
fmicb-11-01904 August 3, 2020 Time: 12:7 # 1

MINI REVIEW
published: 05 August 2020

doi: 10.3389/fmicb.2020.01904

Edited by:
Giorgio Gambino,

Institute for Sustainable Plant
Protection (CNR), Italy

Reviewed by:
Chetan Keswani,

Banaras Hindu University, India
Shengjun Xu,

Research Center
for Eco-Environmental Sciences

(CAS), China

*Correspondence:
Jolanta Kowalska

j.kowalska@iorpib.poznan.pl

Specialty section:
This article was submitted to

Microbe and Virus Interactions with
Plants,

a section of the journal
Frontiers in Microbiology

Received: 30 May 2020
Accepted: 20 July 2020

Published: 05 August 2020

Citation:
Kowalska J, Tyburski J,

Matysiak K, Tylkowski B and Malusá E
(2020) Field Exploitation of Multiple

Functions of Beneficial
Microorganisms for Plant Nutrition

and Protection: Real Possibility or Just
a Hope? Front. Microbiol. 11:1904.

doi: 10.3389/fmicb.2020.01904

Field Exploitation of Multiple
Functions of Beneficial
Microorganisms for Plant Nutrition
and Protection: Real Possibility or
Just a Hope?
Jolanta Kowalska1* , Józef Tyburski2, Kinga Matysiak1, Bartosz Tylkowski3 and
Eligio Malusá4
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Bioproducts, i.e., microbial based pesticides or fertilizers (biopesticides and
biofertilizers), should be expected to play an ever-increasing role and application in
agricultural practices world-wide in the effort to implement policies concerned with
sustainable agriculture. However, several microbial strains have proven the capacity to
augment plant productivity by enhancing crop nutrition and functioning as biopesticides,
or vice-versa. This multifunctionality is an issue that is still not included as a concept and
possibility in any legal provision regarding the placing on the market of bioproducts,
and indicates difficulties in clearly classifying the purpose of their suitability. In this
review, we overview the current understanding of the mechanisms in plant-microbe
interactions underlining the dual function of microbial strains toward plant nutrition and
protection. The prospects of market development for multifunctional bioproducts are
then considered in view of the current regulatory approach in the European Union, in an
effort that wants to stimulate a wider adoption of the new knowledge on the role played
by microorganisms in crop production.

Keywords: biofertilizers, biopesticides, microbial consortia, multifunctional bioproducts, plant growth-promoting
microorganisms, endophytes

INTRODUCTION

Chemical, synthetic plant protection products (PPPs) and mineral fertilizers are criticized mainly
for their potentially negative effects on human health (Bennekou, 2019) and/or the environment
(Norse, 2005; Huang et al., 2017) including non-renewable resources depletion (Chojnacka et al.,
2020), and overall negative impact on biodiversity (Mozumder and Berrens, 2007; Sánchez-Bayo
and Wyckhuys, 2019). Because of these concerns, the application of sustainable crop production
methods is required by consumers as well as by legal provisions (Marrone, 2019).

In this context, although microbial-based pesticides or fertilizers (hereafter biopesticides and
biofertilizers, respectively) would not be expected to fully replace chemical pesticides and mineral
fertilizers, they could play an ever-increasing role and application in agricultural practices world-
wide (Alabouvette et al., 2012; Kurek and Ozimek, 2013).
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The multifunctional use of bioinocula represents an issue
that is emerging from several researches (Harman, 2011; Lopes
et al., 2018), and could further support the development,
marketing and application of microbial-based products. Yet, this
prospective is neither included as a concept nor as a possibility in
any legal provision dealing with the marketing of bioproducts,
while it has started to be appraised in bioproducts for human
consumption (Ma et al., 2019).

In this review we are summarizing recent findings on the
multiple effects of microorganisms suitable as biofertilizers or
biopesticides, in light of the intricated interactions between plants
and microorganisms, in an effort to foster the discussion on new
products that could find a better acceptance by farmers because
of their multifunctional properties.

PLANT-MICROBIAL INOCULA
INTERACTIONS AS THE BASIS FOR
MULTIFUNCTIONAL BIOPRODUCTS

The interaction between plants and beneficial fungi involves
elicitors released by them which include several metabolites,
including volatiles (Shoresh et al., 2010; Morath et al., 2012).
These compounds function as signal transduction in plants,
and as a result both the plant proteome and transcriptome
are affected, as it has been observed with Trichoderma (Marra
et al., 2006; Shoresh and Harman, 2008; Lorito et al., 2010;
Lombardi et al., 2020) or arbuscular mycorrhizal fungi (Jung
et al., 2012; Cameron et al., 2013; Rivero et al., 2015;
Adolfsson et al., 2017). The effect of these modifications is
translated into increased plant growth, particularly under stress,
improved nutrient use efficiency, acquisition of a systemic
resistance to diseases that goes beyond the commonly induced
systemic and acquired resistances (Shoresh et al., 2010; Cameron
et al., 2013). Qualitatively similar effects are induced in plants
by rhizobacteria: the interactions involve different chemical
compounds (Abriouel et al., 2011; Fickers, 2012; Lopes et al.,
2015; Jasim et al., 2016) as well as priming (Brencic and
Winans, 2005; van Wees et al., 2008). Mechanisms include
induction of the plant innate immune response system (Jain
et al., 2011) or acquired systemic resistance (Iavicoli et al.,
2003; Choudhary and Johri, 2009), alteration of plant functional
traits (Friesen et al., 2011) and prevention of pathogen settling
(Bakker et al., 2012).

On the other hand, growth promotion in bacteria derives
mainly from the synthesis of several plant growth hormones
(Arkhipova et al., 2005; Xie et al., 2014; Radhakrishnan and
Lee, 2016) or their indirect regulation through production of
volatile organic compounds (Tahir et al., 2017; Rath et al.,
2018) and 1-aminocyclopropane-1-carboxylate deaminase (Glick
et al., 2007), as well as the solubilization or mineralization
of mineral nutrients (Malusá et al., 2016). A key role in
interaction between plants and microorganisms seems to be
played by pattern recognition receptors (PRRs), localized in the
plants’ plasma-membrane, which allow to recognize beneficial
microbe/pathogen-associated molecular patterns (Boller and
Felix, 2009; Zipfel, 2014; Trdá et al., 2015).

Nevertheless, the relation between plants and beneficial
microorganisms inocula occurs within a wider framework of
interactions, including those with the plant microbiome (Berg
et al., 2017; Fadiji and Babalola, 2020) as well as with the
soil physical, chemical and biological characteristics (Bardi and
Malusá, 2012; Vimal et al., 2017), which all contribute to increase
the complexity in developing sustainable management practices
and agricultural products such as biofertilizers and biopesticides
as well as for better exploiting their characteristics.

BIOPESTICIDES AND PLANT GROWTH
PROMOTION

Several biopesticides have been developed to protect plants from
pests since the mid-twentieth century (Copping and Menn,
2000; de Faria and Wraight, 2007) and among them several
entomopathogenic fungi (e.g., Beauveria spp., Zimmermann,
2007) and bacteria (e.g., Bacillus thuringiensis, de Almeida Melo
et al., 2016) are currently used in crop protection. However,
recently published studies have provided evidence for the
involvement of entomo- or myco-pathogenic microorganisms
in promoting plant growth, thus opening new opportunities of
their multifunctional use (Vega et al., 2009; Lacey et al., 2015;
Table 1). Examples with entomopathogenic fungi include the
significant increase in onion yields after Metarhizium anisopliae
sprays (Maniania et al., 2003) or in growth of soybean seedlings
(Khan et al., 2012) or maize plants (Liao et al., 2014) or cotton
(Lopez and Sword, 2015) after soil inoculation with different
entomopathogenic species. The mechanism of growth promotion
is related to the transfer of nitrogen, also from the parasitized
pest, which occurred in both leguminous and gramineous
species (Behie et al., 2012). However, production of siderophores
(Jirakkakul et al., 2015) or increased uptake of iron (Sánchez-
Rodríguez et al., 2015) have also been demonstrated to occur
in plants colonized with the entomopathogenic B. bassiana. The
production of the auxin indole-3-acetic acid was likewise found to
be associated to several Metarhizium and Beauveria strains (Liao
et al., 2017). Nevertheless, as for the expression of the full efficacy
in insect pests’ control, the ability of fungal entomopathogens to
promote plant growth has resulted to depend on the inoculation
method (Jaber and Enkerli, 2016, 2017) or the inoculation rate
(García et al., 2011).

Increased plant growth mediated by entomopathogenic fungi
could result from the suppression of the plant diseases (Kuldau
and Bacon, 2008; Jaber, 2015) or from a combination of reduced
disease severity and more vigorous development of the plants
as observed with Beauveria and Metarhizium strains and fungal
or virus pathogens (Sasan and Bidochka, 2013; Jaber and Salem,
2014). In these cases, the mechanisms could derive from the
capacity of entomopathogenic fungi to elicit the expression of
photosynthesis- and energy metabolism-related proteins as well
as plant defense responses (Gómez-Vidal et al., 2009).

Among pathogen biocontrol fungi, the dual effect of
Trichoderma application has been observed in several studies.
T. harzianum T-22 proved to solubilize in vitro insoluble rock
phosphate likely by both chelation and reduction processes,
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since no release of organic acids nor acidification were observed
(Altomare et al., 1999). Trichoderma-based products were shown
to modulated rhizosphere microbial populations, improving
nutrient uptake efficiency, yield, and nutritional quality of
leafy vegetables (Fiorentino et al., 2018) or of strawberry
plants (Lombardi et al., 2020). Dipping roots of strawberry
cuttings in a suspension of T. asperellum prior to planting
followed by foliage applications during the vegetation season
stimulated plant growth (+ 24%) and health (Kowalska et al.,
2012). The effect was reverberated on the control of Botrytis
cinerea also on stored fruits, extending their shelf-life without
symptoms of damage up to 7 days. Trichoderma spp. isolates
significantly reduced the infection of germinating seeds and
carrots seedlings by Pythium spp. and efficiently influenced
the growth of the seedlings as compared to the standard
chemical seed dressing (Sobolewski et al., 2013). Similarly, foliar
application of T. asperellum increased seed yield and weight and
improved lipid content of organic oilseed rape (Brassica napus
L.) (Kowalska, 2014). The mechanism of these plant growth
promoting effects could be explained by the growth stimulation,
observed with a T. viridae strain, particularly of lateral roots
and inhibition of the elongation of hypocotyls, resulting in about
fourfold increase of dry biomass in comparison to the control
(Znajewska et al., 2018).

Among the bacteria exploited for protection against
pathogens, the Bacillus and Pseudomonas genera have common
commercial use and frequently are exploited also for plant
growth promotion (Santoyo et al., 2012). A rich literature exists
on these microorganisms (e.g., Kumar et al., 2011; Chowdhury
et al., 2015; Islam et al., 2019) thus the reader is advised to refer to
it. However, it is interesting to note that the entomopathogenic
B. thuringiensis, was able to in vitro solubilize low-soluble
inorganic phosphate and simultaneously produce IAA when
formulated in k-carrageenan (Vassilev et al., 2006). This
formulation boosted plant growth and P-uptake when introduced
into a soil–plant system, stimulating the establishment and
development of the co-inoculated endomycorrhizal fungus
Glomus deserticola (Vassilev and Vassileva, 2004).

BIOCONTROL POTENTIAL OF
BIOFERTILIZERS

Many plant growth promoters used for inoculation in cropping
systems might serve as biocontrol microorganisms (Chowdhury
et al., 2015; French, 2017; Table 1). The biocontrol potential
of several P-solubilizers has been verified in several works of
Vassilev and co-workers (Vassilev et al., 2006). Inoculation with

TABLE 1 | Microbial strains showing plant protection and growth promotion effects.

Strains Effect References

Trichoderma atroviridae Plant growth promoter Biocontrol of fungal pathogens Marra et al., 2006

Trichoderma harzianum Solubilization of phosphates Biocontrol of Fusarium disease Altomare et al., 1999; Martínez-Medina et al., 2009

Trichoderma viridae Plant growth stimulator Modulate rhizosphere microbial and
improve N uptake

Fiorentino et al., 2018; Znajewska et al., 2018

Trichoderma spp. Activator of plant physiological processes Elicitor of plant
resistance system and plant growth stimulator

Kowalska et al., 2012; Lombardi et al., 2020

Glomus mosseae and Rhizobium leguminosarum Biocontrol Fusarium root rot Dar et al., 1997

Bacillus amyloliquefaciens Biocontrol of root pathogens Induce systemic resistance,
protect plants against attacks of pathogenic microbes, viruses,
and nematodes

Chowdhury et al., 2015; Borriss, 2020

Bacillus subtilis Plant growth Arkhipova et al., 2005

Bacillus mojavensis Plant growth modulators Rath et al., 2018

Bacillus methylotrophicus Supports plant growth and enhances nutritional metabolites Radhakrishnan and Lee, 2016

Metarhizium anisopliae Plant growth and mitigates salt stress Biocontrol of Trips tabaci Maniania et al., 2003; García et al., 2011; Khan
et al., 2012; Lopez and Sword, 2015

Clavicipitaceous endophytes Suppression of the plant diseases Kuldau and Bacon, 2008

Metarhizium robertsii Promotes root growth Antagonism to Fusarium solani Sasan and Bidochka, 2013; Liao et al., 2017

Beauveria bassiana and Metarhizium Reduce fungal and virus disease Jaber and Salem, 2014

Beauveria bassiana and Metarhizium brunneum Insect pests’ control and promote plant growth Lopes et al., 2015; Jaber and Enkerli, 2016

B. bassiana Alleviates Fe chlorosis Biocontrol of downy mildew Jaber, 2015; Sánchez-Rodríguez et al., 2015

Pseudomonas spp. Plant growth-promoting Mobilization of insoluble forms of K
Biocontrol of Phytophthora infestans

Santoyo et al., 2012; Meena et al., 2014; De Vrieze
et al., 2018

Pseudomonas fluorescens Induces systemic resistance Iavicoli et al., 2003

Microbial consortia Biocontrol of Sclerotinia sclerotiorum Jain et al., 2011

Rhizobacteria Priming, induction of the plant immune response system
prevention of pathogen settling Pathogen suppression

van Wees et al., 2008; Jain et al., 2011; Bakker
et al., 2012; Islam et al., 2019

B. bassiana, Lecanicillium dimorphum Modulates plant defense responses and energy metabolism Gómez-Vidal et al., 2009

Phanerochaete chrysosporium P-solubilizing filamentous fungi against Fusarium wilt Khan and Khan, 2001

Paenibacillus kribbensis Potassium and phosphate-solubilizing capacity and reduce of
several cotton and wheat soil-borne pathogens

Zhang et al., 2013
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G. intraradices significantly reduced the impact of the soil-
borne pathogen F. oxysporum on tomato plants, paralleled by
a significant decrease in the number of colony-forming units
compared with the control treatment (Vassilev et al., 2008,
2009a). However, the further introduction of a filamentous
fungus (A. niger) in the formulation, with different plant
wastes and rock phosphate as microbial growing substrate,
was more effective to control the pathogen. Similar results
were achieved with Phanerochaete chrysosporium (Vassilev et al.,
2009b) or in other field trials with P-solubilizing filamentous
fungi against Fusarium wilt in tomato (Khan and Khan, 2001).
In these cases, the biocontrol function was suggested to be
based on production of hydrolytic enzymes or the competition
for nutrients and space by the microbial P-solubilizers, as
well as by hormones such as indole-3-acetic acid (IAA) and
siderophores, being among the metabolites most frequently
released by P-solubilizing microorganisms.

The observation that root colonization by AMF is not
always associated to improved nutrition and increased vegetative
biomass (Smith and Smith, 2011), has prompted to propose
that improved stress tolerance is another major benefit of
the symbiosis (Gianinazzi et al., 2010) and AM fungi are
accepted as functioning in biocontrol (Johansson et al., 2004).
Enhanced resistance of mycorrhizal plants to soil-borne pathogen
attacks has been associated to the accumulation of phytoalexins,
flavonoids, and isoflavonoids in AM-colonized root tissues
(Ziedan et al., 2011; Jung et al., 2012). Interestingly, the
bioprotective effect of Glomus mosseae against the soilborne
pathogen Fusarium oxysporum f.sp. lycopersici was observed
in different cultivars and genotypes which differed in their
susceptibility to both the AMF and the pathogen (Steinkellner
et al., 2012). Nevertheless, the response of phylogenetically
diverse plants (i.e., tomato, soybean, and maize) to two
mycorrhizal fungi – Funneliformis mosseae and Rhizophagus
irregularis – depended on both the plant and the AMF species
involved (Fernández et al., 2014). Although fungal pathogens
reduce root colonization by AMF, the latter were shown to
provide protection through increased enzymes activity, including
those directly involved in the regulation of the symbioses.
The biological protection of AMF has been also proved on
plant parasitic nematodes, under greenhouse conditions: the
population of Meloidogyne incognita or Pratilenchus penetrans
was lowered by 45 and 87%, respectively, in mycorrhized roots
in comparison to non-mycorrhized roots (Vos et al., 2012).

The effect of interactions between AMF and other
agronomical practices shows how external factors can contribute
to the expression of biocontrol potential. The interaction
between AMF and different level of P availability was observed
in the occurrence of Alternaria solani symptoms (Fritz et al.,
2006). Mycorrhized tomato plants had significantly less A. solani
symptoms than non-mycorrhizal plants, but increased P supply,
which was paralleled to a reduction in mycorrhiza formation,
led to a higher disease severity in mycorrhizal plants. On the
other hand, individual co-inoculation of four Glomus species
with T. harzianum affected the colony−forming capacity of
the latter, but the combined inoculation – particularly with
G. intraradices – resulted in a general synergistic effect on disease

control (Martínez-Medina et al., 2009). The inoculation of
bean plants with Glomus mosseae, besides decreasing propagule
number of Fusarium solani in the rhizosphere, decreased
pathogenic root rot by 34–77% (Dar et al., 1997). However, when
co-inoculated with Rhizobium leguminosarum, the mycorrhized
plants were more tolerant of the fungal root pathogen.

The induction of defense activity by AMF has been also
proved in above ground tissues. Helicoverpa arimigera larvae
feeding on leaves of tomato mycorrhized plants had a reduction
of 62.3% in weight relative to non-inoculated plants, likely
as a result of a priming effect related to jasmonate pathway
(Song et al., 2013). Nevertheless, it could be speculated that the
effect on above-ground herbivores derives also from reduced
levels of metabolites connected to central catabolic and amino
acid metabolism, particularly prominent in sink leaves, which
prompted to suggest deteriorations rather than improvements in
the nutritional value of colonized plants for higher trophic levels
(Fester et al., 2011).

Several genera and species of bacteria (e.g., Pseudomonas
or Bacillus) and fungi (e.g., Pennicillium or Aspergillus)
ubiquitous in different soils are known to assist plants growth
by mobilization of insoluble forms of K (Meena et al., 2014),
with mechanisms similar to those found in P-solubilizers
(Sheng and He, 2006). It is thus not unexpected that a strain
of Paenibacillus kribbensis having potassium and phosphate-
solubilizing capacity was also found to reduce the development
of several cotton and wheat soil-borne pathogens in vitro
(Zhang et al., 2013).

The potential function of plant-growth-promoting
rhizobacteria in biocontrol has been long known and can be
traced to bacterization studies with fluorescent pseudomonads
beginning in the 1970s (Weller, 2007). Since then, a huge
amount of studies has allowed to characterize the process of root
colonization and the biotic and abiotic factors that are affecting
it as well as the identification of genes and traits in bacterial
fitness underlying the mechanisms of pathogen suppression (e.g.,
Labuschagne et al., 2010; Sayyed et al., 2013; Islam et al., 2019).
However, notwithstanding this knowledge, the major difficulties
and weakness in a broad use of PGPR strains in agricultural
practices reside in formulation and registration of the bacteria
for commercial use (Malusá et al., 2012; Bashan et al., 2014;
Borriss, 2020).

REGULATORY FUTURE PERSPECTIVES
OF MULTIFUNCTIONAL BIOPRODUCTS

A sustainable agriculture is a central pillar of the United
Nations Sustainable Development Goals (United Nations, 2015),
which can be pursued by the wide adoption of microbial-based
products in agronomical practices. The regulatory and policy
pressure posed by this international agreement could potentially
transform the market of bioproducts into a key segment of the
world economy. Such potential is confirmed by recent market
analysis reports, which valued at about 10.2 billion USD by
2025 the global biopesticide market, with an annual growth
rate of about 15% (Anonymous, 2019b) and projected 3.15
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billion USD by the end of 2026 for the biofertilizers market,
at an annual growth rate of about 11% (Anonymous, 2019a).
However, it is intriguing that for biopesticides, the market value
projected for 2025 was already expected to be reached by 2017
(Marrone, 2007).

Most microbial-based PPPs present on the market have been
designed for annual crops (mainly legumes and cereals), but
there is an increasing demand for these products in fruit and
vegetable crops, particularly for organic production. On the other
hand, even though biofertilizers would not fully replace mineral
fertilizers (Adesemoye et al., 2009), their application, possibly
in association with organic fertilizers or other carbon-based
products (Saeid and Chojnacka, 2019), could substitute to a large
extent mineral or synthetic inputs, having also a positive impact
on plant protection strategies.

However, the legal framework regulating the production
and marketing of bioproducts can pose a bottleneck to their
wider adoption because it reflects the incomplete knowledge
on microbial-based products as well as precautions in their
safety assessment. Considering the current situation in the
EU, known to have a well-developed regulatory framework on
agricultural inputs, it emerges that the biopesticide registration
process and data requirements are similar to those needed for
chemical pesticides (Regulation Eu 1107/2019). Even though a
legal provision (Parliament, 2009) has introduced in the EU a
compulsory integrated pest management since 2014 for all crops,
the unfamiliarity with biologically based pest management of the
risk assessors and regulators has not fostered the modification
of the authorization process, taking into consideration the
peculiarities of the biopesticides mechanisms of action, as it
had already been suggested by prominent researchers (Chandler
et al., 2011). However, recently, a specific working group has
been organized to this aim, and also the European Food Safety
Agency has actively operated to find new assessment methods
(Council of the European Union, 2019). Interestingly, similar
bottlenecks have been hampering biopesticides’ development
and use also in the Indian context, paralleled with a legislation
aimed to support bioproducts for organic farming which resulted
in an unfair competition from sub-standard or misbranded
biopesticides (Keswani et al., 2019a).

In case of biofertilizers, the rules have been enacted patchily
in the world (Malusá and Vassilev, 2014) and in the European
Union only in 2019 a provision has been enacted, though limiting
the marketing to just four kinds of biofertilizers: three related to
N nutrition (based on symbiotic Rhizobium spp. and free-living
Azotobacter spp. and Azospirillum spp.) and one for P nutrition
(based on mycorrhizal fungi) (Regulation Eu 1107/2019, 2019).
The limitation of species allowed to be marketed as biofertilizers
contrasts with the plethora of genera and species recognized
having positive effects on plant nutrition and available for
commercial applications (Umesha et al., 2018). Furthermore, the
EU Regulation allows only the drying or freeze-drying processes
in the formulation of the product, which is also restrictive
considering the technological possibilities in this respect (Bashan
et al., 2014; Vassilev et al., 2020).

Multifunctional bioproducts would also share with
biopesticides and biofertilizers the issue of biosafety with

respect to humans and the environment as, although only
wild-type strains are being used for bioinocula development, the
risk of pathogen spread cannot be completely excluded, thus
requiring certain precautions (Keswani et al., 2019b).

In view of this situation, it appears quite difficult to expect
that multifunctional bioproducts could soon be made available
nor that manufacturers would advertise – not being it allowed
by the legal provisions – either biocontrol or growth promotion
features in bioproducts not registered for their respective
purposes, even if the strains used could express them. The
unlikeliness of a regulatory framework would also hamper
the development of products based on microbial consortia
that exhibit complementary and synergistic effects, through re-
assembling strains with differing modes of action into small
communities, thereby providing more consistent protection or
growth promotion than with the application of single strains,
which are now starting to gain attention as a possible strategy
to widen the application of bioproducts (Reddy and Saravanan,
2013; Vassilev et al., 2015; De Vrieze et al., 2018). At the
same time, the potential use of bioproducts for alleviating
other abiotic stresses (Hassen et al., 2016; Rajendra Prasad
et al., 2016), particularly relevant in the world-wide experienced
climate change conditions, would also face difficulties due to
lack of clear rules for their registration and marketing. The
current regulatory framework in EU as well as that of other
countries where bioproducts are highly promoted (see several
articles in Singh et al., 2016) could be perceived as frustrating
the researchers efforts in finding the best solutions to exploit
microbial inocula, considering that plants (and animals) are no
longer viewed as autonomous entities, but rather as "holobionts"
(Bordenstein and Theis, 2015). Nevertheless, we believe that the
research activity that is currently endeavored to better understand
the biochemical and molecular mechanisms involved in plant–
microbe–soil interactions, paralleled with their impact on the
plant metabolomics and the interactions with endophytes, should
also support the progress in manufacturing and the regulatory
development, leading to the design and use of safe bioproducts
with greater efficacy in enhancing the productivity of sustainable
crops. To this aim, exploitation of endophytes (Fadiji and
Babalola, 2020), or of pre-, pro-, and post-biotic approaches
(Vassileva et al., 2020) as well as of the plants’ capacity to “Cry for
Help,” i.e., recruit and subsequent assembly of protective specific
microbiota (Bakker et al., 2018; Rodriguez and Durán, 2020),
could represent possible research avenues to be explored.
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