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a b s t r a c t

We studied the effects of Fusarium oxysporum f.sp. strigae (Fos), a soil-borne biocontrol agent (BCA)
against Striga hermonthica, on total fungal and arbuscular mycorrhizal fungal (AMF) taxa in rhizospheres
of maize in both clayey and sandy soil. Effects of Fos-BCA ‘Foxy-2’ were evaluated against (1)
S. hermonthica presence, and (2) organic fertilization with Tithonia diversifolia residues at 14, 28 and 42 d
after ‘Foxy-2’ inoculation, via DNA-based quantitative PCR and TRFLP fingerprinting. In both soils,
‘Foxy-2’ occasionally promoted total fungal abundance, while the community composition was mainly
altered by T. diversifolia and S. hermonthica. Notably, ‘Foxy-2’ stimulated AMF Gigaspora margarita
abundance, while G. margarita was suppressed by S. hermonthica. Total fungal and AMF abundance were
promoted by T. diversifolia residues. In conclusion, ‘Foxy-2’ resulted in no adverse effects on indigenous
rhizosphere fungal communities substantiating its environmental safety as BCA against S. hermonthica.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The parasitic weed Striga hermonthica is a major constraint to
cereal production in Sub-Saharan Africa causing yield losses worth
US$ 9 billion (Ejeta, 2007; Gibbon et al., 2007). S. hermonthica
parasitizes staples such as millet (Pennisetum americanum), sor-
ghum (Sorghum bicolor), maize (Zea mays), and rice (Oryza sativa)
(Elzein and Kroschel, 2004; Marley et al., 2004). It infests more than
50 million hectares of farmland with intensifying dissemination in
Sub-Saharan Africa, which makes it one of the gravest threats to
food security in this region (Parker, 2012).

Control of S. hermonthica remains challenging due to its very
high seed production per plant, with seed survival rates in soils of
more than ten years (Parker and Riches, 1993; VanMourik, 2007). It
has been widely accepted that a single control method is not
effective against S. hermonthica, hence, integrated approaches are
postulated as control strategies (Menkir and Kling, 2007; Hearne,
2009; Atera et al., 2012).
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The combination of biological control agents (BCAs) such as
Fusarium oxysporum f.sp. strigae (Fos) along with tolerant crop va-
rieties provided respectable control against S. hermonthica under
field conditions in Burkina Faso, Benin and Nigeria (Schaub et al.,
2006; Venne et al., 2009). In particular, the Fos strain ‘Foxy-2’
was effective in suppressing all developmental stages of
S. hermonthica ranging from germination to flowering (Elzein and
Kroschel, 2004; Ndambi et al., 2011). In addition, Ndambi et al.
(2011) reported that ‘Foxy-2’ colonized endophytically the roots
of the host crop (e.g., sorghum), where the biocontrol activity of
‘Foxy-2’ was initialized after S. hermonthica attacked the root
system.

In contrast to previous studies performed in West Africa (e.g.,
Schaub et al., 2006; Venne et al., 2009), recent efficacy studies of
‘Foxy-2’ in Kenya showed no effective biocontrol ability of ‘Foxy-2’
against S. hermonthica (Avedi et al., 2014). These contradictory re-
sults were explained by potential genetic distinctions between
Eastern and Western African S. hermonthica varieties, but also by
abiotic and biotic environmental factors influencing the prolifera-
tion and hence efficacy of ‘Foxy-2’ in foreign ecosystems.
Zimmermann et al. (2015), using a Fos specific and quantitative
monitoring tool, followed the fate of BCA Fos after inoculation into
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foreign soil ecosystems, and showed that Fos proliferation was
controlled by physico-chemical soil characteristics and by the
availability of organic resources, for which Fos is in competition
with indigenous microorganisms in the rhizosphere of the host
crop. The latter fact requires particular attention as Fos is a soil
borne fungus and proliferates saprotrophically and endophytically
in crop rhizospheres and roots, respectively (Ndambi et al., 2011).

Soil microorganisms maintain critical soil functions including
nutrient cycling as well as turnover and stabilization of soil organic
matter (van der Heijden et al., 2008; Kunlanit et al., 2014). A range
of soil microorganisms have been shown to suppress soil-borne
plant diseases and to promote plant growth (Compant et al.,
2005; Rasche et al., 2006a,b; Liu et al., 2007). With respect to
resource acquisition in soils, it was recently speculated that there
might exist a potential resource competition between Fos and
indigenous soil microorganisms (Zimmermann et al., 2015). Hence,
it could be hypothesized that the release of Fos in soils may have a
considerable effect on the abundance and community composition
of functionally relevant indigenous soil microorganisms whichmay
in turn influence crop health and yield. The impact of the Fos strain
‘Foxy-2’ on the abundance of total indigenous bacterial commu-
nities and plant-beneficial prokaryotic nitrifiers in a maize rhizo-
sphere was emphasized by Musyoki et al. (2015) who detected no
negative side effects of ‘Foxy-2’ on root-associated bacteria.

In the study we present here, we focused on community dy-
namics of rhizosphere fungi as these may colonize similar niches as
Fos and thus compete for similar resources in the rhizosphere
(Winding et al., 2004). We put major emphasis on functionally
relevant members of the fungal community focusing primarily on
arbuscularmycorrhizal fungi (AMF) colonizing crop roots. The focus
on AMF is justified due to their beneficial effects on crop growth
and crop stress compensation (Smith and Smith, 2012). We studied
the response of fungal communities to Fos inoculation in two
contrasting (clayey Humic Nitisol versus sandy Ferric Alisol) soils
from Kenya which were not naturally infested with Fos. A rhizobox
experiment was conducted inwhich the selected soils were treated
with the Fos strain ‘Foxy-2’ via seed coating of a tropical maize
variety used as a test crop. Two additional factors were considered:
(1) presence of S. hermonthica, and (2) application of Tithonia
diversifolia residues, a widely used green manure in Sub-Saharan
Africa (Gachengo et al., 1998; Jama et al., 2000; Opala et al.,
2015), to cover the hypothesized resource competition effects.
T. diversifolia is classified as high quality organic fertilizer with low
C/N ratio (Chivenge et al., 2009) and provides an easily accessible C
source and high N availability to stimulate indigenous fungal
communities (Zimmermann et al., 2015). The response of the total
fungal abundance was monitored at 14, 28 and 42 d after inocu-
lation (DAI) using DNA-based quantitative polymerase chain reac-
tion (qPCR), while fungal community composition (terminal
restriction fragment length polymorphism (TRFLP) fingerprinting)
and AMF taxa abundance (qPCR) were monitored at 42 DAI.

2. Material and methods

2.1. Rhizobox experiment

2.1.1. Preparatory work
The model Fos isolate ‘Foxy-2’was obtained from S. hermonthica

collected from North Ghana (Abbasher et al., 1995). Taxonomic
identification of the isolate was confirmed by Julius-Kühn-Institut
(JKI), Berlin, Germany, where it is deposited under accession
number BBA-67547-Ghana. Maize (Z. mays variety ‘WH507’, pro-
vided by Western Seed Company Ltd., Kitale, Kenya) was used as a
test crop. The selected variety is highly preferred by smallholder
farmers in Western Kenya due to its tolerance to S. hermonthica.
Maize seeds were coated with dried ‘Foxy-2’ chlamydospore inoc-
ulum (1.15 � 105 colony forming units per seed) homogenized into
20% arabic gum used as adhesive through a special seed treatment
technology (Elzein et al., 2006; seed coating processed by SUET
GmbH, Eschwege, Germany) to provide uniform inoculum
coverage. S. hermonthica seeds (originating from Sudan) were sur-
face sterilized according to Elzein et al. (2010) and germination
viability of seeds (75%) was checked as described by Kroschel
(2002).
2.1.2. Rhizobox set-up
Rhizoboxes (3 � 7 � 20 cm) were filled with dry soils (165 g)

derived from two contrasting field sites in the central highlands of
Kenya: Embu (0� 300 S, 37� 300 E; 1380m above sea level (a.s.l.)) and
Machanga (0� 470 S, 37� 400 E; 1022 m a.s.l.). Soils differed greatly in
physical properties: the Embu soil was a clayey Humic Nitisol (17%
sand,18% silt, 65% clay) derived from basic volcanic rocks, while the
Machanga soil was a sandy Ferric Alisol (66% sand, 11% silt, 22%
clay) derived from granitic gneisses (IUSS Working Group WRB,
2015). Each rhizobox was filled at the bottom with a 1 cm ground
layer of vermiculite (grain size 3e8mm) for drainage improvement.
On top of this layer, soil adjusted to 50% water holding capacity was
added.

Both soils were infected artificially with disinfected
S. hermonthica seeds (20 mg seeds 165 g dry soil�1). S. hermonthica
seeds were thoroughly mixed with the moist soils and pre-
conditioned at 28 �C in the dark for 7 d (Kroschel, 2002). After
this step, pre-germinatedmaize seedlings were introduced into the
rhizoboxes. After planting of seedlings, a 1 cm layer of vermiculite
was placed as the top layer to reduce evaporation.

Boxes were placed in an incubation chamber (12 h with artificial
light (1000 mmolm�2 s�1) and 12 h darkness at 28/21 �C (day/night)
for 6 weeks). Two and 4 weeks after the start of incubation, soil was
fertilized with inorganic liquid fertilizer (4 ml each rhizobox with
0.2%Wuxal N-P-K (8-8-6), Aglukon GmbH, Düsseldorf, Germany) to
avoid nutrient deficiency. In addition, a treatment with organic
residues was included by incorporating air-dried and ground
(particle size 1e3 mm) leaf and stem material of T. diversifolia (1 g
dry matter 100 g dry soil�1) into soils before planting of maize
seedlings. Non-fertilized treatments were included as controls.

The rhizobox experiment was arranged as a completely ran-
domized design with 6 treatments with 3 replicates for each soil
type: (i) uncoated maize seeds with no S. hermonthica (C), (ii) un-
coated maize seeds and S. hermonthica (C þ S), (iii) coated maize
seeds with ‘Foxy-2’ (F), (iv) coated maize seeds with ‘Foxy-2’ and
S. hermonthica (F þ S), (v) coated maize seeds with ‘Foxy-2’ and
T. diversifolia (F þ T), and (vi) coated maize seeds with ‘Foxy-2’,
S. hermonthica and T. diversifolia (F þ S þ T).
2.1.3. Rhizosphere and bulk soil samplings
Rhizosphere samples for molecular analyses were taken 14, 28

and 42 d after inoculation (DAI). For this step, the rhizobox was
opened and approximately 2 g of root adhered soil was taken
carefully from several positions in order not to damage the root
system. Rhizosphere soil was gently scraped off with sterile forceps
and transferred into sterile sampling bags. Soil samples (bulk soil)
for chemical analyses were obtained at 42 DAI. Rhizosphere soil
samples were freeze dried and stored at �20 �C until molecular
analysis, while bulk soils for chemical analyses were directly
maintained at �20 �C. One proportion of the obtained rhizosphere
soil samples was used to study the impact of ‘Foxy-2’ on indigenous
prokaryotic communities (Musyoki et al., 2015) while another was
used in the present study to assess the impact of ‘Foxy-2’ on
indigenous fungal communities.
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2.2. Analysis of fungal communities

2.2.1. DNA extraction from rhizosphere samples
Total genomic DNA from rhizosphere samples was extracted

using the Fast DNA® Spin Kit for Soil (MP Biomedicals, Solon, OH,
USA) following the manufacturer's instructions with slight modi-
fications. Briefly, 0.4 g freeze-dried soil was bead-beated for 30 s
with a beating power of 5.5 m s�1 using a FastPrep®-24 Instrument
(MP Biomedicals). Concentration and quality of DNA were deter-
mined on a Nanodrop ND-1000 (Nanodrop Technologies, Wil-
mington, DE, USA) and DNA was stored at �20 �C.

A soil spiking experiment was conducted including the two soils
used in the rhizobox experiment to account for soil type depending
DNA extraction efficiencies influencing fungal gene copy recovery
(Zimmermann et al., 2015). Briefly, 400 mg of freeze dried soil
samples obtained from control sets of the rhizobox experiment
were transferred into the beat beating tubes of the DNA extraction
kit (MP Biomedicals). Soil samples in tubes were spikedwith cloned
‘Foxy-2’ amplicons of known concentration (103 ‘Foxy-2’ gene
copies). Recovery of ‘Foxy-2’ amplicons after DNA extraction was
determined using the qPCR protocol with ‘Foxy-2’ specific oligo-
nucleotides Kb1::Kb2 as described in Zimmermann et al. (2015).
Results of the soil spiking experiment verified that DNA extraction
efficiency was soil type independent (Zimmermann et al., 2015).

2.2.2. Total fungal abundance
Quantification of 18S rDNA gene copy numbers in soils was

performed using oligonucleotides FF390 (50-CGATAACGAACGA-
GACCT-30) and FR1 (50-AICCATTCAATCGGTAITCATTCA-30) (Vainio
and Hantula, 2000). Each reaction (20 ml) contained 5 ng DNA
template, 10 ml of Power SYBR® Green Master Mix (Applied Bio-
systems, Foster City, CA, USA), 0.2 ml T4 gene 32 protein
(500 ng ml�1, MP Biomedicals), and 0.4 mM of each oligonucleotide.
A cloned amplicon was used as standard in 10-fold serial dilutions
of known DNA concentration (Kamolmanit et al., 2013). PCR runs
were performed on a StepOnePlus™ Real-Time PCR System
(Applied Biosystems). Cycling started with initial denaturation at
95 �C for 10 min, followed by 45 cycles of denaturation at 94 �C for
30 s, annealing at 50 �C for 30 s and polymerization at 70 �C for
1 min. Each DNA sample was processed in triplicate reactions,
while standards were run in duplicates. Melting curve analysis of
amplicons was conducted to confirm that fluorescence signals
originated from specific amplicons and not from oligonucleotide
dimers or other artifacts. An average reaction efficiency of 86% was
achieved with R2 values consistently >0.98. Quantification of gene
copies was calculated by comparing the values of threshold cycles
(Ct) to the values of the crossing points of the linear regression line
of the standard curve using StepOne™ software version 2.2
(Applied Biosystems).

It needs to be considered that the inoculated Fos strain ‘Foxy-2’
is part of the total fungal abundance. Both were quantified with the
approach used and hence, it was likely that the abundance of
‘Foxy-2’ has enhanced the abundance of the indigenous fungal
population. We have subtracted ‘Foxy-2’ abundance from the total
fungal abundance using the following procedure. ‘Foxy-2’ was
propagated in 5 ml potato dextrose broth at 28 �C for 3 d, followed
by DNA extraction (UltraClean Microbial DNA Isolation Kit, MO BIO
Laboratories Inc., Carlsbad, CA). Concentration and quality of
‘Foxy-2’ DNA were determined as described above. Five ng of
‘Foxy-2’ DNA was used as template #1 for Fos-specific qPCR (using
oligonucleotides Kb1::Kb2 with the protocol published in
Zimmermann et al. (2015) and template #2 for 18S rDNA qPCR (see
above). The 5 ng ‘Foxy-2’ DNA template used for both qPCR assays
corresponded to 2.3 � 105 ‘Foxy-2’ gene copies and 4.6 � 105 18S
rDNA gene copies resulting in a ratio of 1:2 between ‘Foxy-2’ and
18S rDNA gene copies. Accordingly, the previously measured ‘Foxy-
2’ gene copy numbers in the soils of the identical rhizobox exper-
iment (Zimmermann et al., 2015) were first multiplied with factor 2
and then subtracted from total 18S rDNA gene copy numbers. This
calculation resulted in the adjusted 18S rDNA gene copy numbers
reflecting the abundance of the total indigenous fungal population.

2.2.3. Fungal community composition
The fungal community composition was studied by terminal

restriction fragment length polymorphism (TRFLP) analysis using
the same oligonucleotide set as applied for 18S rDNA qPCR (Vainio
and Hantula, 2000; Kamolmanit et al., 2013). The 18S rDNA gene
was amplified in 25 ml reactions containing 5 ng DNA template,
1 � PCR buffer, 2 U Taq DNA polymerase (Bioline GmbH, Luck-
enwalde, Germany), 0.2 mM of each deoxynucleoside triphosphate
(dNTP), 0.4 mM of each oligonucleotide (FF390::FR1), and 1.5 mM
MgCl2. The forward oligonucleotide FF390 was labelled with the
fluorescent dye FAM-6. PCRs were started with initial denaturation
at 95 �C for 1 min, followed by 30 cycles consisting of a denatur-
ation at 95 �C for 30 s, an annealing step at 52 �C for 45 s, and
elongation at 72 �C for 2min. Reactions were completedwith a final
elongation step at 72 �C for 10 min. Amplicons were purified using
the Invisorb Fragment CleanUp Kit (Stratec Biomedical AG, Bir-
kenfeld, Germany) following the manufacturer's instructions. For
digestion, 200 ng of amplicons were incubated with 5 U MspI re-
striction endonuclease (Promega GmbH, Mannheim, Germany) at
37 �C for 4 h followed by 65 �C for 20 min enzyme inactivation.
Digested products were desalted with Sephadex™ G-50 (GE
Healthcare) (Frank Rasche et al., 2006a,b) and amendedwith 7.75 ml
Hi-Di formamide (Applied Biosystems) and 0.25 ml internal size
standard GeneScan™-500 ROX™ (Applied Biosystems). Mixtures
were denaturated at 95 �C for 2 min, followed by immediate
chilling on ice. TRFLP profiles were recorded on an ABI Genetic
Analyzer 3130 (Applied Biosystems). Peak Scanner software
(version 1.0, Applied Biosystems) was used to compare relative
lengths of terminal-restriction fragments (T-RFs) with the internal
size standard and to compile electropherograms into numeric data
sets, in which T-RF length and height >100 fluorescence units
(Fredriksson et al., 2014) were used for statistical profile compari-
son. TRFLP profiles used for statistical analyses were normalized
according to Dunbar et al. (2000). A requirement for analyzing
‘Foxy-2’ induced alterations in indigenous fungal community
composition was the deletion of ‘Foxy-2’ T-RF from TRFLP profiles.
To account for this, we used the following procedure: Fos strain
‘Foxy-2’ was propagated in 5 ml potato dextrose broth at 28 �C for
3 d, followed by DNA extraction (UltraClean Microbial DNA Isola-
tion Kit, MO BIO Laboratories Inc., Carlsbad, CA). Concentration and
quality of ‘Foxy-2’ DNA were determined as described above. Five
ng of ‘Foxy-2’ DNA was used as template for 18S rDNA PCR with
oligonucleotides described above in triplicate reactions. PCR
amplicons were purified using the Invisorb® Fragment CleanUp
(StratecMolecular GmbH, Berlin, Germany), quantified as described
above and adjusted to the recommended DNA concentration for
sequencing. Sequencing was done with the 18S rDNA primer FR1
(LGC Genomics GmbH, Berlin, Germany) and 18S rDNA sequences
of ‘Foxy-2’were submitted to http://www.restrictionmapper.org/to
identify restriction cutting sites with the enzyme MspI used for
TRFLP analysis. The resulting T-RF of ‘Foxy-2’ with 168 base pair
length was deleted from TRFLP profiles.

2.2.4. AMF taxa abundance
AMF taxon-specific oligonucleotides specifically developed for

qPCR assays (Thonar et al., 2012) were used in this study since
universal AMF primers (i.e., NS31::AM1, AML1::AML2 and
NS31::AML2; Simon et al., 1992; Helgason et al., 1998; Lee et al.,

http://www.restrictionmapper.org/
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2008) lack in specificity for the intended Sybr Green qPCR approach
(Kohout et al., 2014). Moreover, it is worthwhile noting that these
universal AMF oligonucleotides were not appropriate for qPCR as-
says as they produce amplicon lengths up to 1800 base pairs.
Hence, monitored AMF taxa in this study served as model organ-
isms to investigate potential non-target effects of the BCA ‘Foxy-2’
on indigenous AMF. Thonar et al. (2012) developed qPCR oligonu-
cleotides for five major AMF taxa (i.e., Rhizoglomus irregulare,
Funneliformis mosseae, Gigaspora margarita, Cetraspora pellucida,
Claroideoglomus claroideum). In a first step, the two soils used in the
rhizobox experiment (i.e., sandy and clayey soil) were checked for
any occurrence of the five AMF taxa. For this, we used a nested PCR
approach to obtain a higher sensitivity. PCR #1 with oligonucleo-
tides LR1::FLR2 (Jansa et al., 2002) was amplified in 25 ml reactions
containing 10 ng soil DNA template, 1 � PCR buffer, 2 U ACCUZYME
DNA polymerase (Bioline GmbH, Luckenwalde, Germany), 0.2 mM
of each dNTP, 0.4 mM of each oligonucleotide (LR1::FLR2), and
1.5 mM MgCl2 with cycling conditions described in Jansa et al.
(2002). Amplicons of PCR #1 were diluted 1:200 and used as
template (2 ml) for PCR #2 with taxon-specific AMF oligonucleo-
tides developed by Thonar et al. (2012) using 25 ml reactions con-
taining 1 � PCR buffer, 2 U ACCUZYME DNA polymerase (Bioline
GmbH, Luckenwalde, Germany), 0.2 mM of each dNTP, 0.4 mM of
each oligonucleotide, and 2.0 mM MgCl2. PCR #2 was started with
initial denaturation at 95 �C for 5 min, followed by 35 cycles con-
sisting of a denaturation at 95 �C for 1 min, an annealing step
(Table 1) for 45 s, and elongation at 72 �C for 2 min. Reactions were
completed with a final elongation step at 72 �C for 10 min. PCR #2
amplicons were visualized with GelRed™ (Biotrend Chemikalien
GmbH, Cologne, Germany) staining in an agarose gel (1% agarose
(Carl Roth GmbH, Karlsruhe, Germany)) following electrophoresis
(120 V, 45 min). The nested PCR approach identified two AMF taxa
naturally occurring in each soil used in our rhizobox experiment
(i.e., C. pellucida and G. margarita in the clayey soil and C. pellucida
and C. claroideum in the sandy soil).

The qPCR assays were conducted for the identified AMF taxa as
follows: Each qPCR (20 ml) contained 50 ng DNA template, 10 ml of
Brilliant III Ultra-Fast SYBR®Green QPCR Master Mix (Agilent
Technologies, Santa Clara, USA), 0.3 ml of 1:50 diluted passive
reference dye (Agilent Technologies), 0.2 ml T4 gene 32 protein
(500 ng ml�1, MP Biomedicals) and 0.5 mM of each oligonucleotide
corresponding to the assayed AMF taxa. A cloned amplicon was
used for each AMF taxa as standard in 10-fold serial dilutions of
known DNA concentration. PCR runs were performed on a StepO-
nePlus™ Real-Time PCR System (Applied Biosystems). Cycling
started with initial denaturation at 95 �C for 10 min, followed by 40
cycles of denaturation at 94 �C for 15 s, individual annealing tem-
perature (Table 1) for 30 s and polymerization at 72 �C for 1 min. An
additional step at 76 �C for 30 s was included for signal detection.
Occasionally, small peaks occurred in themelting curve between 72
and 75 �C due to oligonucleotide dimers not detected by electro-
phoresis in a 1.5% agarose gel (data not shown). To avoid
Table 1
Sequences of oligonucleotides (Thonar et al., 2012) and corresponding anneali

Target AMF species Oligonucleotide sequ

Cetraspora pellucida AGAAACGTTTTTTACG
CCAAACAACTCGACTC

Gigaspora margarita CTTTGAAAAGAGAGT
GTCCATAACCCAACAC

Claroideoglomus claroideum GCGAGTGAAGAGGG
TTGAAAGCGTATCGT
measurement of fluorescence signal emitted by these oligonucle-
otide dimers, fluorescence of target amplicon (C. pellucida amplicon
Tm ¼ 81 �C, G. margarita amplicon Tm ¼ 82 �C, C. claroideum
amplicon Tm ¼ 80 �C) was detected at 76 �C. Each DNA sample was
processed in triplicate reactions, while standards were run in du-
plicates. Melting curve analysis of amplicons was conducted to
confirm reaction quality as described above. Quantification of gene
copies was processed as described above and average qPCR reaction
efficiencies were 89% for C. pellucida, 86% for G. margarita, and 84%
for C. claroideum with R2 values consistently >0.98.

2.3. Measurement of soil chemical parameters

For statistical purposes, data on total carbon (TC), total nitrogen
(Nt), extractable organic C (EOC), total extractable N (TEN) and pH
of soils was retrieved from Musyoki et al. (2015). Plant-available
phosphorus (Pav) was extracted with the Bray-Kurtz P1 test (Bray
and Kurtz, 1945) and content of Pav in extracts was quantified at
882 nm on a spectrophotometer (SPECORD 50, Analytik Jena AG).

2.4. Statistical analyses

Each rhizobox was sampled at 3 sequential dates (DAI 14, 28 and
42). Therefore, a repeatedmeasures analysis with an autoregressive
covariance structure using the ‘nlme’ package (Pinheiro et al., 2014)
combined with post hoc Tukey-B tests using the ‘lsmeans’ package
(Lenth, 2013) in R (R Core Team, 2013) was performed to determine
effects of the 5 factors ‘Foxy-2’, ‘S. hermonthica’, ‘T. diversifolia’, ‘Soil
type’ and ‘Sampling date’ on 18S rDNA abundance. AMF species
abundance was monitored only at 42 DAI. Hence, for analysis of
AMF species abundance, a multifactorial ANOVA was applied in R
combined with post hoc Tukey-B tests with the factors mentioned
above, but excluding factor ‘sampling date’. Pearson's correlation
coefficients were used to assess significant relations between total
fungal and AMF species abundance and soil chemical parameters
(Musyoki et al., 2015) across all treatments in each soil at 42 DAI (6
observations).

TRFLP data sets were analysed using Bray-Curtis similarity co-
efficients (Legendre and Legendre, 1998). A similarity matrix was
generated for all possible pairs of samples for each target gene. This
similarity matrix was used for analysis of similarity (ANOSIM)
statistics (Clarke, 1993) to test if the composition of target fungal
communities was altered by factors ‘Foxy-2’, ‘S. hermonthica’,
‘T. diversifolia’ and ‘Soil type’. ANOSIM is based on rank similarities
between the sample matrix and produces a test statistic ‘R’ (Rees
et al., 2005). A ‘global’ R was first calculated in ANOSIM, which
evaluated the overall effect of a factor in the data set. This step was
followed by a pair wise comparison, whereby the magnitude of R
indicated the degree of separation between two tested commu-
nities. An R score of 1 indicated a complete separation, while
0 indicated no separation (Rees et al., 2005). Treatment separation
was visualized by non-metric multidimensional scaling (nMDS).
ng temperatures used for quantitative PCR of the different AMF taxa.

ences (50e30) Annealing temperatures (�C)

TTCCGGGTTG 54
TTAGAAATCG
TAAATAG 48
C

AAGAG 52
AGATGAAC



Fig. 1. Adjusted total fungal abundance based on 18S rDNA gene copy numbers
determined at 14 (A), 28 (B) and 42 (C) after ‘Foxy-2’ inoculation in the two soils
(‘clayey’ (Humic Nitisol), ‘sandy’ (Ferric Alisol)). Different letters indicate significant
differences at P < 0.05 and error bars represent standard error. Treatment codes are:
uncoated maize (C), uncoated maize with S. hermonthica (C þ S), coated maize with
‘Foxy-2’ (F), coated maize with ‘Foxy-2’ and S. hermonthica (F þ S), coated maize with
‘Foxy-2’ and T. diversifolia (F þ T), and coated maize with ‘Foxy-2’, S. hermonthica and
T. diversifolia (F þ S þ T).
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nMDS calculates a stress value indicating the fitness of similarity
ranking, where a stress value below 0.2 warrants a justified treat-
ment separation (Clarke and Warwick, 2001). Calculation of simi-
larity coefficients, ANOSIM and nMDS were carried out using
Primer for Windows version 6 (Primer-E Ltd., Plymouth, UK). To
verify if considered soil chemical parameters (Musyoki et al., 2015)
were decisive for the observed treatment-driven community
composition shifts of the total fungal population, the DistLM pro-
cedure of PERMANOVAþ in Primer v6 (Primer-E Ltd.) was used
(Clarke and Gorley, 2006). This procedure calculates a linear
regression between the diversity of fungal communities using the
Shannon diversity index and log transformed soil chemical data
(Legendre and Anderson, 1999).

3. Results

3.1. Total fungal abundance

Treatment ‘Foxy-2’ (F) promoted the total fungal abundance
(18S rDNA gene copies) at 28 DAI in the sandy soil (P < 0.01) and at
42 DAI in the clayey soil (P < 0.001) compared to the control
treatment (C) (Fig. 1). No S. hermonthica root attachment and
emergence was detected within the 42 d incubation. Nonetheless,
treatment ‘S. hermonthica’ (C þ S) induced a stimulating effect on
total fungal abundance throughout all sampling dates compared to
treatment C (P < 0.001). The stimulating effect of S. hermonthica on
total fungal abundance was less pronounced when inoculated
together with ‘Foxy-2’ (F þ S) (P < 0.01). Addition of T. diversifolia
residues (F þ T, F þ S þ T) promoted total fungal abundance in both
soils at all sampling dates compared to treatment F (P < 0.001).

3.2. Fungal community composition

In the clayey soil, ANOSIM of TRFLP profiles revealed the
strongest community separation between control treatments (C,
C þ S) and T. diversifolia amended treatments (Fþ T, F þ S þ T) with
R ¼ 1 (Table 2). Control treatment (C) versus ‘Foxy-2’ treatment (F)
resulted in R ¼ 0.333. In the same soil, treatment C þ S induced a
community composition distinction with treatment C (R ¼ 0.556).
Moreover, treatment F was different from T. diversifolia amended
treatment (F þ T) (R ¼ 0.915) and F þ S þ T (R ¼ 0.989).

In the sandy soil, a clear community difference was detected
between control treatment C versus T. diversifolia amended treat-
ments (F þ T, F þ S þ T) with R ¼ 1. Treatment F showed a com-
munity distinction to the T. diversifolia amended treatments (F þ T,
F þ S þ T) with R ¼ 1. Treatment C was only slightly different from
treatment F (R ¼ 0.259), while treatments C and C þ S showed a
community difference of R ¼ 0.364.

Effects of factors ‘Foxy-2’, ‘S. hermonthica’ and ‘T. diversifolia’ on
the community composition of the total fungal population were
confirmed by nMDS showing clear separations between treatments
with stress values of 0.14 in the clayey (Fig. 2A) and 0.09 in the
sandy (Fig. 2B) soils.

3.3. AMF taxa abundance

AMF C. pellucida was detected in both soil types, while
G. margarita and C. claroideumwere detected only in the clayey and
sandy soils, respectively (Fig. 3). Abundance of C. pellucida was
higher in the clayey than the sandy soil when not treated with
T. diversifolia residues (P < 0.001). An opposite effect was detected
for T. diversifolia residue treatments (P < 0.001). The highest
G. margarita abundance was detected in the T. diversifolia treat-
ments (Fþ T, Fþ Sþ T) (P < 0.001). Additionally, its abundance was
promoted by ‘Foxy-2’ (F) compared to the control (C) (P < 0.001).
Conversely, a suppressive effect on G. margarita abundance was
detected under S. hermonthica treatments (C þ S, F þ S) compared
to the respective controls (C, F). C. claroideum abundance was
promoted in T. diversifolia treatments compared to all other treat-
ments (P < 0.001).
3.4. Correlation of community abundance and composition with
soil chemical data

For total fungal abundance, 18S rDNA gene copy numbers
showed in the clayey soil a negative correlation with plant-
available P (Pav) (r ¼ �0.649, P < 0.05, Fig. 4B, Table 3).



Table 2
Analysis of similarity (ANOSIM) of TRFLP datasets based on pair wise comparison of treatments. The magnitude of R indicates the degree of separation between two tested
communities. An R score of 1 indicates a complete separation, while 0 indicates no separation.

Soil Treatment (pair wise comparison) R statistic Significance level

Clayey soil (Embu) C, C þ S 0.556 0.01*
C, F 0.333 0.04*
C, F þ S 0.593 0.01*
C, F þ T 1 0.01*
C, F þ S þ T 1 0.01*
C þ S, F 0.333 0.04*
C þ S, F þ S 0.111 0.06ns

C þ S, F þ T 1 0.01*
C þ S, F þ S þ T 1 0.01*
F, F þ S 0.667 0.01*
F, F þ T 0.915 0.01*
F, F þ S þ T 0.989 0.01*
F þ S, F þ T 1 0.01*
F þ S, F þ S þ T 0.667 0.01*
F þ T, F þ S þ T 0.407 0.01*

Sandy soil (Machanga) C, C þ S 0.364 0.06ns

C, F 0.259 0.06ns

C, F þ S 0.630 0.01*
C, F þ T 1 0.01*
C, F þ S þ T 1 0.01*
C þ S, F 0.259 0.08ns

C þ S, F þ S 0.222 0.06ns

C þ S, F þ T 0.667 0.01*
C þ S, F þ S þ T 0.444 0.02*
F, F þ S 0.37 0.02*
F, F þ T 1 0.01*
F, F þ S þ T 1 0.01*
F þ S, F þ T 0.926 0.01*
F þ S, F þ S þ T 0.926 0.01*
F þ T, F þ S þ T 0.333 0.06ns

Significance levels: ns.: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
Treatment codes: uncoated maize with no S. hermonthica (C), uncoated maize and S. hermonthica (C þ S), coated maize with ‘Foxy-2’ (F) and coated maize with ‘Foxy-2’ and
S. hermonthica (F þ S), as well as coated maize with ‘Foxy-2’, S. hermonthica and T. diversifolia (F þ S þ T) and without S. hermonthica (F þ T).

J. Zimmermann et al. / Fungal Ecology 23 (2016) 1e106
C. pellucida abundance revealed in the sandy soil positive correla-
tions with extractable organic nitrogen (EON) (r ¼ 0.563, P < 0.05),
while G. margarita abundance in the clayey soil was negatively
correlatedwith Pav (r¼�0.634, P< 0.05, Fig. 4A, Table 3). Moreover,
there was a positive correlation in the sandy soil between Fos gene
copy numbers (Zimmermann et al., 2015) and adjusted 18S rDNA
gene copy numbers (r ¼ 0.741, P < 0.01).

Shannon diversity indexes calculated from the TRFLP data of
total fungal communities and log transformed soil chemical data
revealed in the clayey soil positive correlations for soil pH
(r ¼ 0.775, P < 0.001), EOC (r ¼ 0.748, P < 0.001), NH4

þ (r ¼ 0.606,
P < 0.01), TC (r¼ 0.602, P < 0.01) and Pav (r¼ 0.551, P < 0.05). In the
sandy soil, positive correlations were detected for soil pH
(r ¼ 0.669, P < 0.01), Nt (r ¼ 0.645, P < 0.01), EON (r ¼ 0.640,
P < 0.01), EOC (r¼ 0.621, P < 0.01), TC (r ¼ 0.599, P < 0.01) and NH4

þ

(r ¼ 0.497, P < 0.05).

4. Discussion

4.1. Impact of ‘Foxy-2’ on indigenous AMF

In the present study, we assayed the potential impacts of the
BCA ‘Foxy-2’ on the total indigenous soil fungal community, as well
as fungal community parts with proven beneficial functions (i.e.,
AMF), colonizing the rhizosphere of maize. One major finding was
the promoting effect of ‘Foxy-2’ on the abundance of AMF
G. margarita, while the other two monitored AMF taxa remained
unaffected. Similarly, G. margarita abundance was suppressed by
S. hermonthica which was compensated when ‘Foxy-2’ was
inoculated. Hence, our findings implied a tripartite interaction
between ‘Foxy-2’, AMF G. margarita and S. hermonthica. The likely
linkage between S. hermonthica and AMF was the root exudate
‘strigolactone’, a known stimulant of S. hermonthica germination
(Yoneyama et al., 2010) and also AMF root colonization (Besserer
et al., 2006; Bouwmeester et al., 2007). Exudation of strigo-
lactones is specifically increased when crops are exposed to phos-
phorus (P) deficiency. Under such circumstances, the crop attracts
symbiotic AMF to compensate for this limitation (Yoneyama et al.,
2012; Czarnecki et al., 2013; Jamil et al., 2014). Consequently, we
determined a negative correlation between plant available P and
abundance of AMF G. margarita along with the total fungal com-
munity, a finding in line with earlier reports (Ryan et al., 2000;
Smith and Read, 2008). Likewise, root colonization by AMF (i.e.,
Glomus clarum, G. margarita; Othira et al., 2012) was shown to
reduce the infection of crops (e.g., sorghum, maize) by
S. hermonthica (Gworgwor andWeber, 2003; Lendzemo et al., 2005,
2007; Othira et al., 2012) due to down-regulated strigolactone
formation following mycorrhizal colonization of crop roots
(Lendzemo et al., 2009; L�opez-R�aez et al., 2011; Aroca et al., 2013).

In contrast to earlier studies (Gworgwor and Weber, 2003;
Lendzemo et al., 2005, 2007; Othira et al., 2012), where AMF
presence suppressed S. hermonthica, our results showed for the first
time a suppressive effect of S. hermonthica on AMF G. margarita.
Which actual mechanism underlies this observed interaction
remains unclear, especially under the short experimental period
during which no S. hermonthica root attachment or emergence was
visually detected. Assuming that germination of S. hermonthica
seeds started at the end of the experiment, competition for



Fig. 2. Bray-Curtis similarity-based non-metric multidimensional scaling plot (nMDS)
of normalized TRFLP data obtained fromMspI-digested 18S rDNA amplicons visualizing
the differences in fungal community composition in the clayey (A) and sandy (B) soil
according to the following treatments: uncoated maize (C), uncoated maize with
S. hermonthica (C þ S), coated maize with ‘Foxy-2’ (F), coated maize with ‘Foxy-2’ and
S. hermonthica (F þ S), coated maize with ‘Foxy-2’ and T. diversifolia (F þ T) and coated
maize with ‘Foxy-2’, S. hermonthica and T. diversifolia (F þ S þ T).

Fig. 3. AMF taxa abundance at 42 DAI in the two soils (‘clayey’ (Humic Nitisol), ‘sandy’
(Ferric Alisol)). Different letters indicate significant differences at P < 0.05 and error
bars represent standard error. Treatment codes are: uncoated maize (C), uncoated
maize with S. hermonthica (C þ S), coated maize with ‘Foxy-2’ (F), coated maize with
‘Foxy-2’ and S. hermonthica (F þ S), coated maize with ‘Foxy-2’ and T. diversifolia
(F þ T), and coated maize with ‘Foxy-2’, S. hermonthica and T. diversifolia (F þ S þ T).
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infection sites on the crop roots may have been the main driver of
the interaction between S. hermonthica and AMF G. margarita. In
this context, the role of cytotoxic and antifungal compounds (i.e.,
iridoids; Silva et al., 2007; C�espedes et al., 2014) potentially
secreted by S. hermonthica (Rank et al., 2004) may have been
decisive.

Our results indicated that the promoting effect of ‘Foxy-2’
compensated for the suppressive effect of S. hermonthica on AMF
G. margarita which obviously represented an additional benefit
when implementing ‘Foxy-2’ as BCA. Several studies have reported
enhancedmycorrhization of crop roots when AMFand saprotrophic
F. oxysporum were applied simultaneously (Garcia-Romera et al.,
1998; Fracchia et al., 2000; Diedhiou et al., 2003). The mechanism
behind this obvious interaction is, however, yet to be understood.

Organic N fertilization (i.e., T. diversifolia residues) promoted the
abundance of all studied AMF taxa which was corroborated by
positive correlations with extractable organic nitrogen (EON) con-
tents in soils as well as by earlier findings by Gryndler et al. (2005).
Hodge and Fitter (2010) verified that AMF scavenged substantial
amounts of nitrogen (N) from decomposing organic materials not
only for the transfer to the plant during symbiosis, but also as an
important N source for maintenance of their own metabolism.
Furthermore, Aleklett and Wallander (2012) confirmed the ability
of high quality fertilizers with low C/N ratio (i.e., T. diversifolia,
Chivenge et al., 2009) to stimulate AMF abundance in contrast to
low quality, ineffective fertilizers with high C/N ratio. Accordingly,
this justified the consideration of T. diversifolia as organic fertil-
ization treatment to compensate for potential suppressive effects of
‘Foxy-2’ on indigenous soil fungal communities, through providing
additional N and C resources to the rhizosphere microbial com-
munity. Our results indicated, however, that T. diversifolia in
conjunction with ‘Foxy-2’ was not essentially required since no
suppressive effects of ‘Foxy-2’ on AMF were detected. On the other
hand, as the promoting effect of T. diversifolia on AMF abundance
was justified in this study, it may be further considered for general
soil fertility improvement by resource-limited small-holder
farmers.



Fig. 4. Relationship between plant-available phosphorus (Pav) content and G. margarita
(A) and 18S rDNA (B) gene copy numbers. Pearson's linear correlation coefficients (r)
and P values are given in each plot.
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4.2. Impact of ‘Foxy-2’ relative to other factors on total fungal
community

We found a promoting effect of ‘Foxy-2’ on total fungal
abundance in both soil types, although these were only transient
and inconsistent. ‘Foxy-2’ induced higher total fungal abundance
in the sandy soil at DAI 28 which ceased at DAI 42. In the clayey
soil, the promoting effect of ‘Foxy-2’ on total fungal abundance
was delayed and only visible at DAI 42, a finding similar to that of
Gullino et al. (1995) and Ghini et al. (2000). Further, Karpouzas
et al. (2011) detected only minor temporary effects of an endo-
phytic Fusarium strain on the fungal community in the tomato
rhizosphere of a sandy loam soil, while a tomato-pathogenic
Table 3
Pearson's linear correlation coefficients between target gene abundance (18S rDNA, C. pe

Soil Target gene TC [g kg�1] Nt [g kg�1] EOC [mg kg�1]

Clayey soil (Embu) 18S rDNA 0.028ns 0.171ns 0.463ns

C. pellucida �0.187ns 0.065ns 0.268ns

G. margarita �0.089ns 0.127ns 0.252ns

Sandy soil (Machanga) 18S rDNA 0.121ns 0.154ns 0.199ns

C. pellucida 0.459ns 0.505ns 0.464ns

C. claroideum 0.215ns 0.283ns 0.243ns

Abbreviations: TC: Total carbon, Nt: Total nitrogen, EOC: Extractable organic carbon, EON
phosphorus.
Significance levels: ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
Fusarium strain caused long lasting effects on the respective
fungal community.

T. diversifolia exhibited stronger effects on total fungal abun-
dance than ‘Foxy-2’. This was in accordance with recent findings by
Kamolmanit et al. (2013) and Lee et al. (2013) showing that higher
N availability in organic residues increased total fungal abundance
in soils in contrast to organic residues with low N availability or
mineral fertilizer. Our results were further substantiated by Poll
et al. (2010) and Espa~na et al. (2011) who confirmed that fast-
growing opportunistic fungi were stimulated by easily accessible
C sources and high N availability which corresponded to the
T. diversifolia effect observed in our study. According to the organic
input induced alterations of the fungal abundance, we found
similar responses of the fungal community composition, as sup-
ported by positive correlations between Shannon diversity indexes
with chemical soil properties (e.g., ammonia, Nt, EON). These
findings matched those of Yu et al. (2015) who suggested that the
soil microbial community composition is mainly structured by
physico-chemical soil characteristics including nutrient status.

5. Conclusions

The exclusion of non-target effects of introduced microbial BCAs
on the indigenous soil microbial community is essential for the
registration and commercialization of a BCA, such as ‘Foxy-2’. In the
current study, we evaluated the effects of the fungal BCA ‘Foxy-2’ on
the total indigenous soil fungal abundance and composition, as well
as fungal community members with proven beneficial functions
(i.e., AMF). A highlight of our study was the promoting effect of
‘Foxy-2’ on the AMF G. margarita, while the other two monitored
AMF taxa (i.e., C. pellucida, C. claroideum) remained unaffected.
Hence, no suppressive effects of ‘Foxy-2’ on these selected AMF are
to be expected when implementing ‘Foxy-2’ in the field as an
environmentally safe BCA.

Further research should emphasize the promoting effect of
‘Foxy-2’ on AMF G. margarita under long-term conditions, and
consider a broader variety of crops (i.e., sorghum) since several
AMF taxa show a high host specialization (Martínez-García and
Pugnaire, 2011). In this context, additional AMF taxa need to be
tested with respect to their compatibility with ‘Foxy-2’ empha-
sizing those AMF taxa with proven S. hermonthica suppression (i.e.,
G. clarum; Othira et al., 2012).

The present study was based on a short-term, controlled rhi-
zobox experiment and, hence, similar experiments should be con-
ducted under natural field conditions over a longer time period to
gain a more detailed insight into the ecological effects of ‘Foxy-2’.
These future experiments should account for relevant factors such
as crop variety and development, a broader range of fertilization
regimes and soil types, as well as seasonal characteristics including
rainfall and temperature patterns.
llucida, C. claroideum and G. margarita) and soil chemical data at 42 DAI.

EON [mg kg�1] NH4
þ [mg kg�1] NO3

� [mg kg�1] Pav [mg kg�1] Soil pH

0.109ns 0.398ns 0.062ns ¡0.649* 0.196ns

�0.040ns 0.392ns 0.223ns �0.409ns 0.080ns

0.031ns 0.420ns 0.180ns ¡0.634* 0.093ns

0.223ns 0.121ns 0.066ns �0.311ns 0.121ns

0.563* 0.257ns 0.043ns 0.069ns 0.404ns

0.307ns 0.159ns �0.016ns �0.103ns 0.198ns

: Extractable organic nitrogen, NH4þ: ammonia, NO3�: nitrate, Pav: Plant-available
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