cell-killing capabilities but do not discriminate between
on-target and off-target cells, which can cause unneces-
sary damage to healthy tissue and harmful side effects.
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Antibodies can target specific cells by binding to particular
antigens on the cell surface but may lack the cytotoxicity
to effectively destroy cells compared to chemotherapeu-
tics.'> ADCs, therefore, strive to achieve the best of both
worlds, maximizing efficacy while minimizing toxicity.
This targeted drug delivery to selected cells while spar-
ing others is remarkably similar to Nobel Laureate Paul
Ehrlich’s early 20th century concept of the “magic bullet”
for treating human diseases.” The first animal studies of
ADCs (in the 1960s) led to clinical trials in the 1980s; how-
ever, despite the promise of ADCs and several decades of
development, success has been limited until recently. As
of 2021, there have been 12 ADCs approved for clinical
use, all for oncologic indications, with a majority receiving
approval in 2019 and onward (Table 1). For other appli-
cations, such as immunomodulation, limited exploration
has occurred in recent years.'® Clinical development has
been terminated for over 55 ADCs"; these failures often
stem from narrow therapeutic windows (i.e., the separa-
tion between toxic and efficacious doses is small or ab-
sent).” Designing and engineering the ADC to expand the

Drug-to-Antibody Ratio (DAR)
Varies between 1 to 8 drug
molecules per antibody

FIGURE 1 KeyADC properties

and mechanisms for QSP modeling.

(a) The antibody, linker, and warhead

components of ADCs each have

' ' different design properties that must be
considered during modeling. Another key
characteristic is the drug-to-antibody ratio
(DAR), which typically varies between
one and eight. (b) Key mechanisms of
action of the ADC include binding to
the target antigen, internalization into
the cell, trafficking and recycling of the
ADC, endosomal cleavage of the linker
or lysosomal degradation of the ADC for
warhead release, influx and efflux of the
warhead, and cell killing effects at the site
of action. ADC, antibody-drug conjugate;
QSP, quantitative systems pharmacology.

Efflux

Site of Action

therapeutic window is no simple task. Yet, despite these
hurdles, enthusiasm for ADCs remains high, with over
80 ADC candidates in nearly 600 ongoing clinical trials."
This is driven by new ADC technologies (e.g., novel con-
jugation techniques, warhead types, improved selection,
and optimization of antibodies), translational and clinical
development strategies (e.g., alternative dosing schedules,
patient selection, improved use of biomarker data, and
combination therapies), and an improved understand-
ing of ADC therapeutic index.'*** These approaches will
contribute to the development of the next generation of
ADCs.

Optimization of ADC design is complex, as each sub-
unit (antibody, linker, and warhead) can be considered
both individually and in the context of the ADC as awhole.

Selection of the antigen target and optimization of
the mAb is crucial. A recombinant immunoglobulin G
(IgG) mAb serves as the base of the ADC and vehicle for
the cytotoxic drug. The target antigen for the antibody
should be abundantly expressed on the surfaces of tumor
cells, but not on other cell types.”” The choice of the
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TABLE 1 (Continued)

ASCPT

Has

published

Warhead mechanism of

action

Trade

name

QSP model

Linker

Antibody target Warhead class

Year approved

Indication

Maker

Drug name

No

Protease-resistant

Inhibits cell division

Maleimidocaproyl

B-cell maturation

August 2020

Blenrep

Relapsed or refractory

GlaxoSmithKline

Belantamab

maleimidocaproyl

monomethyl by blocking the
linker

auristatin F

(mcMMAF)

antigen (BCMA

or CD269)

multiple myeloma

mafodotin

polymerization of

tubulin

No

Cathepsin B-cleavable

Pyrrolobenzodiazepine Causes formation of

CD19 (expressed in

April 2021

Zynlonta

Loncastuximab ~ ADC Therapeutics Relapsed or refractory

valine-alanine

linker

crosslinks in DNA,
which blocks cell

(PBD) dimer

wide range of B

large B-cell

tesirine

cell hematological

tumors)

lymphoma

division and causes

apoptosis

No

Protease (cathepsin)

Inhibits cell division

Tissue factor MMAE

September 2021

Tivdak

Recurrent or metastatic

Seagen

Tisotumab

cleavable linker

by blocking the

cervical cancer

vedotin-tftv

(valine-citrulline)

polymerization of

tubulin

Note: List of Approved ADCs. Twelve antibody-drug conjugates have been approved for use by the FDA as of the end of 2021, with a noticeable increase in approvals since 2017. However, many of these ADCs do not yet

have a published QSP model.

Abbreviations: ADCs, ADC, antibody-drug conjugate; FDA, US Food and Drug Administration; MMAE, monomethyl auristatin E; QSP, quantitative systems pharmacology.

target antigen is key, as target-mediated drug disposition
(TMDD) plays an important role in defining the phar-
macokinetics (PK) of the overall ADC.*! Whereas ADC-
antigen binding generally triggers internalization and
facilitates delivery of the warhead to the site of action
inside the cell, non-internalized ADCs can still produce
strong cell-killing of the target cells and neighboring
cells (bystander effect) by warhead release. Although an-
titumor activity of the naked mAb is not necessary, in
some cases, the mAb can activate an immune response
against the selected cells through antibody-dependent
cell-mediated cytotoxicity (ADCC) or phagocytosis. One
example is trastuzumab emtansine (T-DM1), which has
DM1 warheads attached to the mAb trastuzumab (ap-
proved as a treatment in its own right) that targets HER2
receptors in HER2-positive breast cancer. Therefore, the
collective antitumor effects of both the mAb and the war-
head must be taken into account in such instances. Once
the target antigen has been selected, the mAb itself can
be further engineered to improve payload delivery (par-
ticularly via enhanced control of linker placement on the
mAb) and to have high target-binding affinity, good re-
tention, and low immunogenicity and cross-reactivity.*?
Modifying the mAb’s ability to bind to Fc receptors (most
notably neonatal Fc receptors or FcRns) can also alter
the therapeutic index.”® ADCs can bind to FcRns inside
endosomes, allowing for recycling of the ADC back to
the cell surface where the higher physiologic pH triggers
unbinding from the FcRn.** This recycling mechanism
impacts the PK profile of the ADC by reducing ADC
clearance, which can help to improve the therapeutic
index.*

Synthetic, covalent, chemical linkers connect the
mADbs to the cytotoxic warheads to form the ADCs, which
typically have a drug-to-antibody ratio (DAR) between
one and eight, although most clinical-stage ADCs have an
average DAR of 3.5-4.% Stability of the linker is crucial,
as the ADC must hold onto its payload while in systemic
circulation, only releasing the warhead once inside the
appropriate cell. Preventing deconjugation in the circu-
lation reduces off-target toxicity and increases delivery of
the drug to the tumor. Both cleavable and noncleavable
linkers have been explored, each with its own set of ad-
vantages and disadvantages. ADCs with linkers that are
cleavable, via lysosomal proteases, acidic pH, or break-
down of disulfide bridges, run a higher risk of off-target
toxicity, but may still be active for targets with poor inter-
nalization, whereas ADCs with noncleavable linkers must
be internalized, so that the mAb can then undergo pro-
teolytic degradation to release the warhead for action.?
Another important consideration is the position of the
linker on the mAb; control over the linker position en-
ables site-specific conjugation of the warhead, allowing
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for increased homogeneity of an ADC’s DAR and higher
consistency in the amount of warhead delivered to target
cells.

The cytotoxic agent (warhead) is a chemotherapy drug,
optimized for high potency. As they lack specificity to
tumor cells, warheads depend on the antibody to deliver
them to the correct tissue. The mechanism of action of the
drug used can vary, although many warheads bind to DNA
or microtubules to cause cell death. These warheads can
also serve as substrates for efflux transporters, which en-
able these drugs to escape the target cells and harm nearby
healthy tissue (known as the bystander effect).? Whereas
these bystander effects undercut the ADC’s specificity
and delivery of warhead to the target cells, they can also
be beneficial, such as in solid tumors with heterogeneous
expression of the target antigen, enabling the warhead to
reach tumor cells that do not express the target antigen.
Most ADCs currently in clinical trials use a limited number
of drug families as warheads (calicheamicins, auristatins,
maytansinoid, topoisomerase I inhibitors, and pyrroloben-
zodiazepines), as the warhead must fulfill numerous and
sometimes contradictory criteria, such as high potency,
high relative hydrophobicity, and having a suitable loca-
tion for attachment of the linker.”” The potency of these
warheads can be modified, as can the number of warheads
per ADC (DAR). Determining the best combination of
DAR and potency to maximize efficacy and minimize tox-
icity is a key challenge in designing the ADC.

In combining the antibody, linker, and warhead, the
challenge is to maximize efficacy and minimize toxicity.
This task calls for a deep understanding of the biologi-
cal and pharmacological systems, processes, and mech-
anisms at play. Seeking answers through experimental
methods alone can be laborious, expensive, or even in-
feasible. Computational modeling can probe questions
and enhance insight through quantitative simulation of
drug action and performance. Researchers have often
used of PK and pharmacodynamic (PD) models, such as
physiologically-based pharmacokinetic (PBPK) models,
to aid in the drug development process. In particular,
quantitative systems pharmacology (QSP) approaches in-
tegrate mechanistic knowledge with biomedical data at
multiple scales to construct an interpretable and predic-
tive model.?**” Hence, QSP models are tools that allow for
maximum use of available preclinical and clinical data to
improve understanding of the mechanism and derive hy-
potheses (Figure 2).

Due to the complexity of ADCs, the breakdown of an
ADC molecule generates many different analytes, which
can make data collection difficult. When using experi-
mental data for parametrization, certain key analytes
must be measured. Each of these different bioanalyti-
cal measurements are crucial to developing robust QSP

ASCPT

models of ADCs. For instance, in order to define the PK
and exposure-response relationships, it is recommended
to measure the levels of either conjugated antibody (an-
tibody with at least 1 warhead attached) or antibody-
conjugated drug (total warhead conjugated to antibody),
plus total antibody and unconjugated drug.®® Typically,
these analytes are measured in the plasma, tumor, and
non-target tissues that are common sites of toxicity, as
these measurements are important for determining
therapeutic index and to model on-target and off-target
effects.

Use of QSP approaches has increased in recent years,
particularly to support decision making in drug develop-
ment, drug approvals, and clinical practice.”® A survey
with respondents from over 30 pharmaceutical companies
indicated the use of nonclinical QSP modeling in a ma-
jority of the companies in various therapeutic areas (with
autoimmune disorders and oncology having the most QSP
support), and this trend of increased QSP modeling ap-
plications is expected to continue.*® Efforts to build QSP
models of ADCs not only arise from biotechnology and
pharmaceutical companies, but also from academic re-
searchers, as well as academia-industry collaborations.
Different types of models, including PK, PD, and spa-
tially detailed models have been developed for different
purposes and to answer different questions. In addition,
they have been applied to understand various ADCs and
to simulate different scenarios, including in vitro cell cul-
ture, preclinical animal experiments, and clinical trials in
humans.

Previous reviews have described a variety of PK-PD
models applicable to ADCs at the discovery, preclinical
development, and clinical development stages of drug de-
velopment.31 In this review, we examine computational
models of ADCs classified within the umbrella of systems
pharmacology with a focus on mechanism-based mod-
els,*® mainly those that build upon known cellular and
intracellular processes of ADCs. Apart from one paper, we
describe studies focused on modeling efficacy rather than
toxicity.

We will highlight some of the key systems pharma-
cology models for ADCs developed in the past several
years, describing model development and progres-
sion, key findings, and examples of model applications
(Table 2). These models are organized in four key areas,
grouped by their respective focuses, approaches, and
insights (as noted in Figure 3): cellular mechanisms;
spatial representation (including tumor heterogeneity);
preclinical translation; and clinical translation. Several
models cover more than one of these areas; where rele-
vant, we have included them in more than one category,
or focused mainly on their main contribution to one spe-
cific category.
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In Vitro

In Vivo

Clinical

Cell-level PK profiles for key
analytes

Cytotoxicity dose response data
Receptor expression & trafficking
Target affinities for ADCs and
payloads

¢ Cellular & intracellular
mechanisms of ADC, Ab,
and warhead

* Cell growth and death

—“

Modifying ADC design
characteristics
Varying receptor expression

levels
Predicted cell death

Key Data Types

* Preclinical PK profiles for
key analytes

» Tumor growth inhibition
data

Computational Models

» Compartmental and
PBPK models

* Tumor disposition
models

* Cell distribution models

Simulations

* Predicted tumor growth

inhibition & bystander effects

» Co-administration with

unconjugated antibody

* Predicting PK & on- and off-

* Clinical PK profiles for
key analytes

* Biomarker data

* Progression Free and
Overall Survival Rates

* Translation from
preclinical models via
allometrically-scaling

* Interindividual variability

* Conventional versus
fractionated dosing
regimens

* Predicted clinical

Tumor payload concentration
profiles

A

target binding

outcomes

FIGURE 2 Structure and key considerations for QSP modeling of ADCs. During QSP modeling of ADCs, the relevant data types
may vary between different biological scales, as do the structures of the computational models themselves. Subsequently, the resulting

simulations enable the exploration of different phenomena at the in vitro, in vivo, and clinical scales. Ab, antibody; ADC, antibody-drug

conjugate; PBPK, physiologically-based pharmacokinetic; PK, pharmacokinetic.

GLOSSARY OF MODELED ADCs

Anti-5T4 ADC (AImcMMAF): an in-house ADC targeting
5T4, an oncofetal antigen expressed on tumor-initiating
cells.

Brentuximab vedotin (SGN-35): CD30-targeting an-
tibody linked to monomethyl auristatin E (MMAE) war-
heads via valine-citrulline linkers, used for treatment of
relapsed Hodgkin’s lymphoma (HL) and anaplastic large
cell lymphoma (ALCL).

Inotuzumab ozogamicin: CD22-targeting antibody
linked to N-Ac-y-calicheamicin DMH molecules for tar-
geting B cell malignancies such as non-Hodgkin’s lym-
phoma (NHL) and acute lymphocytic leukemia (ALL).

Trastuzumab emtansine (T-DM1): HER2-targeting an-
tibody covalently linked to emtansine (DM1) warheads
approved for use to treat HER2+ breast cancer.

Trastuzumab-vc-MMAE (T-ve-MMAE or T-MMAE):
consists of MMAE warheads conjugated to trastuzumab
with valine-citrulline peptide linkers, often used as a tool
ADC.

Trastuzumab maytansinoid: a HER2-targeting ADC
similar to T-DM1 (DM1 is a cytotoxic maytansinoid),
which is used clinically for treating HER2+ breast cancer.

Anti-STEAP1-ve-MMAE ADC (DSTP3086S): STEAP1-
targeting antibody linked to monomethyl auristatin E
(MMAE) warheads via valine-citrulline linkers, for target-
ing prostate cancer.
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FIGURE 3 Characteristics of selected of systems pharmacology models of ADCs. Here, we highlight four examples from the 23 models
covered in this review, for which key model characteristics are listed for comparison. In addition to exploring the PK and PD aspects

of these models, we will focus on insights gained in four categories as noted on the figure: cellular mechanisms, spatial representation,
preclinical translation, and clinical translation. The selected models each contributed significant insights in at least one of these categories,
exemplifying the variety of insights that can be gained from QSP modeling. ADC, antibody-drug conjugate; N/A, not applicable; PBPK,
physiologically-based pharmacokinetic; PD, pharmacodynamic; PK, pharmacokinetic; QSP, quantitative systems pharmacology.

DEVELOPMENT OF SYSTEMS
PHARMACOLOGY MODELS

Cellular mechanisms

Mechanistic modeling of brentuximab vedotin
in cell culture’

One of the first system pharmacology models of ADCs
was developed for the ADC brentuximab vedotin.’ Using
experimental data from multiple sources for calibration
and verification, the model captured the PKs (i.e., distri-
bution) of the ADC and of warhead at the cellular level
both in vitro and in vivo, and was able to predict tumor
warhead concentrations and tumor growth inhibition.
The model of in vitro cell culture used simplifying as-
sumptions for some mechanisms, such as representing
the multiple steps of bound ADC internalization and
release of intracellular warhead as a single step. The
model also included extracellular ADC binding to the
antigen, and extracellular warhead escaping from inside
the cell. In vitro experiments were simulated using data
from an existing study in two CD30+ cell lines, and the

simulated results were compared to data from a sepa-
rate experimental study. In later models and publica-
tions, more mechanistic detail was added, as we will
see below. We will also discuss this paper further in the
Clinical Translation section.

Comparing and refining pharmacodynamic
models of cell growth and killing’

Researchers developed refined models of cell killing
by comparing three existing representative PD models
of tumor growth inhibition.” These models represent
tumor volume in a series of transit compartments to
link the PKs to the tumor growth response. The existing
models had differing cell growth and killing functions,
but none fully captured the patterns seen in the data.
Thus, the authors proposed new hybrid functions based
on these three models, combining exponential, linear,
and logistic cell growth and a saturable Michaelis—
Menten equation for cell killing. They also introduced
the concept of “tumor static concentration” (TSC) to
represent the minimum inhibitory concentration (i.e.,
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the concentration of drug at which tumor size neither
grows nor shrinks). The TSC criteria acts as an efficacy
index and was calculated for the existing models and for
the novel hybrid models. This optimized PD model was
later incorporated into several future ADC QSP mod-
els.”1317 This paper is discussed further in the Clinical
Translation section.

Assessing tumor penetration using a
customizable model platform with more
detailed ADC receptor trafficking®*

In 2015, Vasalou et al. developed a mechanistic ADC
model framework that includes ADC binding and
payload release kinetics, receptor dynamics, systemic
distribution, vascular permeability, and interstitial
transport.®* This model incorporated more detailed
mechanisms of receptor trafficking than most models at
the time, including intracellular trafficking between en-
dosomes and lysosomes, recycling of the ADC-receptor
complex, and release of the warhead into the cytosol.
The inclusion of these mechanisms allowed the authors
to study ADC efficacy as a function of payload cleav-
age and intracellular kinetics. For instance, simulations
demonstrated that ADCs with endosomal rather than
lysosomal warhead release had elevated payload con-
centrations, leading to increased shrinkage of the tumor.
Whereas these simulations were conducted for a generic
ADC, the model is designed to be highly customizable,
with parameters that can be adjusted based on the char-
acteristics of the ADC, target receptor, and tumor. This
flexibility enables the model to serve as a platform for
better interpretation of experimental data, selection of
tumor properties, and optimization of ADC design. This
detailed mechanistic model was paired with a Krogh
cylinder model to describe solid tumor penetration in
a mouse model; the spatial components are discussed
below in the Spatial Effects section.

Experimental techniques to parameterize
computational models with cellular and
intracellular mechanisms for trastuzumab
maytansinoid*’

As models become more detailed, experiments are
needed to identify parameters. The authors developed
a set of generalizable techniques to parametrize a com-
putational model of the cellular processing of ADCs,
using trastuzumab maytansinoid (which is used clini-
cally for treating HER2+ breast cancer) as the model
ADC.* These methods were based on flow cytometry

and fluorescence imaging, and were used to quan-
tify the processes of ADC binding to target antigen,
receptor-mediated internalization, proteolytic ADC
degradation, efflux of the warhead, and effector com-
plex formation via warhead binding to the intracellular
target. The experiments were performed in three high-
HER2-expressing cell lines: BT-474, NCI-N87, and SK-
BR-3. The internalization, degradation, and efflux rate
constants were identified, and following a local sensitiv-
ity analysis with 10% perturbations from the established
parameters, they determined internalization and efflux
rates to be key parameters that influence levels of war-
head delivery. The resulting kinetic model of cellular-
level processes can be incorporated into larger PK-PD
models, and, indeed, were, as described in a companion
paper’ which we discuss in a later section below.

Extending a PK-PD model of T-DM1 to
incorporate more intracellular mechanisms,
including ADC degradation and

passive diffusion’

Using the parameters derived from the in vitro experi-
ments, as described in the previous paper,®® Singh et al.’
used the model to characterize pharmacokinetics of T-
DM1 in three HER2+ cell lines. The model also improved
on the previous model* of ADC with the addition of
more intracellular details, including intracellular ADC
degradation and passive diffusion of unconjugated drug
across tumor cells. This cellular model was integrated
with a tumor drug disposition model, enabling the pre-
diction of tumor warhead concentrations in the mouse
xenografts. To quantify the ADC cellular processes, the
authors analyzed the relative contribution of the antigen-
mediated and passive diffusion pathways in producing
unconjugated drug inside the cell. This analysis was per-
formed for both the in vitro and in vivo systems, finding
that receptor-mediated endocytosis and passive diffusion
contributed differently to intracellular drug exposure
at the different scales. Passive diffusion was the more
prominent pathway in vitro, whereas receptor-mediated
intake had a higher contribution in vivo. The global and
local sensitivity analyses also showed that drug exposure
in the system is sensitive to deconjugation and diffu-
sion of the drug across the membrane of the tumor cell,
which is consistent with the results found in this group’s
prior work. The authors also proposed an ideal system
PK model for intracellular processing of ADCs, which
involves more mechanistic details on specific intracellu-
lar compartments early endosomes, late endosomes, re-
cycling endosomes, and lysosomes; however, the data to
achieve this was not available.



SYSTEMS PHARMACOLOGY MODELS OF ADCS

| 981

Exploring the effects of bystander killing and
tumor heterogeneity using a co-culture system™

To better understand the rate and extent of the bystander
killing in a heterogeneous system, this model focused
on the HER2-targeting Trastuzumab-vc-MMAE (T-vc-
MMAE) as an example of an ADC that exhibits bystander
effects.*® Using a co-culture system comprising HER2-
negative cells (GFP-MCF7) and HER2-positive cells with
different levels of receptor expression (NCI-N87, BT474,
and SKBR3) to represent tumor heterogeneity, they iden-
tified a positive correlation between bystander effects
and increased receptor expression levels (i.e., HER2-
negative cells were more likely to be killed by bystander
effects if the HER2-positive cells they were cultured
with had higher levels of HER2). They also observed a
substantial time delay before bystander killing occurred
in the antigen-negative cells. Further analysis of the
co-culture system also suggested that bystander killing
may decrease as the population of antigen positive cells
shrinks. Based on these data, they developed a novel PD
model to capture bystander effects, integrating cell dis-
tribution models that represented the antigen-positive
and -negative cells in the system. This model could be
integrated with a systems PK model for ADCs to link the
systemic ADC concentrations and predict the outcomes
from bystander effects.

Cellular PK model of trastuzumab-vc-MMAE
suggests that intracellular exposure of the
warhead is dictated by antigen expression,
internalization, degradation, and efflux>®

Singh and Shah sought to quantify the cellular PK of
the HER2-targeting ADC trastuzumab-valine-citrulline-
monomethyl auristatin E (T-vc-MMAE), which consists
of MMAE warheads conjugated to trastuzumab with
valine-citrulline peptide linkers.*® Conducting cellular
ADC disposition studies in low-HER2 expressing (GFP-
MCF7) and high-HER2 expressing (NCI-N87) cell lines,
they incubated the cells with MMAE or T-ve-MMAE for
2 h, and used three main analytical methods to meas-
ure unconjugated drug, total drug, and total antibody
concentrations (liquid chromatography-tandem mass
spectrometry, a forced deconjugation method, and an
enzyme-linked immunosorbent assay respectively).
Although similar levels of MMAE accumulated in both
cell lines following MMAE exposure, the NCI-N87 cells
had much higher intracellular exposure of MMAE fol-
lowing T-vc-MMAE exposure. This extensive data al-
lowed them to estimate MMAE influx rates, MMAE
efflux rates, and T-vc-MMAE intracellular degradation

ASCPT

rates, and to develop a novel single-cell drug disposition
model to describe the three analytes (unconjugated drug,
total drug, and total antibody). Their global sensitivity
analysis revealed ADC internalization and degradation
rates, HER2 expression, and MMAE efflux to be key pa-
rameters that dictated intracellular exposure to MMAE.
This single-cell model provided a solid foundation for
further exploring the bystander effects of ADCs, as dem-
onstrated in further studies by this group.**!

Building a cell-level systems PK-PD model
to describe in vitro bystander effects using
intracellular target occupancy””

As an extension of their previous cellular ADC disposi-
tion study,”® Singh and Shah developed a cell-level sys-
tems PK-PD model to examine the in vitro bystander
effects of ADCs, using T-vc-MMAE, which is known
to have bystander effects, as the representative ADC.*
These bystander effects are often desirable in a hetero-
geneous tumor environment, allowing for improvement
of the overall ADC efficacy in cells with different target
receptor expression levels. The team conducted in vitro
experiments in high-HER2 expressing cells (NCI-N87),
low-HER?2 expressing cells (GFP-MCF?7), and co-cultures
with both cell lines to study these bystander effects. PK-
PD models with cellular mechanisms were developed for
each cell type by integrating their previously published
cell-level PK model® to the cell-distribution PD model,
and the simulations captured the intracellular target (tu-
bulin) occupancy following exposure to T-vc-MMAE. The
PK-PD models for both cell types were then mechanisti-
cally integrated to describe the bystander effects, and the
subsequent dual model was able to reasonably reflect the
observed experimental data, demonstrating that a simi-
larly high tubulin occupancy by MMAE was required to
achieve the desired cytotoxic effects in both cell lines.
Compared to previous models that explored bystander
effects, the single-cell framework for this model enables
multiple cell populations to be represented, and can be in-
corporated with a tumor drug disposition model to predict
bystander effects in vivo.

Optimizing parameters for an existing cell-level
systems PK model for trastuzumab-vc-MMAE*"

Sharma et al. measured the PK profiles and internali-
zation rates of T-vc-MMAE, and receptor expression
for four different HER2-expressing cell lines (with dif-
fering expression levels) to study the relationship be-
tween antigen expression levels and ADC exposure in
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tumor cells.* Using these data to calibrate the cellular
PK model previously developed by their group,*® the au-
thors fitted intracellular degradation rates for two cell
lines (SKBR-3 and MDA-MB-453). They found a strong
linear correlation between HER2 expression levels and
ADC exposure in tumor cells, and an inverse relation-
ship between HER2 expression level and internaliza-
tion rate. This inverse relationship may be due to the
increased recycling of the HER2 complexes in high
HER2-expressing cell lines as compared to low HER2-
expressing cell lines, as seen in another experimental
study.*

Spatial effects

Some of the models discussed previously include a spatial
component to the model,>** typically to describe drug pen-
etration in a solid tumor. Most of these models used Krogh
cylinder geometry to represent drug distribution from a
cylindrical blood vessel into a surrounding idealized cyl-
inder of tumor tissue, based on previously published mod-
els.***> The Krogh cylinder model enables representation
of tissue-scale distributions of the ADC and antibodies,
which is not reflected in the typical homogenous or “well-
mixed” compartments found in most compartmental or
PBPK models. These spatial effects are further explored
into the following models.

Using a customizable model platform with

a Krogh cylinder model to explore the

effects of tumor vascularization and the binding
site barrier*

As an example of insights gained from these spatial mod-
els, the Vasalou 2015 model* discussed in the Cellular
Mechanisms section incorporated detailed mechanisms
of receptor trafficking paired with Krogh cylinder geom-
etry, varying the Krogh cylinder radius to simulate tumors
with differing levels of vascularization. They found that
given the same ADC dose, tumors with higher degrees of
vascularization can be reduced more quickly than tumors
with less vascularization. Through their simulations, the
researchers identified tumor attributes that would con-
tribute to decreased ADC efficacy, and also tested ADC
design scenarios to overcome these barriers. As an exam-
ple, high receptor expression levels in the tumor can cause
a “binding site barrier” when there is also rapid internali-
zation and low recycling rates — in other words, the ADC
cannot penetrate as deeply into the tumor because it binds
to (and is internalized by) cell-surface receptors close to

the vasculature. However, antibodies with slightly lower
affinities may allow for “looser” binding to overcome the
“binding site barrier,” and therefore penetrate deeper in
the tumor.

Investigating antibody-ADC co-administration
to enhance tumor penetration of T-DM1'°

Cilliers et al. developed a multiscale model of T-DM1,
integrating cellular mechanisms with a PBPK-based
model to characterize the systemic drug disposition
kinetics and heterogeneous tumor distribution of this
ADC.' The model was developed using experimental
data on ADC distribution in mouse xenograft models.
At the cellular scale, the model includes binding, inter-
nalization, and degradation of both the ADC and uncon-
jugated mAb. This was incorporated into a PBPK model
that tracks systemic distribution of the ADC and mAb,
and was validated experimentally. The tumor compart-
ment was represented by a Krogh cylinder tissue model
with permeability and diffusion. This was the first group
to use this model to examine spatial effects of tumor drug
disposition alongside the effects of co-administration of
ADC with unconjugated mAb; the unconjugated mAb
was administered alongside the ADC at varying ratios
both in silico and in vivo using immunofluorescence
imaging. The authors found that such carrier doses can
significantly help to improve penetration of the ADC
into the tumor by overcoming the binding site barrier.
Additionally, they explored the effects of DAR on tumor
penetration by analyzing data from six publications,
finding that the effect was sufficiently large such that at
a constant dose of a sufficiently potent small molecule,
ADCs with a lower DAR and a higher co-administered
antibody dose were generally more successful in reduc-
ing tumor growth than those with a higher DAR and
lower antibody dose; DAR-dependent clearance and
deconjugation may also be key contributors to this phe-
nomenon. Used in conjunction with experimental data,
this model can aid in exploring and understanding the
impacts of the multiple mechanisms behind ADCs.

Using computational models to

identify the optimal ADC dosing and warhead
properties and assess the role of bystander
effects on ADC efficacy’

Khera and colleagues expanded on their previous
computational model' to focus on ADC distribution
within solid tumors and the role of bystander effects
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on efficacy.'* The model predicts warhead distribution
as a function of antibody dose, warhead dose, and war-
head properties. In particular, as heterogeneous tumor
distribution of the ADC is linked to decreased efficacy,
increasing the antibody dose can increase tumor pen-
etration, which decreases the heterogeneity of drug
concentration and increases the resulting efficacy. By
simulating warheads with bystander effects (MMAE)
and those without (DM1), the team also found direct
cell killing (via target antigen-mediated uptake of ADC)
to be more efficient than bystander killing, although the
properties of the warhead (including lipophilicity, mo-
lecular weight, radius, diffusivity, half-life, Damkohler
number, and reported bystander effects) are an impor-
tant factor in determining whether it will be effective for
bystander killing. Thus, this model can be used to iden-
tify the optimal ADC dosing and warhead physiochemi-
cal properties to improve delivery throughout the tumor
and maximize efficacy.

Antibody co-administration may be
synergistic in tumors with high antigen
express@onllzut not in those with low antigen
expression

Earlier models had explored antibody co-administration
with ADCs to improve tumor penetration'® but had
not explored the specific scenarios in which this strat-
egy would be most beneficial. To quantitatively ex-
plore ADC-antibody co-administration as a method
to overcome the binding site barrier phenomenon,
researchers conducted in vivo experiments and QSP
modeling using T-DM1 and T-ve-MMAE.'* Whereas
both ADCs have trastuzumab as the antibody carrier,
T-ve-MMAE is known to exhibit bystander effects while
T-DM1 does not. Tumor growth inhibition data from
mouse xenograft models carrying high HER2 (NCI-N87
cells) and low HER2 (MDA-MB-453 cells) was used to
build a semimechanistic PK-PD model to evaluate the
effects of doses with trastuzumab co-administration (at
1, 3, or 8-fold higher antibody) or without. Using an in-
teraction parameter to measure the benefit, the authors
found the ADC interaction with the carrier dose was syn-
ergistic in high-antigen-expressing tumors, whereas in
low-antigen-expressing tumors (and warheads that ex-
hibit bystander effect), the interactions had an additive
or less than additive benefit. Thus, the researchers con-
clude that whereas the ADC-antibody co-administration
approach can be useful in improving ADC effectiveness
in some situations, it should not be applied without a
cost-benefit analysis.

ASCPT

Agent-based model of T-DM1 to represent
tumor heterogeneigy and simulate antibody
co-administration'

Menezes et al. developed a hybrid agent-based model to
capture the effects of different T-DM1 treatment regimens
on a tumor subsection.'® The model includes central and
peripheral tissue compartments, with tumor cells as indi-
vidual agents on a grid system undergoing cell division and
both natural and drug-induced cell death. Notably, this
is the first systems pharmacology model of ADCs to not
only capture drug PK-PD and cell dynamics, but also in-
corporate heterogeneity in the tumor microenvironment,
including variation in blood vessel density. This contrasts
previous ADC models that used the Krogh cylinder model
to represent the tumor compartment; which both can por-
tray the heterogeneous tissue distribution of the ADC,
Krogh cylinders reflect a homogenous tumor cell popu-
lation, whereas the agent-based model enables cell-level
heterogeneity in the microenvironment and vasculature
to be included. Much like the Cilliers 2016 model," the
researchers also explore the use of a trastuzumab carrier
dose in conjunction with T-DM1 to improve ADC tumor
disposition. The model shows increased efficacy in in-
stances where the increased number of cells reached by
the ADC overcomes the diminished uptake of the war-
head caused by the presence of the unconjugated anti-
body, which matches experimental data from NCI-N87
mouse xenograft tumors. Additionally, whereas fraction-
ated dosing is shown to be less effective than a single dose
for co-administration, it can be useful when the increased
tolerability enables a higher ADC dosage.

Expanding the agent-based model to
quantify the effectiveness of antibody
co-administration and bystander killing'®

Recently, Menezes et al. extended their hybrid agent-
based model described above to incorporate angiogenesis,
heterogeneous receptor expression, heterogeneous tumor
cell sensitivity to payloads, and bystander effects (for
payloads that can diffuse to surrounding cells).'® Using
this model, the researchers investigated the effectiveness
of co-administration of unconjugated trastuzumab and
ADC (for T-DM1 and T-MMAE), as well as bystander
killing (for T-MMAE only). Simulations using this model
showed both T-DM1 and T-MMAE benefitted from an-
tibody co-administration, including in tumors with in-
trinsic resistance to the payload. Additionally, whereas
co-administration was particularly effective for payloads
without bystander effects, such as T-DM1, this benefit is
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receptor-expression-dependent, and the antibody carrier
dose may even inhibit tumor cell killing at sufficiently
low receptor expression levels. These results are consist-
ent with the findings of Singh et al.'* Model predictions
also showed that at clinically tolerable doses, regimens
with greater efficacy are more likely to result in resistant
cell populations, emphasizing the need to seek alternative
cell-killing mechanisms that will increase the durability of
the treatment effect.

Preclinical translation

A preclinical, mechanism-based
pharmacokinetic model of an anti-5T4 MMAF
ADC identified key parameters or features
associated with drug exposure®

The model of anti-5T4 ADC (A1lmcMMAF) was de-
scribed in a 2014 paper in which the authors detailed the
development of a mechanism-based PK model to predict
tumor concentrations of the ADC and warhead, using
experimental data from MDA-MB-435/5T4 and H1975
human tumor xenografts in mice for model building and
verification.*® They conducted a pathway analysis and
local sensitivity analysis to determine parameters with
the largest effect on the system, and found that payload
dissociation and tumor size were key parameters af-
fecting cytotoxic drug exposure in both the plasma and
tumor. The authors also noticed that the sensitivity of
several key model outputs is dose-dependent. Thus, this
model showed the importance of quantification to im-
prove the understanding of the processes driving ADC
and warhead disposition, and can be further developed
for clinical translation given the appropriate parameters,
data, and translational strategy, as discussed in their pre-
vious work.’

Using analytical data to model stepwise
deconjugation of warheads from the
T-DM1 ADC®

To better understand the PKs of T-DM1, particularly war-
head release and the effects of DAR, Bender et al. devel-
oped two modeling approaches using preclinical PK data
from rats and cynomolgus monkeys.® First, they built a
mechanistic PK model of total trastuzumab and DAR con-
centrations with three compartments - a central and two
peripheral compartments. Notably, this is one of the first
models of ADC to incorporate stepwise deconjugation of
the small molecule drug from the main trastuzumab body,
starting from a DAR value of seven all the way to DAR

zero (unconjugated trastuzumab). However, this model
requires extensive amounts of experimental data, includ-
ing measurements of T-DM1 at each of the intermedi-
ate DAR moieties, in order to identify the rate constants
for each step of the deconjugation process. To lower the
data burden, they created a reduced three-compartment
model, fit to total trastuzumab and T-DM1 concentra-
tions, with the warhead deconjugation represented by a
single deconjugation parameter; this reduced model may
be useful when data for the individual DAR moieties are
not available. Depending on the situation, these two ap-
proaches provide more flexibility based on the analytical
data available for the ADC.

A mechanism-based platform model to predict
PKs of MMAE-based ADCs using DAR-s7pecific
analytes and DAR-dependent clearance’

Researchers developed a mechanism-based platform
model to predict the PK behavior of MM AE-based ADCs,
which can be used as a valuable tool for exploring mecha-
nisms behind ADC disposition for translational predic-
tions.>” Much like a previous model for T-DM1,} this
model included DAR-dependent clearance and explicit
representation of all DAR species for the ADC, including
sequential deconjugation as a higher DAR converts to a
lower DAR species. They integrated rodent and cynomol-
gus monkey PK profiles into a cross-species model, which
successfully captured PK profiles of the different analytes —
total antibody (including both unconjugated antibody and
conjugated antibody), drug-conjugated antibody (anti-
body with at least one conjugated drug molecule), and/
or antibody-conjugated drug (drug that is conjugated to
an antibody), simulating administration of both purified
ADCs with defined DAR species and ADCs with mixtures
of DAR. Additionally, the model predictions for human
PKs of an anti-STEAP1-ve-MMAE ADC (DSTP3086S)
matched well with the PK measurements from a phase I
clinical trial. Thus, they were able to develop this model
with ADC disposition mechanisms and apply it to datasets
with different payload densities, ADC molecules, animal
models, and analyte measurements.

Using mechanism-based PK-PD models to
examine hematological toxicities of ADCs and
simulate effects of linker design®

Whereas efficacy has been a major consideration in
modeling of ADCs, toxicity is a central but less-studied
phenomenon, central to translation to use in the clinic. T-
DM1 and brentuximab vedotin (SGN-35) are both known
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to induce ADC-related thrombocytopenia and neutrope-
nia. To understand these hematological toxicities, using
data from literature and mouse xenograft PK and PD stud-
ies, researchers built compartmental models (with central
and peripheral compartments) with linear elimination
and first order payload release.® These mechanism-based
models were able to accurately reflect the PK profiles and
ADC-induced hematological toxicities of both ADCs. They
also simulated the effects of the linker design on the asso-
ciated myelosuppression by changing the payload release
rate constant, and by this showed that hematotoxicity may
be improved by a fourfold increase in the deconjugation
rate of T-DM1, or a 70% decrease in that of SGN-35. This
model can serve as a platform for assessing hematological
toxicities of ADCs, and shows more generally that toxic-
ity should not be ignored in modeling to focus solely on
efficacy.

Developing a mathematical correlation
between in vitro and in vivo ADC efficacy
to improve identification of potential ADC
candidates™

Researchers used data for 19 ADCs to establish an in vitro-
in vivo correlation (IVIVC) between the in vitro and in vivo
efficacy of those ADCs." They developed a PK-PD model
(similar to their previous models> but less mechanism-
based) to characterize in vitro cytotoxicity data from
HER2-expressing NCI-N87 cells and used it to calculate
the “in vitro tumor static concentration” (TSCy, viio)> @
theoretical concentration of continuous ADC exposure at
which the number of tumor cells will remain static. For
the 19 ADCs tested, the TSC;, i, values were found to
be between 0.1 and 100nM. Similarly, the “in vivo tumor
static concentration” (TSC;,, viy,) Was found by incorporat-
ing tumor growth inhibition data from murine human
tumor xenograft models (also using NCI-N87 cells) into
the PK-PD model. The TSC;, ;,, values for the 19 ADCs
were approximately in the range of 5-1000nM. Whereas
the models were based on the respective cytotoxicity and
tumor xenograft studies and matched the experimental
data well, it is difficult to compare the full parameter sets
for the models to evaluate the results and in vitro-in vivo
relationship. Thus, the TSC values were used as a repre-
sentative variable for the models’ parameter estimates
and to look at the correlation between the different ADC
parameter sets. Although the average TSC;, iy, Was ~27
times higher than TSC;,, .., there was a good positive lin-
ear correlation between the two, suggesting that TSC;, iy
is predictive of TSC;, iy, Thus, this IVIVC can be used to
rapidly identify promising early-stage ADC candidates

ASCPT

and predict efficacious in vivo ADC concentrations from
in vitro data, which can help to optimize the design of
these preclinical studies. However, the ADCs tested
(which included T-DM1) all had warheads with similar
mechanisms of action, so this approach needs to be veri-
fied for warheads with differing mechanisms of action.

Extending the cell-level model to an in vivo
systems PK-PD model to predict trastuzumab-
vc-MMAE efficacy as a function of intracellular
target occupancy”’

Building upon their previous single cell PK model,*®
Singh et al. developed an in vivo system PK-PD model
that similarly predicts T-ve-MMAE efficacy as a function
of intracellular target occupancy.*® This model integrated
the previous single-cell PK-PD model with tumor distribu-
tion, and was validated using PK and efficacy data from
mouse xenograft models with either high-HER2 express-
ing (NCI-N87) and low-HER2 expressing (GFP-MCF7)
tumor cells. The NCI-N87 tumors had higher exposures
to total trastuzumab, unconjugated MMAE, and total
MMAE compared to the GFP-MCF7, as well as higher
tubulin occupancy. However, the plasma PKs of all ADC
analytes and prolonged retention of MMAE were similar
between both tumor types, and the same set of PD param-
eters were used. This model was able to capture the in
vivo PK data quite well and can serve as the framework
for clinical translation of ADCs.

Quantifying heterogeneous bystander effects
in vivo using a systems PK-PD model of
trastuzumab-ve-MMAE*

Singh et al. also used a joint experimental-computational
approach to explore the significance of heterogeneous by-
stander effects of ADCs in vivo.** Using T-ve-MMAE as
the model ADC, the researchers conducted mouse tumor
xenograft studies (NCI-N87, GFP-MCF?7, and co-culture)
at varying ADC dosages, measuring plasma and tumor
PK, as well as tumor growth inhibition. To account for the
different cell populations found in the co-culture tumors,
the authors expanded their previous tumor drug distribu-
tion model*® and later integrated it with a PD model where
ADC efficacy is driven by intracellular tubulin occupancy.
This system’s PK-PD model was built upon their previous
models and was able to reproduce the results of the ex-
perimental data quite well, including the tumor growth
profiles for multiple cell lines and dosages. They per-
formed additional simulations to explore alternate dosing
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regimens, and much like other simulations previously
conducted, found that fractionated dosing may improve
overall ADC efficacy and bystander effect by extending
intracellular tubulin occupancy. This model provides a
platform for quantification of in vivo bystander effects in a
heterogeneous tumor.

Clinical translation

PK-PD simulations of brentuximab vedotin in
cell culture, mice, and humans highlight the
importance of ADC and warhead distribution
in predicting clinical outcomes’

Along with the cellular mechanistic modeling of bren-
tuximab vedotin discussed above,’ the authors also
modeled the PKs of the warhead MMAE and the ADC
in a xenograft mouse using a two-compartment model
to represent the plasma and tumor, which was inte-
grated with a PD model representing tumor growth to
describe the ADC’s preclinical efficacy. The PK param-
eters were obtained from literature-measured values of
plasma and tumor PK and ADC concentration-time pro-
files, whereas PD parameters were derived from tumor
growth inhibition data. This preclinical PK-PD model
was then translated to a clinical PK-PD model by ad-
justing model parameters to reflect clinically observed
values, using clinical PK data from two different clini-
cal trials. Resulting simulations were compared with
clinical trial results, and accurately predicted tumor and
plasma warhead concentrations, as well as progression-
free survival (PFS) and complete response rates.
Through a sensitivity analysis, the authors also identi-
fied the drug efflux rate to be an important parameter
that is often overlooked. As one of the first ADC models
with preclinical-to-clinical translation, this work high-
lights the importance of ADC and warhead distribution
in helping to predict clinical outcomes.

Comparing and refining PD models of cell
growth and killing’

The hybrid PD model developed by Haddish-Berhane
et al.” was used to predict efficacy of T-DM1 in patients
based on efficacy in mice. The predicted efficacious dose
range was comparable to clinical dosing data, and the
same translational strategy was also applied to a novel in-
house anti-5T4 ADC (the model for that ADC is described
in more detail in the Cellular Mechanisms section).
Considering the model performance for these two differ-
ent ADCs, they proposed an improved PD model where

the tumor static concentration criterion can be used more
generally to predict clinical dosing of ADCs from mouse
efficacy data.

From mouse to human: Clinical translation of a
multiscale, mechanism-based PK-PD model of
inotuzumab ozogamicin'’

Inotuzumab ozogamicin is a CD22-targeting antibody
linked to N-Ac-y-calicheamicin DMH molecules for target-
ing B cell malignancies, such as 'NHL and ALL. For this
multiscale, mechanism-based approach,” the preclinical
model was built with preclinical data, and included ADC
disposition and clearance in the plasma and tumor; the
cellular-level mechanisms of ADC-Ag binding and war-
head release, binding, and efflux; and mouse xenograft
tumor growth and inhibition. By integrating human PK
profiles, antigen expression levels, tumor volumes, and
tumor growth rates, the preclinical model was translated
to the clinical scale. This clinical model was able to capture
PFS rates observed in clinical studies, and model analysis
showed that tumor growth, ADC PK, and warhead efflux
to be sensitive parameters and potentially more useful than
antigen expression as a predictor of outcome. The model
for liquid tumors (ALL) was approximated by eliminating
transport to the solid tumor used in NHL. Tumor warhead
levels were found to be higher in patients with ALL than
patients with NHL, which aligns with the increased acces-
sibility of blood tumors (ALL) compared to solid tumors
(NHL). Model simulations also showed that whereas a
more conventional dosing regimen works well for NHL,
fractionated dosing may provide improved results for ALL.
This model can be a useful tool to predict clinical outcomes
from preclinical data, and serves as a foundation to build
other ADC models used for clinical translation, including
many of the other models described.

Applying preclinical to clinical translation of
PK-PD models of T-DM1 to simulate clinical
trials and potential dosing regimens'!

Singh and Shah developed a general ADC PK-PD mod-
eling and simulation strategy to address translation issues,
including differences between preclinical and clinical tu-
mors, by using human-specific parameters. This strategy
has been applied to inotuzumab ozogamicin, as described
previously.'” Using this same approach along with their
previous preclinical tumor drug disposition model,’ the
researchers conducted a similar case study using T-DM1,
using tumor growth inhibition data from various mouse
models to derive the efficacy parameters for the model."
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Combined with predicted human PK parameters (esti-
mated via allometric scaling of monkey PK parameters)
and clinically observed breast cancer tumor volume and
growth parameters, a translated PK-PD model of T-DM1
was developed and used to simulate clinical trials to pre-
dict PFS and objective response rates (ORRs). The model
worked well, and the predicted outcomes were compara-
ble to those from three separate clinical trials. Model pre-
dictions suggested that increasing the clinically approved
dose would only provide a limited improvement in ORR,
a fractionated dosing regimen may provide a more sub-
stantial improvement in efficacy, which is consistent with
earlier findings on this topic.'” The authors hypothesized
that this improved response resulted from the additional
time for accumulation of the warhead in the tumor with
the fractionated regimen, allowing more time for the cell
killing effects to take place.

DISCUSSION

Each of the models discussed above has areas of strength
focusing on unique aspects of ADC biology and phar-
macology. Together, they provide a solid foundation
for computational modeling of ADCs. The complexity
of the mechanisms included in the models increases as
successive modeling papers built upon each other, with
additional mechanistic detail, spatial effects, tumor het-
erogeneity, and bystander effects among the components
explored in increasing detail. Some key collective insights
include the importance of ADC and warhead distribution
at the cellular and tumor scales to understanding overall
ADC performance, the methods for preclinical to clinical
translation using in vitro and in vivo data, and the varia-
tions in efficacy for novel dosing methods (such as carrier
doses and fractionated dosing) depending on factors, such
as antigen expression.

Although much progress has been made in QSP mod-
eling of ADCs, there continues to be opportunities for
further development in each of these areas and others,
such as greater mechanistic detail at the intracellular level
that can provide a more complete picture of the biologi-
cal phenomena at work, deeper study into the effects of
tumor heterogeneity, the full extent of bystander killing
and healthy tissue sinks in humans, and modeling of ADC
toxicity. Although this will require additional experimen-
tal data and collaboration, incorporating these features
will increase our knowledge of the systems, processes, and
mechanisms governing ADCs, leading to improved ratio-
nal ADC design and patient treatment outcomes.

More recent models generally have an increasing level
of mechanistic detail due to availability of more detailed
bioanalytical data, particularly on the intracellular level

ASCPT

and for interaction between the warhead and the site of
action. For instance, the role of physiological pH can be
taken into account in the model parameters, as some war-
heads can become more or less active at differing pH levels,
such as the open versus closed lactone forms for campto-
thecins.* Additionally, more mechanistic detail can be in-
cluded in the warhead influx and efflux kinetic processes
at the tumor cell membrane. In particular, active transport
is difficult to measure and thus is often overlooked in cur-
rent models; in the future, specific drug transporters, such
as P-glycoprotein (P-gp) or breast cancer resistance pro-
tein (BCRP) could be incorporated for relevant cell lines.
Furthermore, any potential impact of drug-drug interac-
tions on tumor cell penetration (via bystander activity) can
also be considered. Bystander killing has been explored in
several of the aforementioned models, denoting its impor-
tance to ADC efficacy and toxicity. As more detailed exper-
imental measurements become available, more detailed
mechanistic models can be developed to provide a more
complete and robust representation of the system.

The importance of the immune system in cancer is well
known.*” These interactions have been explored in QSP
models for other immuno-oncology therapies.* However,
this has not yet been incorporated into QSP models of
ADCs thus far. Integrating ADC models with existing im-
mune system models may help to investigate immune sys-
tem effects on ADCs and vice versa.**

Although ADCs can look extremely promising in
preclinical experiments, one of the most challenging as-
pects of ADC development is the lack of understanding
of the underlying differences between humans and ani-
mal models, which can cause ADCs to fail in the clinical
phase despite earlier success in preclinical studies, lead-
ing to wasted time and resources. In most cases, mouse
xenograft data has been used for preclinical in vivo mod-
eling, although some models incorporate data from mul-
tiple species.’” Some models also used IVIVC metrics as
a method to assist in predicting drug performance earlier
in the drug development process."® Further work can be
done to explore the interspecies differences that need to
be accounted for during preclinical to clinical translation
to better predict the clinical efficacy of early-stage ADCs.

Failure of ADCs in the clinic often results from the
inability to reach the efficacious dose prior to the onset
of dose limiting toxicities (DLTs). However, most QSP
modeling efforts for ADCs thus far have generally been
restricted to efficacy modeling; the lack of toxicity mod-
eling for ADCs is currently a gap in the field. Developing
QSP models focused on understanding ADC toxicity will
be crucial to minimizing toxic side effects and expanding
the therapeutic window.

Due to availability of data and interest, most published
QSP models for ADCs thus far are developed for approved
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ADCs, with T-DM1 being the most well-studied, along
with other trastuzumab-based ADCs or those with tubulin
inhibitors, such as MMAE. Therefore, although the spe-
cific drugs focused on in these models may be different,
the findings and methodologies can still be applied to the
decision-making process for future ADCs undergoing the
drug development process. Moving forward, researchers
can incorporate QSP modeling for ADCs in earlier stages
of the drug development process, which can allow for
added insights earlier on in the discovery and design pro-
cess (e.g., when evaluating in vitro efficacy and toxicity of
an ADC). Predictive models can help us simulate clinical
outcomes with preclinical data. This cannot only help re-
searchers to identify key mechanisms and processes, but
also avoid potential pitfalls to steer the direction of ADC
development earlier in the process, from informing the
design of the ADC itself, to proposing dosing regimens
that enable improved efficacy or less toxicity. Similarly,
building models for ADCs that have failed in clinical trials
can help us gain a better understanding of why an ADC
did not perform as expected.

QSP models are valuable in saving time, effort, and
resources during the drug development process. This can
include narrowing down therapeutic candidates during
the discovery phase, predicting clinical efficacy from
preclinical data to focus on the likely best candidates, or
simulating many different dosing regimens to identify op-
timal strategies during clinical development. The ability
to run simulations in silico allows researchers to test sce-
narios that may be impractical, expensive, or infeasible to
perform experimentally. Compared to traditional PK-PD
modeling, QSP models contain more mechanistic detail
and therefore enable nuanced insights into the underlying
biology that cannot be gained through PK-PD modeling
alone. Complex molecules, like ADCs that have multiple
design levers, and key contextual considerations that are
critical to the ADC’s performance (e.g., tumor heteroge-
neity, bystander killing, target expression, etc.), require
detailed mechanistic modeling to accurately quantify the
processes involved and facilitate translation to human set-
tings where data is difficult to generate. Investments in
such QSP models enable a much deeper understanding
of the ADC’s interactions and the resulting efficacy and
toxicity, leading to more informed decision making and
improved therapy design.

CONCLUSION

System pharmacology models of ADCs have evolved
greatly in recent years, from empirical and semimecha-
nistic PK-PD models, towards more complex, more in-
tegrated, and more mechanism-based models. Modeling

efforts from both academic and industry groups have
helped to quantify and provide insights into the ADC
mechanisms and observed phenomena, by simulating the
effect of key ADC design parameters, characterizing PK
and biodistribution characteristics, quantifying bystander
killing, and simulating novel dosing regimens. Future
models that account for factors such as immune response
may further improve in their ability to predict efficacy
and toxicity of ADCs. Moving forward, these models will
continue to be very important tools to support design of
ADCs, enable preclinical to clinical translation, facilitate
faster development, and ultimately develop safer and
more effective ADCs.
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