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Therapeutic Advances in 
Musculoskeletal Disease

Introduction
Although cartilage degradation characterizes knee 
osteoarthritis (OA), this disease is now recog-
nized as heterogeneous and involves tissues of the 
whole joint. It engenders pain, reduces the quality 
of life and mobility, increases the risk of 

comorbidities, and often results in the need for 
joint replacement. OA is on the rise globally, with 
its prevalence increasing by about 113% from 
1990 to 2019.1 Such growth could reflect that it is 
not only older individuals affected by this disease 
but also younger individuals. This is evidenced by 
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the report showing that more than eight million 
knee OA patients in the United States are younger 
than 65 years old, including two million less than 
45 years old.2

Traditionally viewed as a disease characterized by 
a slow progression, recent work suggests a more 
nuanced model of the natural history of OA. 
Although its evolution could be slow and have a 
silent progression, the disease progression and 
severity could occur rapidly for some individu-
als.3–6 Yet, with the current tools, OA is usually 
diagnosed, at the earliest, at the moderate stages of 
the disease process when preventive measures are 
more complex for the patient to apply and, if so, 
often with limited success. The current approaches 
to early OA detection, which use demographic and 
clinical parameters with sometimes adjunct radi-
ography, are imperfect in providing a specific and 
sensitive diagnosis. It is believed that pre-sympto-
matic disease detection could be achieved by eval-
uating the deterioration and progression of the 
knee structure. It is, therefore, essential to visualize 
and quantify the knee tissues involved in the dis-
ease and their changes over time.

Biomarkers are an excellent option as they could 
be used early during the disease process – before 
serious joint damage. At present, a variety of fluid 
biomarkers have been proposed to detect knee 
OA.7,8 However, fluid biomarkers capable of pro-
viding an accurate early diagnosis or predicting 
disease progression still require further mining as 
the majority lack sensitivity and specificity for diag-
nosing, predicting, and monitoring the disease.

Joint imaging has attracted ever-growing atten-
tion in OA biomarker research. Different image 
modalities can be used to assess articular tissue, 
including, among others, ultrasound, radiogra-
phy, and magnetic resonance imaging (MRI). 
Although for some of these techniques, advan-
tages have been shown in one over another, their 
disadvantages limit their common use in explor-
ing the early changes in joint tissues.

Ultrasound is a non-invasive and easily accessible 
method that permits the visualization of the 
superficial soft tissue structures surrounding the 
knee, including tendons, ligaments, muscles, and 
synovial fluid. However, it does not allow visual-
izing cartilage damage, the cruciate ligament, as 
well as the entirety of the meniscus. In addition, it 
is highly operator dependent, which could induce 
bias.

Although regulatory agencies still recognize radi-
ography as the gold standard for disease-modify-
ing osteoarthritis drug (DMOAD) trials, it has 
many constraints that considerably limit its use. 
Among several significant limitations, this tech-
nique does not yield information on early OA or 
the cartilage itself but provides only one measure-
ment, that is, joint space width. Moreover, it does 
not allow for the visualization of many joint tis-
sues and has a weak sensitivity to change. Also, a 
large number of patients are required for an 
extended follow-up period to achieve reliable 
results in DMOAD trials.

MRI, in addition to permitting direct tissue visu-
alization of joint tissue structures, is non-invasive, 
objective, reproducible, sensitive to change, and 
quantitative knee tissues and their changes over 
time in the same patients can be determined reli-
ably. This technology also allows the detection of 
knee tissue alterations before radiographic evi-
dence, in which MRI may show disease manifes-
tations even with normal radiographs. Another 
advantage is that it can reveal the three-dimen-
sional (3D) structure of the knee joint tissues, 
thus providing a better interpretation of the OA 
condition with a more detailed structure of the 
knee. In short, this technology is an unbiased 
approach to the comprehensive profiling of knee 
structural markers.

In the first part, we will depict the MRI process-
ing approaches that allow visualization and quan-
tification of many knee articular tissues. 
Evaluating knee structures with MRI may pro-
vide a compelling alternative and could act as a 
sensor for disease determinants.

Predictive models/tools for an early diagnosis 
and prognosis are essential to guide clinicians by 
estimating a patient’s risk. In the past, develop-
ing a model/tool to predict early or progressive 
OA had been hindered by a lack of appropriate 
techniques for reducing and interpreting large 
volume and multidimensional OA data. Recently, 
artificial intelligence has been widely used in 
medicine and healthcare, and one of its main 
areas is machine/deep learning for data classifica-
tion, identifying patterns, and prediction. 
Machine learning refers to a series of mathemati-
cal algorithms inspired by the structure and func-
tion of the brain that enables the machine to 
‘learn’ the relationship between input/features 
and output/outcome data. Deep learning is a 
subfield of machine learning, and the term ‘deep’ 
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refers to the number of layers through which the 
data are transformed. Deep-learning-based mod-
els can be used in situations involving more than 
two classes. Such methodology has improved the 
ability to predict the risk of complex diseases, 
and models or algorithms have been developed 
for the diagnosis and prognosis of many condi-
tions. The last part of this review summarizes the 
research progress in predicting the early diagno-
sis and prognosis of knee OA using machine/
deep learning and MRI data.

MRI assessments enabling visualization  
and quantification of knee structures and 
their alterations
Although cartilage degradation is the hallmark of 
OA, it does not occur at an early stage of the dis-
ease process. Other knee tissue alterations pre-
cede the onset of radiographic knee OA.9–13 
Therefore, to diagnose early OA, we should be 
able to assess many tissues of the knee. MRI tech-
nology provides high-resolution images that 
detect soft tissues and osseous structures, allow-
ing their visualization. The MRI knee tissue eval-
uation methods include scoring and manual, 
semi-automated and fully automated quantitative 
systems. This section overviews the assessments 
used for different knee tissue segmentation, which 
have rendered possible the quantification of their 
alterations as well as change over time in the same 
patients. The knee tissues reviewed here included 
cartilage, bone marrow lesions (BMLs), bone 
shape/curvature, osteophytes, menisci, infrapatel-
lar fat pad, effusion/synovial membrane, muscle, 
and ligaments. Of note, MRI sequences and pro-
tocols are not described as this topic is beyond the 
aim of this review.

Semi-quantitative scoring assessment
Global knee.  The most used global knee MRI 
scoring techniques are the Whole-Organ MRI 
Score (WORMS),14 Boston Leeds Osteoarthritis 
Knee Score (BLOKS),15 MRI OsteoArthritis 
Knee Score (MOAKS),16 and Knee Osteoarthri-
tis Scoring System (KOSS).17 They all consider 
many features and regions of the knee, providing 
a global assessment of the articulation and a com-
prehensive evaluation of the knee lesions cross-
sectionally and longitudinally.

WORMS considers articular features such as car-
tilage, BMLs, osteophytes, meniscal as well as 

cruciate and collateral ligament damages, synovi-
tis/effusion, intra-articular loose bodies, and peri-
articular cysts/bursitis providing whole-organ 
multi-feature assessment. BLOKS evaluates 
BMLs, cartilage, osteophytes, synovitis, and effu-
sions in nine regions. The MOAKS system fur-
ther refines BML, cartilage, and meniscal 
morphology scoring. To detect longitudinal 
structural changes with higher sensitivity, ‘within-
grade’ scores have been introduced and used to 
record changes observed between time points 
that do not fulfil the original integer grading scale 
criteria.18 KOSS scores the presence of cartilagi-
nous and osteochondral defects, osteophytes, 
subchondral cysts, bone marrow oedema and 
meniscal abnormalities in different compart-
ments, as well as the presence and size of joint 
effusion, synovitis, and Baker’s cyst.

Single knee tissue.  There have also been scoring 
systems developed for a single knee tissue 
alteration.

Cartilage defects. The evaluation of cartilage 
defects mainly uses the modified Outerbridge 
classification at medial and lateral tibial and fem-
oral sites. Calculation is performed as the total 
of sub-regional scores.19 Cartilage is considered 
normal if it has a uniform thickness. Cartilage 
defects include focal blistering and intra-cartilag-
inous areas of low signal intensity, irregularities 
on the surface, and deep ulceration.

Bone marrow lesions.  BMLs are discrete 
areas of increased signal adjacent to the sub-
cortical bone at the medial and lateral tibial 
and femoral sites. A scoring method considers 
the percentage of a subregion affected by BMLs 
(lesion size).14,20

Two primary bone lesions were typically observed: 
a hazy hyper white signal named oedema and a 
white sharply delimited hyper signal called a cyst 
(Figure 1).

Bone oedema is described as swelling within the 
bone. It can result from either a direct injury to 
the bone or a load-bearing greater than what can 
be sustained by the bone. It can also be found 
secondary to an inflammatory bone injury. 
Indeed, the histopathology of oedema describes 
various alterations, namely hypervascularity,  
cellular infiltration, bone marrow bleeding,  
fibromyxomatous transformation, trabecular 

https://journals.sagepub.com/home/tab


Therapeutic Advances in 
Musculoskeletal Disease Volume 15

4	 journals.sagepub.com/home/tab

alterations, and microfractures.22 The cyst is a 
fluid-filled hole that develops inside a bone. It is 
identified as foci of a markedly increased MRI 
signal in the subchondral bone with well-deline-
ated margins and no evidence of internal marrow 
tissue.23 Generally, these structures (oedema and 
cyst) are both included in the scoring.

Meniscal alterations. The meniscus plays a 
critical role in shock absorption and is important 
in regulating load-bearing distribution. Altera-
tions of this tissue are associated with knee OA 
pathogenesis and include extrusion, tear, and 
degeneration (Figure 2).

The meniscal extrusion is a partial or total dis-
placement of the meniscus of the tibial plateau 
and the tibial articular cartilage. The extent or 
percentage of meniscal extrusion is evaluated for 
the anterior, body, and posterior horns of the 
menisci.24–26

Meniscal tears consist of vertical, radial, longitudi-
nal, vertical/horizontal flaps, and complex (combi-
nation of horizontal, vertical, and radial) tears 
extending to both femoral and tibial surfaces. 
Horizontal tears show a slightly oblique course 
extending out through the inferior surface of the 
meniscus, and complex tears are defined by a high 
signal that extends to three surfaces and three or 
more points.25 It is assessed based on the presence 
of a signal, which is line shaped and brighter than 
the dark meniscus. It reaches the meniscus surface 
at both ends within six defined regions (anterior 

horn, body, and posterior horn at both medial and 
lateral tibiofemoral compartments). Several grad-
ing systems were proposed to measure the degree 
of meniscal tears. These included the proportion 
of the tears in meniscal areas (anterior, middle, 
and posterior horns),24,25 intrameniscal signal,27,28 
index of suspicion,29 and signal intensity and mor-
phological abnormalities.30

Meniscal degeneration is defined as an abnormal 
intrasubstance of grey signal intensity on MRI in 
which the proportion of the overall meniscus is 
graded.24,25

Infrapatellar fat pad. The infrapatellar fat pad 
is recognized as an important key player in OA 
and was recently considered an early marker for 
this disease’s incidence and progression.12,13 In 
MRI, the infrapatellar fat pad structure appears 
hypointense with lower signal foci throughout the 
tissue. Scoring methods were developed for the 
infrapatellar fat pad signal intensity, in which two 
are measured, the hypointense and hyperintense 
signals. It has been suggested that the hypointense 
signal relates to fibrosis and the hyperintense to 
inflammation.31–33 Compared to the hyperintense 
signal, limited studies have examined the hypoin-
tense signal. For the latter, the method counted 
MRI slices only where this signal was present.34 
The hyperintense signal used mainly a scoring 
method included in the MOAKs16 and assessed 
as normal, mild, moderate, and severe. Another 
consists of a score from the percentage of signal 
intensity alteration in this tissue.35

Figure 1.  Subchondral bone oedema and cyst. (a) Subchondral bone oedema in the femoral condyle and (b) 
cyst in the patella in human osteoarthritis knees using 3D sagittal fast imaging with steady-state precession 
with fat suppression MRI sequence.
Reproduced from Raynauld et al.21 with permission from BMJ Publishing Group Ltd.
MRI, magnetic resonance imaging; 3D, three-dimensional.

https://journals.sagepub.com/home/tab


J Martel-Pelletier, P Paiement et al.

journals.sagepub.com/home/tab	 5

Effusion–synovitis.  Knee effusion is the pres-
ence of synovial fluid in the intra-articular space 
of the joint. The effusion–synovitis scoring is per-
formed in each subregion individually and esti-
mated based on the maximal distention of the 
synovial cavity.14,17 Another evaluation of the 
effusion–synovitis volume uses the suprapatellar 
pouch and other cavities according to the intra-
articular fluid-equivalent signal on an MRI, sec-
tion-by-section basis.36

Anterior cruciate ligament injury/tear. The 
anterior cruciate ligament (ACL) is one of the 
ligaments connecting the femur and tibia in the 
knee joint. It prevents anterior and posterior 
dislocation of the tibia and provides stability to 
the knee joint during rotation.37,38 It is the most 
injured major ligament of the knee, and, when 
injured, it induces a high risk of knee OA and 
tears in the meniscus and cartilage.39 Ligament 
tears are scored as normal, partial, or complete.40 
The normal ligament displays a uniform low sig-
nal intensity and is continuous from the starting 
to the ending points. Indistinct ligament struc-
tures, local signal enhancement, visible oedema, 
and joint effusion around the ligament character-
ize partial tears. Complete tears appear as discon-
tinuities or the disappearance of the ligament.

Quantitative techniques
While knee tissue scoring contributes to a better 
understanding of OA, it is time-consuming, based 
on ordinal scores, and requires expertise. 
Therefore, interest has grown in developing man-
ual, semi-automated, and fully automated quanti-
tative methods for several knee tissues.

Cartilage
Compositional MRI techniques.  Quantitative MRI 

parametric mapping methodologies were developed 
to detect early changes in the biophysical and biome-
chanical properties of the cartilage matrix.

Early cartilage modification includes increased 
water content, probably related to collagen damage 
and decreased glycosaminoglycan concentration 
and proteoglycan size. MRI modalities were devel-
oped to assess directly or indirectly this tissue’s gly-
cosaminoglycan, water content, and the integrity of 
the collagen matrix. These included the diffusion-
weighted imaging (DWI),41 diffusion tensor  
MRI (DT-MRI),42 glycosaminoglycan chemical 
exchange saturation transfer (gagCEST),43 delayed 
gadolinium-enhanced MRI (dGEMRIC),44 
sodium imaging,45, T1,46 T1ρ (or spin lock),47,48 
T2 (or transverse relaxation time) (Figure 3),49,50 
and T2*51 relaxation times.

Figure 2.  Meniscal pathologies.
Normal and different meniscal pathologies in human osteoarthritis knees using 3D sagittal fast imaging with steady-state 
precession with fat suppression MRI sequence.
Reproduced from Berthiaume et al.24 with permission from BMJ Publishing Group Ltd.
MRI, magnetic resonance imaging; 3D, three-dimensional.
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DWI is used for compositional cartilage assess-
ment that evaluates the altered diffusion time of 
water within cartilage, in which water is more 
mobile in damaged cartilage, resulting in 
decreased diffusion times. DT-MRI provides 
information regarding the microstructure of the 
tissue and its anisotropy by tracking the local 
mobility of the water molecules in the tissue, 
which is used for displaying cartilage collagen 
fibre orientation.52 The potential of the diffusion 
properties of cartilage using DWI and DT-MRI 
has been shown only in limited studies.42,53

The sodium content in cartilage is much higher 
than in the adjacent synovial fluid or bone, and 
quantitative sodium MRI has been shown to be 
highly specific for glycosaminoglycan content in 
cartilage.54

The gagCEST and dGEMRIC are used for pro-
teoglycans content measurement. However, 
experience in multicentre clinical trials is still lim-
ited for both sequences. For the dGEMRIC, this 
is probably because of the contrast enhancement 
that may lead to rare but potentially serious side 
effects, which has led to a warning from the U.S. 
Food and Drug Administration limiting its use.55 
The gagCEST is a technique based on the con-
stant transfer of labile protons between solutes 
and water in a slow exchange regime. For better 
spectral separation and performance, a 7-Tesla 

magnetic resonance apparatus is preferred over a 
3-Tesla, which has reduced sensitivity for granu-
lar assessment of very low glycosaminoglycan 
content. The challenge for multicenter clinical 
trials is that a 3-Telsa or lower field strength is 
generally used.

The most widely utilized quantitative MRI 
sequences to evaluate knee alterations are T1, 
T2, and T1ρ relaxation time.48,56–59 T1 relates to 
the measurement of the proteoglycan content, T2 
with collagen network organization and structure 
and is directly associated with free water content, 
whereas T1ρ is sensitive to proteoglycan varia-
tions.46,49,50,60–62 It is suggested that T1ρ is well 
suited to differentiate the cartilage structure of 
healthy subjects from early OA patients and 
appeared more sensitive than T2 relaxation 
times.63 T2* mapping provides more rapid acqui-
sitions than T2 mapping, and although it has the 
potential for superior spatial resolution, it is lim-
ited by the greater sensitivity of magnetic field 
inhomogeneity.51 Although they have good dis-
criminative validity, limitations for using these 
techniques in clinical trials include standardiza-
tion, in which inter-scanner variability is an 
important issue.64–66

In recent years, ultrashort echo time (UTE)-
magnetic resonance sequences have been tested 
for quantitative assessment of the cartilage. UTE 

Figure 3.  Cartilage T2 mapping. A representative T2 mapping assessment of the lateral (a) and medial (b) 
cartilage in a human osteoarthritis knee using a sagittal double echo steady-state MRI sequence for the 
cartilage delineation and a sagittal 2D multi-slice multi-echo MRI sequence for the cartilage assessment.
The colour overlay in the cartilage represents T2 values.
MRI, magnetic resonance imaging; 2D, two-dimensional.
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and UTE-T2* imaging mapping are quantitative 
techniques sensitive to changes in cartilage matrix 
architecture rather than composition.67,68 The 
combination of UTE-MRI with magnetization 
transfers (UTE-MT) and adiabatic T1ρ (UTE-
Adiab T1ρ) sequences69,70 allows the quantifica-
tion of the macromolecular content relative to 
water content in the tissue, supporting their poten-
tial for effective detection of cartilage degenera-
tion.71,72 However, the association of early changes 
in knee tissues and OA incidence and progression 
with these sequences is yet to be demonstrated.

Cartilage volume and thickness.  Quantitative 
systems were also developed for cartilage volume 
and average thickness.

A manual knee cartilage volume quantitation was 
done by drawing disarticulation contours around 
the cartilage boundaries on a section-by-section 
basis. The volume of the cartilage plate was deter-
mined by summing the pertinent voxels within 
the resultant binary volume.73 Such manual seg-
mentation is time-intensive and generally restric-
tive to analyse only some knee regions.

Semi-quantitative methods were also developed 
and used different modalities, including active 
contour and shape models,74–76 atlas-based mod-
els,77 B-spline snakes,78 graph cuts,79 k-nearest 
neighbor,80 and 3D Euclidean distance transfor-
mation.81 After MRI acquisition, the segmenta-
tion is performed using pre-processing (noise 

removal, normalization, etc.), followed by extract-
ing the cartilage surface and quantitative meas-
urement.81 Some of these systems first include 
segmenting the cartilage–synovial interfaces using 
a local coordinate system to map the correspond-
ing cartilage geometry over time.75,82–84 Then, 
there was a delimitation of the bone–cartilage 
interfaces followed by an automatic initial con-
tinuous contour using 3D surface edges extracted 
from adjacent magnetic resonance slices, a delin-
eation of the cartilage-soft tissue, and an auto-
matic contour process using a 2D/3D 
active-contour process (snake) (Figure 4).85 An 
active contour model-based method of segment-
ing the centre slice of consecutive MRI was pro-
posed to minimize user interaction.76 Also 
introduced were the gradient vector flow snakes,86 
embedding gradient directional information into 
the gradient vector flow snakes,87 and the chess-
board directional compensated gradient vector 
flow snakes.88

Fully automated segmentation was further devel-
oped using multi-atlas with local structural analy-
sis,89 rigid registration, and voxel classification,90 
or with label fusion techniques incorporating ani-
sotropic regularization.91 Other techniques include 
a multiregional segmentation method using fuzzy 
thresholding,92 a spatial gradient projection 
thresholding-based method to compute the sepa-
ration threshold based on two Gaussian distribu-
tion models defined for intensity level and texture 
homogeneity of bright and dark tissues,93 

Figure 4.  Cartilage delineation and 3D volumetric representation. (a) Femoral condyle and tibial plateau 
contour delineation were performed semi-automatically, showing the cartilage inner and outer boundary 
permitting this tissue volume/thickness assessment in a human osteoarthritis knee. MRI sequence was a 3D 
sagittal fast imaging with steady-state-free precession with fat suppression. (b) 3D volumetric representation 
of the lateral side of the knee articular domain.
MRI, magnetic resonance imaging; 3D, three-dimensional.
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supervised voxel classification,94,95 and 3D graph 
algorithms.96 Recent machine- and deep-learning 
advances in medical image analysis have led to a 
surge in knee cartilage automated segmentation 
development. Machine learning strategies used 
supervised learning methods to extract hand-
crafted features from expert knowledge to train a 
classification model for voxel label prediction 
with techniques such as random forest classifiers 
and the layered optimal graph image segmenta-
tion of multiple objects and surfaces framework,97 
and support vector machines and discriminative 
random fields.98 Deep learning allows learning 
from raw data features without requiring feature 
extraction techniques. The developed systems 
used a dynamic abnormality detection and pro-
gression framework,99 2D and 3D convolutional 
neural network (CNN) algorithms with/without 
U-Net and with/without an encoder and a decoder 
in combination with simplex deformable model-
ling100–106 or low-rank tensor-reconstructed seg-
mentation network.107 The role of the decoder 
network is to map the low-resolution encoder fea-
ture maps to full input resolution feature maps for 
pixel-wise classification. Recently, some consid-
ered that the deep-learning models cannot enforce 
multiscale spatial constraints directly in an end-
to-end training process and cannot capture carti-
lage structure features during the training of the 
network. Therefore, to solve such limitations, 
novel approaches were developed based on mix 
up and adversarial unsupervised domain adapta-
tion108 and a conditional generative adversarial 
network with U-Net.109 Furthermore, Yang 
et al.110 proposed integrating the transfer learning 
to a conditional generative adversarial network to 
better segment cartilage with heterogeneous MRI 
datasets.

Bone.  In knee tissue segmentation, bone localiza-
tion is an essential first step. Some tissues (e.g. 
cartilage, BML, meniscus, and muscles) rely on 
the precise localization of the bone surfaces for 
their segmentation.

Described first was the determination of the bone 
area of the tibial plateau, which was done manu-
ally by drawing individual contours around the 
target regions on a slice-by-slice basis.111,112 The 
volume of the bone was determined by summing 
all the pertinent voxels within the resultant binary 
volume.111 A shortcoming of this assessment is 
that it is operator dependent, allowing subjectiv-
ity which could lead to inconsistent results.

Semi-automated MRI bone segmentation was 
further developed and comprised mathematical 
morphology,113 texture level-set and shape infor-
mation with classification using the support vec-
tor machine,114 and watershed with markers.115

Fully automated segmentation included the dis-
tance-regularized level-set evolution method,116 a 
graph cut algorithm,117 phase information for tex-
ture feature-based classification,118 ray casting,119 
texture level-set and model fitting,120 and 3D active 
shape modelling and registration to an atlas.121

Some methods could segment only the femur, 
others both the femur and tibia. Moreover, some 
exclude the osteophytes and BMLs in their bone 
surface rendering as these alterations introduce 
imprecision of bone quantification. Also used are 
2D and 3D deep learning combined with statisti-
cal shape models and shape refinement post-pro-
cessing. Some segment only the femur and use 
random forest classifiers, U-net, and statistical 
shape models.122 Others segment both femur and 
tibia using a coarse-to-fine approach,123 a combi-
nation of statistical shape and CNN,124 multistage 
CNN,125 R-Net,126 SegNet and a 3D deformable 
model,101 U-net,127 and V-net.128

Bone changes
Bone marrow lesions.  BML quantitative 

evaluation can be done manually by measuring 
the greatest cross-sectional diameter of a BML 
throughout all knee subsections or by approxi-
mating the volume by calculating linear meas-
urements of each BML within a region.21,129,130 
Another solution used a manual selection of 
images containing the BML and manual masking 
of the region of interest.131

Semi-automated volumetric segmentation was 
also assessed by manually identifying the bounda-
ries of the tibia and femur, followed by automated 
segmentation of the BMLs within the tibial pla-
teau and femur regions using a region-based 
curve evolution algorithm combined with a 
thresholding approach.132

A fully automated quantification system was intro-
duced to evaluate the oedema and cyst assessed 
separately. This was performed by selecting struc-
tured bright areas corresponding to the BML, 
geometric filtering of unrelated structures, seg-
mentation of the BML, quantifying this structure 
proportion within bone regions and expressing it 
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as a percentage of the bone volume region.133 
Using the MRNet deep-learning framework, auto-
mated BML segmentation was also performed.134 
However, for the latter technique, the perfor-
mance of BML detection varied among different 
knee regions, in addition to not permitting the dis-
crimination between oedema and cyst.

Osteophytes.  Marginal osteophytes are bony 
outgrowths covered by fibrocartilage and devel-
oping at the margins of the articular surface. 
Although these structures are considered a char-
acteristic of OA and an important predictor of 
pain in knee OA,135,136 their exact role in the 
pathogenesis of OA is still under debate. Even 
though knee osteophyte assessment is mainly per-
formed using radiographs, quantitative methods 
were developed using MRI.

A semi-automated quantitative method was pro-
posed in which the plateau and femoral condyles 
are manually segmented. Then an edge detection 
algorithm automatically demarcates the bone 
edges in the region of interest. After delineating 
each osteophyte, their area is further calculated 
with a volume generation.137 This method is 
restricted to assessing the weight-bearing portion 
of the knee compartments, preventing any topo-
graphical analysis of osteophytes around the joint. 
To address this limitation, a fully automated 
method was developed to measure the volume 
and distribution of osteophytes in the tibia and 
femur using 3D segmentation in the knee’s 

peripheral and central (under the cartilage) 
regions.119 This method benefits from intermedi-
ate results of an automated bone segmentation 
which uses a ray casting technique in which the 
geometric characteristic of the osteophytes is 
assessed by direct subtraction of the measured 
bone surface, allowing compartmental and subre-
gional volume measurement of this structure 
(Figure 5).

Bone shape and curvature assessment.  Semi-
automatic models of bone shape quantification 
used distribution and texture-based active con-
tours,120,138 multi-atlas and multiphase Chan-
Vese models,139 thresholding, adaptive region 
growing and Bayesian classifications.140,141

Fully automated bone shape included active, sta-
tistical shape and appearance models.9,121,142–144 
Other methodologies included the bone shape 
vector145 and the subchondral bone length.146 
Yet, on the one hand, the bone shape vector was 
developed only for one bone, the femur, and 
included the osteophytes in its measurement, 
which may induce inaccuracy in bone shape 
measurement changes. On the other hand, the 
subchondral bone length segmentation used 
U-Net and 2D shape measurement, which char-
acterizes the degree of overlying bone flattening.

Finally, another automated and quantitative 
methodology assessed the bone curvature where 
two bone alterations are removed [peripheral 

Figure 5.  Osteophyte delineation and 3D volumetric representation. (a) Automatic femur osteophyte volumetry performed by 
geometric processing of the bone surface consisting of the difference between the surfaces of the bone (solid line) and the one 
without the osteophytes (dotted line) using a ray casting technique as in Dodin et al.119 The MRI sequence was a sagittal T1-weighted 
gradient echo fat suppressed. (b) 3D bone rendering showing central (solid arrow) and medial (dotted arrow) osteophytes.
MRI, magnetic resonance imaging; 3D, three-dimensional.
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osteophytes and BML (oedema and cysts)] while 
preserving the measured bone surface.11 The 
method used the cylindrical coordinate represen-
tation of the bone surfaces obtained by automatic 
bone segmentation,119 smoothed using a Gaussian 
filter and allowed for a computed curvature map 
(Figure 6).

Menisci.  Quantitative meniscus assessment was 
performed manually by segmenting the medial 
and lateral tibial plateau surface area using dedi-
cated image analysis software, followed by volume 
computation.25,147 In addition, Bloecker et  al. 
computed the width, height, and volume of the 
central part and the anterior and posterior menis-
cus horns and the relative area of the meniscus 
surface extruding the tibial plateau.147

Semi-automated methods used edge detection and 
thresholding methods with noise reduction func-
tion,148 or a thresholding and Gaussian fit model,149 
extreme learning machine and random forests,150 
fuzzy logic-based segmentation,151 and a region 
growing statistical segmentation algorithm.152

Fully automated methods were also developed 
for the meniscal volume, tibial coverage, and 
meniscal extrusion. These techniques utilize a 
learning machine-based segmentation and a dis-
criminative random field-based model,153 several 

intensity and position-based image features in 
combination with k-nearest neighbor classifica-
tion,90 and statistical and active shape models  
with a registration based on 2D and 3D images.154 
In recent years, CNN-based segmentation algo-
rithms were introduced. Some used U-Net archi-
tecture,155–157 a combination of CNN with or 
without statistical shape models,104,158 a 3D 
CNN and random forest classifier,159 or a condi-
tional generative adversarial network with 
U-Net.109 Although the 3D U-Net and the statis-
tical shape model-fitting produced high segmen-
tation accuracy for both the medial and lateral 
menisci, caution should be exercised when the 
3D CNN is used with the random forest as a 
decreasing performance in grading a high degree 
of meniscal damage could occur. Figure 7 repre-
sents a 3D rendering of the human knee’s bone 
and menisci.

The meniscal tear semi-automated methods were 
also presented based on a canny edge,160 a custom-
designed extraction and thresholding techniques,161 
an extreme learning machine and random for-
ests,162 a histogram-based method with edge detec-
tion filtering and statistical segmentation-based 
methods,163 morphological image processing appli-
cations of morphological constraints,164 and a type-
II fuzzy expert system together with a perception of 
neural network.165

Figure 6.  Bone curvature assessment.
Postero-distal view of the femoral condyle bone curvature assessment in a human osteoarthritis knee as in Raynauld et al.11 
The MRI sequence was a 3D sagittal fat-suppressed spoiled gradient recall with fat suppression (SPGR FS).
MRI, magnetic resonance imaging; 3D, three-dimensional.
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The meniscal myxoid degeneration was evaluated 
with an image analysis approach for the posterior 
horn of the medial meniscus using a custom-
developed algorithm.166

Infrapatellar fat pad.  The infrapatellar fat pad 
quantitative measurement used different method-
ologies in which the area, volume, hypointense and 
hyperintense signal, and texture were considered.

This tissue area measurement could be performed 
manually by drawing disarticulation contours 
around their boundaries, section by section; the 
maximal area is selected to represent the infrapa-
tellar fat pad size.167,168 Another manual assess-
ment involves tracing the fat boundary using 
image analysis software; the volume, size of the 
anterior and posterior surface area, and the mean 
thickness (depth) are computed using custom 
software.169,170

The semi-automated segmentation uses ITK-
SNAP software for manual tissue segmentation 
followed by a voxel intensity algorithm, which 
generates a 3D of the tissue and overall volumetric 
determination.171 A fully volumetric automated 
quantitative system employed a 3D CNN algo-
rithm, where a multi-atlas segmentation approach 

with U-net architecture implemented in the 
MxNet framework was applied (Figure 8).172

Quantification of the hyperintense signal was 
assessed using two semi-automated methods. 
Both manually delineate the infrapatellar fat pad 
contours using an improved canny edge-based 
algorithm173 or ITK-SNAP software for the tissue 
boundary and 3D voxel-based texture.174 Lu 
et al.173 utilized a region-growing algorithm taking 
into consideration the standard deviation of the 
whole infrapatellar fat pad signal intensity meas-
urement, the upper quartile value of high signal 
intensity, the ratio of the volume of high signal 
intensity alteration to the volume of the whole 
infrapatellar fat pad, and the clustering effect of 
high signal intensity. Li et al.174 developed a 3D 
voxel-based texture analysis that quantifies the 
anatomic and spatial signal alterations within the 
tissue. In all, 20 texture features were extracted 
for each volume of interest to quantify the spatial 
organization and heterogeneity of signal 

Figure 7.  3D rendering of the bone and menisci in a 
human knee.
MRI sequences were 3D double-echo steady-state and T2 
for the automatic segmentation of bone as in Dodin et al.119 
and menisci, respectively. Both sequences were acquired 
in the same exam and displayed together in the shared 3D 
coordinate system.
MRI, magnetic resonance imaging; 3D, three-dimensional.

Figure 8.  3D rendering of the infrapatellar fat pad.
The infrapatellar fat pad MRI sequence was a coronal intermediate weighted 2D 
turbo spin echo. The infrapatellar fat pad volume in a human osteoarthritis knee was 
assessed automatically using a CNN as in Bonakdari et al.172

CNN, convolutional neural network; MRI, magnetic resonance imaging; 3D, three-
dimensional.
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alterations within the tissue; texture maps could 
be visualized for clinical interpretation.

An automated quantification methodology was 
not reported for the hypointense signal. A possi-
ble explanation might be that the boundaries of 
the hypointense signal could be difficult to define 
and be misidentified as bone and tendons.

Synovial membrane thickness and fluid.  Quantita-
tive evaluation of the synovial membrane thick-
ness can be done using contrast-enhanced and 
non-contrast-enhanced MRI. However, as men-
tioned in a previous section, there has been a 
warning about using contrast-enhanced agents.

In contrast-enhanced MRI, semi-automated 
quantification of the synovial membrane volume 
was developed using a combination of a 2D shape 
mask (in-house program) with targeted thresh-
olding,175, Gaussian deconvolution,176 and a 
3D-model/mesh using an active appearance 
modelling.177

The extent of synovitis was also assessed using 
non-contrast MRI. It measured the synovial 
membrane thickness in four regions of interest: 
the medial and lateral articular recess and the 
medial and lateral border of the suprapatellar 
bursa (Figure 9).178

In comparing this methodology with a contrast-
enhanced MRI, data showed an excellent correla-
tion between these two methodologies (Figure 
10). However, the thickness of the synovial mem-
brane was higher with the non-contrast-enhanced 
MRI.

Also developed is a fully automated 3D system 
using non-contrast-enhanced MRI for knee syno-
vial volume quantification independent of the 
synovial membrane (Figure 11).179 The method 
includes intensity threshold techniques followed 
by dynamic threshold calculations, contrast anal-
ysis, repairing techniques, and volume calculation 
using a mesh model approach providing subvoxel 
precision.

Anterior cruciate ligament.  Manual segmentation 
of the ACL was first developed using finite ele-
ment analysis180 or by drawing the contours man-
ually.181 However, manual segmentation suffered 
intra- and inter-observer variability as ACL 
included challenging imaging characteristics such 
as adjacent soft tissues (posterior cruciate liga-
ment and cartilage), which share similar intensity 
distribution with the ACL, and inhomogeneous 
intensity regions inside the ACL, especially the 
region attached to the tibia.

Semi-automated segmentation was developed 
based on graph cuts with label and superpixel 
refinement,182 morphological operations, and the 
Chan-Vese active contour model.183

MRI-automated computer-aided diagnostic sys-
tems were also proposed based on deep-learning 
technology and classification using multiple CNN 
architectures for ACL tear detection. They used a 
CNN with DenseNet,184 MRNet,185 ResNet186, 
or three CNN operated as a fully automated end-
to-end network.187

Muscle.  With regard to the knee muscles, the 
quadriceps are the principal contributors to 

Figure 9.  Synovial membrane thickness determination. The chronological sequence of the synovial membrane thickness 
determination in a human osteoarthritis knee using an axial T2-weighted true fast imaging with steady-state precession and a 
T1-weighted in-phase-out-phase gradient echo MRI sequences. The dotted contours in (a), (b), and (c) indicate synovial fluid and/or 
membrane in the lateral recess, (d) the assessment domain of the synovial membrane, and (e) the assessment of the thickness of 
the synovial membrane in mm.
Reproduced from Pelletier et al.178 with permission from Elsevier.
MRI, magnetic resonance imaging.
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functional knee joint stability during ambulation, 
which is of great importance in the pathology of 
OA. One muscle comprising the quadriceps is the 
vastus medialis, which helps with knee extension. 
Thigh muscle deficits and accumulation of fatty 
infiltration are important pathophysiological 
events that can negatively influence functional and 
clinical knee OA outcomes (Figure 12).188–192

The vastus medialis muscle was segmented by 
manually drawing a contour along the muscle 
boundaries, and the area was computed from its 
number of pixels.190

Semi-automated segmentation of the areas of the 
thigh muscles, including the quadriceps, ham-
strings, adductors, sartorius, and vastus medialis, 
was done by manual segmentation of the contour 
along the muscle boundaries, and automated 
selection and quantification of the muscle area 
and fat content. Methodologies include an active 
shape model combined with an active contour 
model,193 discriminative random walks,194 an 
edge-detection algorithm,195 level set-based seg-
mentation,196 fuzzy c-mean algorithm and mor-
phological-based segmentation,197 simplex 
meshes,198 statistical shape atlas,199 threshold-
ing,200 and voxel classifier-based technology com-
bined with morphological operations.201

For the muscles, a fully automated segmentation 
employed a generalized log-ratio transformation, 
single and multi-atlas segmentation,202,203 and 
random walks.204 Recently, automated models for 
thigh muscle segmentation were developed with 
pre-trained deep-learning models and 2D U-Net 
architecture.192,205 The inter-muscular fat seg-
mentation and quantification were performed fol-
lowing the segmentation of the muscle, also using 
a fully automated system, and consisted of five 
stages, including filtering, threshold, and compu-
tation of the percentage of fat within the 
muscle.190

Perspective
The field of knee tissue segmentation using MRI 
is very dynamic, and methodologies are still being 
developed, especially with machine/deep learning. 
Appendix Table A1 summarizes MRI morpho-
logical measurement methodologies.

Generally, the first attempt to segment a knee tis-
sue is to proceed manually, which is time-con-
suming, operator dependent, and often with 

modest reproducibility. The latter could be due, 
in part, to the fact that some surrounding knee 
tissues lead to similar signals making 

Figure 10.  Synovial membrane thickness determination comparison 
between no contrast with contrast-enhanced.
The MRI sequences were an axial T2-weighted true fast imaging with steady-state 
precession and a T1-weighted in-phase-out-phase gradient echo as in Pelletier 
et al.178

MRI, magnetic resonance imaging.

Figure 11.  3D rendering of the synovial fluid.
The synovial fluid surrounding the femur and tibial plateau in a human osteoarthritis 
knee. MRI sequences were an axial T2-weighted true fast imaging with steady-state-
free precession and a T1-weighted in-phase-out-phase gradient echo. Reproduced 
with modification from Li et al.179 with permission from Springer Nature.
MRI, magnetic resonance imaging; 3D, three-dimensional.
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them difficult to discriminate, which increases 
intra- and inter-observer variability. Scholars next 
focused on developing semi-automatic methods, 
which many employed to boost the robustness of 
their developed systems, an initialization system 
applicable to different tissues, followed by regis-
tration. However, these systems still require some 
inputs or pre-processing from the user, which 
could lead to variability. Researchers have further 
looked to automate the knee tissue segmentation 
process, requiring minimal user input. Yet, no 
consensus exists on which approaches are most 
appropriate for segmenting a specific knee tissue. 
A major limitation of the conventional MRI 
methods is the need for a long scan time which 
could be of concern, particularly for large OA 
studies. A solution to accelerate MRI acquisition 
could be to perform under-sampled raw data, 
then post-processing the images using deep-
learning technologies and regenerating high-qual-
ity images.

The development of machine/deep-learning-
based methods has paved the way towards auto-
matic knee tissue segmentation, classification, and 
lesion detection. These methods were performed 
either as an individual segmentation or combined 
with other approaches, in which CNN algorithms, 
based or not on U-Net architecture (2D or 3D), 
are used. CNNs are specialized artificial neural 
networks that solve pattern recognition tasks via 
machine learning. It learns complex features by 
extracting visual features automatically. CNN, 
rather than receiving scalar input, receives matrix 
input such as images and allows the algorithms to 

know, from an individual image, the features auto-
matically through a hierarchy of multiple layers 
and numerous parameters and uses the knowledge 
for future analysis. Although deep learning-based 
methodologies demonstrated versatility and high 
segmentation accuracy and efficiency, some limi-
tations can be pointed out. First, a vast number of 
datasets is required to train the algorithm. 
However, when the network is established, it 
should be able to segment similar MRIs more 
readily and accurately. Second is the lack of large-
scale annotated medical images. Third, training 
CNNs using a limited number of labelled images 
can easily lead to overfitting. A possible solution is 
to pre-train the CNN from other medical image 
modalities and then fine-tune it on the studied 
images. Fourth, the system can lack discarding 
outliers, outlining the areas of low contrast, or 
imaging artefacts during segmentation, which may 
result in inaccuracies of interpretation. Fifth, 
although U-Net architecture is a breakthrough in 
MRI segmentation, the networks may perform 
poorly in segmenting tissue edges when blurred or 
have low contrast with surrounding tissues. This 
may be due to the lack of sufficient edge informa-
tion. Finally, the developed CNNs that automati-
cally detect many knee structure pathologies were 
performed mainly on a homogeneous cohort and 
were not often validated with an external OA 
cohort.

However, although there are still limitations with 
the machine/deep-learning methodologies for 
knee MRI segmentation, their usage has offered 
automated and high-efficiency modelling without 
requiring any conventional high computational 
spatial structure modelling.

Prediction of knee osteoarthritis diagnosis 
and prognosis using machine/deep-learning 
methodologies and MRI data
Artificial intelligence techniques have become effi-
cient tools for modelling complex systems and 
prediction phenomena for medical decisions and 
treatments. Such procedures can be significant for 
predicting early OA diagnosis and prognosis, as it 
is impossible to make such a robust forecast with 
the current assessment of OA. Machine and deep-
learning methodologies can process highly com-
plex, multidimensional, and large amounts of 
data. These methodologies are based on algo-
rithms designed to deal with uncertainty and 
imprecision, typically found in OA datasets. 
Machine/deep-learning methodologies are 

Figure 12.  Quadriceps of a human osteoarthritis knee.
The MRI sequence was a 3D sagittal spoiled gradient recalled acquisition in the 
steady state (SPGR) with fat suppression reconstructed in the axial plane.
MRI, magnetic resonance imaging; 3D, three-dimensional.
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explorative as they search out the data first, are 
knowledge-intensive, and can identify meaningful 
relationships between raw data, discover novel 
patterns, and predict a given outcome. In addi-
tion, such methodologies allow the processing of 
vast amounts of data at incredible speed, outper-
forming humans in terms of accuracy. Prediction 
models are developed using inputs or features and 
require an output or outcome, which is the goal of 
the study. This results in a model (a code or an 
algorithm) predicting a given patient’s outcome. A 
workflow of supervised machine learning predic-
tion models in OA is described in Figure 13.

In OA, when predicting the incidence or progres-
sion of the disease using machine/deep learning, 
the inputs are generally selected at the baseline, 
and the outcome relates to the disease status 
change. The most used inputs are pain and radio-
graphic variables, and recently MRI. MRI mark-
ers have emerged as excellent quantitative 
parameters for assessing early knee tissue mor-
phological changes in addition to other markers 
such as fluid biomarkers as well as several patients 
features including clinical, demographic, risk fac-
tors, ethnicity, environmental, nutritional, pro-
tein, metabolomic and genetic factors, to name a 
few. Adding MRI data as input to build a predic-
tion model has improved the identification of 
knee OA structural progressors.206–208

Diagnosis of knee osteoarthritis incidence
In recent years, models have been developed to 
predict knee OA incidence/risk using machine/
deep learning and MRI variables.

Ashinsky et al.209 built a machine learning algo-
rithm based on inherent MRI texture and inten-
sity information using the weighted neighbour 
distance and compound hierarchy algorithms, 
enabling the classification of asymptomatic indi-
viduals that will progress to symptomatic OA, 
defined as a change in the Western Ontario and 
McMaster Universities Arthritis (WOMAC) total 
score higher than 10 points at 36 months from the 
baseline with an area under the receiver operating 
characteristic curve (AUC 0.75). The best pre-
dictive inputs were the central weight-bearing 
cartilage slices within the medial femoral condyles 
as segmented using the MRI T2-weighted images.

Lazzarini et al.210 developed, using machine learn-
ing ranked guided iterative feature elimination 
and random forest algorithms, models having 5–8 

variables (AUC  ⩾ 0.73) that predict the 30-month 
incidence of knee OA in overweight middle-aged 
women without knee OA at baseline. The baseline 
variables include demographics, menopausal sta-
tus, knee complaints, physical activity level, qual-
ity of life, nutritional intake, knee injury, OA 
outcome score questionnaire, imaging markers 
(radiographs and MRI knee scoring), physical 
examination, and biochemical markers from 
serum and urine. The best performing model 
(AUC ⩾ 0.82) was reached with the Kellgren–
Lawrence OA incidence as the outcome, with the 
features being body mass index, haemoglobin 
A1c, presence of OA on MRI, grinding/clicking 
sound when moving the knee, and the frequency 
of eating apples and pears/week.

Using random forests with classical cartilage T2 
feature extraction using principal component (i.e. 
describing a specific relaxometry pattern) and 
demographic features for predicting radiographic 
knee OA (Kellgren–Lawrence ⩾ 2), Pedoia 
et al.103 yielded an AUC 0.78. Each T2 map was 
decomposed into a linear combination of that 
pattern. The estimated coefficients of principal 
components represent the level of deviation from 
the mean relaxometry patterns over all samples. 
The best variables included the first 10 principal 
components in the overall T2 maps, as well as 
age, gender, body mass index, and the Knee 
Injury and Osteoarthritis Outcome Score (KOOS) 
pain score. Comparison of cartilage T2 mapping 
with deep learning densely connected CNN 
showed an improvement (AUC 0.83) when using 
the latter methodology.

Kundu et al.211 developed an OA detection of car-
tilage alteration model in healthy individuals 
36 months before symptoms, as determined by a 
change in total WOMAC score. They used 
T2-weighted imaging combined with a 3D mass 
transport with statistical pattern recognition. 
Automated identification of individuals from pre-
symptomatic to symptomatic OA after 36 months 
using cartilage texture maps is achieved with an 
AUC 0.78. The early biochemical patterns of fis-
suring in cartilage define the future onset of OA.

Recently, a radiomic approach was taken to dis-
tinguish knees without and with OA by evaluating 
quantitative MRI features of the bone, such as 
intensity, geometric shape, and texture.212 This 
study was performed with machine learning elas-
tic net and semi-automatically extracted MRI-
based radiomic features from the tibial bone. 
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Data showed that the highest models discriminat-
ing knees without and with OA were obtained 
with the (i) 3D volumes of six bone regions 
(medial and lateral subchondral bone, mid-part 
of medial and lateral compartments, and medial 
and lateral trabecular bone) in addition to the 
covariates age and body mass index, with an AUC 
0.68, and (ii) volumes from the medial subchon-
dral bone and mid-part with the covariates, age 
and body mass index, with the AUC 0.80.

Hu et  al.213 employed a deep-learning model 
(image super-resolution algorithm based on an 
improved multiscale comprehensive residual net-
work) combined with an MRI sequence to evalu-
ate the cartilage injury in knee OA as evaluated by 
arthroscopy (outcome, injury grades I–IV). 
Compared to the different MRI sequences 
(T1-weighted, proton density-weighted with fat 
saturation (PDWI-FS), coronal PDWI-FS, axial 
T2-weighted, T2, T2*, and T1), the 3D sagittal 
double-echo stable water excitation was the best 

MRI sequence with AUCs 0.85, 0.72, 0.85, and 
0.97 for grades I, II, III, and IV lesions, respec-
tively. Moreover, the 3D sagittal double-echo sta-
ble water excitation and T2* mapping sequences 
demonstrated a strong consistency with the dif-
ferent degrees of arthroscopy with Kappa 0.75 
and 0.68, respectively.

Joseph et al.208 proposed a machine learning pre-
diction model using the extreme gradient boost-
ing technique for incident radiographic OA over 
8 years. The variables comprise MRI-based carti-
lage biochemical composition evaluated with 
T2-weighted sequence and knee joint structure, 
demographics and clinical features, including 
muscle strength and symptoms. The outcome 
was Kellgren–Lawrence grades 2–4 in the right 
knee over 8 years. A model consisting of 10 vari-
ables which included MRI data [chair stand time, 
age, medial femur cartilage T2, maximum menis-
cus WORMS score, knee muscle extension 
strength, systolic blood pressure, mean cartilage 

Figure 13.  General workflow of supervised machine learning prediction models in osteoarthritis.
Prediction models are developed using inputs/features and an output/outcome, which is the goal of the study. After 
acquisition and storage in a usable database, there is data exploration and selection of the best machine learning 
algorithms. The data are then separated randomly into training and testing sets. The training data are used in conjunction 
with the chosen machine learning methodology to train or fit the parameters for developing a model with the most highly 
correlated features with the output. A model is then created, producing a prediction that can be adjusted. The testing dataset 
tests the model’s performance, providing an unbiased evaluation. The performance is evaluated with different prediction 
metrics such as accuracy, sensitivity, and specificity. A validation step is further performed to assess the reproducibility of 
the dataset and avoid unfitting. This could be done, for example, by k-fold cross-validation and/or using an external dataset; 
the latter is strongly recommended for the generalization of the model.
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T2 (in all regions), maximum cartilage WORMS 
score, WOMAC pain score, and body mass 
index] demonstrated the better accuracy (AUC 
0.77) than a model without imaging parameters 
(AUC 0.67).

Prognosis of knee osteoarthritis progressive 
disease severity
It is of inherent interest to identify, at an earlier 
stage, OA patients with a high probability of 
structural progressive disease severity. Early dis-
crimination of such patients represents a unique 
window of opportunity to intervene before more 
severe degradation. Delayed management of 
these patients could lead to more joint destruc-
tion, impaired quality of life, and a worse global 
response to treatment. To address this issue, 
prognosis models were performed using machine/
deep learning based on a combination of baseline 
imaging and patient parameters to distinguish 
individuals with a high risk of progressive struc-
tural disease. Some of these models utilized MRI 
data as the outcome and the input.

Hafezi-Nejad et al.214 applied multivariate logistic 
regression and multi-layer perceptron models to 
evaluate the role of lateral femoral cartilage vol-
ume (as assessed by MRI) and interval changes 
with the prediction of the medial compartment 
joint space loss progression (>0.7 mm) during 
24–48 months. Results revealed that the lateral 
femoral cartilage volume is the most important 
determining factor for predicting medial joint 
space loss progression at baseline (AUC 0.63) 
and 24-month change (AUC 0.67).

Du et al.215 explored the hidden cartilage biomed-
ical information in MRIs. They used a cartilage 
biomarker previously developed and named the 
cartilage damage index.216 This index was 
assessed on 3D MRIs using scale responsiveness 
of cartilage thickness with information computed 
from 36 locations on the tibiofemoral cartilage 
compartment. Using data mining (principal com-
ponent analysis), machine learning (artificial neu-
ral network, support vector machine, random 
forest, and naïve Bayes), and the cartilage damage 
index, they could predict the change over 2 years 
of Kellgren–Lawrence grade and joint space nar-
rowing on the medial and lateral compartment 
with AUC ⩾ 0.70.

MacKay et  al.217 assessed if MRI subchondral 
bone texture changes using the radiomic approach 

predicted knee OA progression as defined by a 
decrease in minimal joint space width ⩾0.7 mm 
over 36 months and the follow-up to 72 months. 
Changes in MRI subchondral bone texture were 
significant predictors of radiographic progression, 
with a c-statistic of 0.65 for the change between 
baseline and 36 months and a slightly better pre-
dictive performance (0.68) for the change 
between 36 and 72 months when tibial and femo-
ral data were combined.

By considering demographics, MRI, and biochemical 
variables and the machine learning distance-weighted 
discrimination, direction-projection-permutation, 
and clustering, Nelson et  al.207 discriminated 
baseline variables that contribute to radiographic 
progression (joint space narrowing ⩾0.7 mm) and 
symptoms (WOMAC pain score increase 
⩾9 points) at 48 months. Their objective was to 
define the progression of OA phenotypes poten-
tially more responsive to interventions. MRI-
based variables were the most significant 
contributors to the separation of progressors and 
non-progressors (z = 10.1) at baseline compared 
to demographic/clinical or biochemical markers 
alone. The variables included BMLs, osteo-
phytes, medial meniscal extrusion, and the fluid 
biomarker urine C-terminal crosslinked telopep-
tide type II collagen for the progressive partici-
pants, and WOMAC pain score, lateral meniscal 
extrusion, and serum N-terminal propeptide of 
collagen IIA for the non-progressive ones.

Jamshidi et al.218 used common and uncommon 
baseline variables, including, among others, radi-
ographic and MRI as inputs. This study employed 
six machine learning techniques (least absolute 
shrinkage and selection operator, elastic net regu-
larization, gradient boosting machine, random 
forest, information gain, and multi-layer percep-
tron) to generate a class label algorithm enabling 
the discrimination of knee structural progressors 
from non-progressors. The most important base-
line variables were the medial minimum joint 
space width, MRI-based mean cartilage thickness 
of peripheral, medial, and central tibial plateau, 
and medial joint space narrowing as a score. The 
outcomes were the joint space narrowing ⩾1 mm 
at 48 months and the cartilage volume loss as 
evaluated by MRI at 96 months with AUCs of 
0.92 and 0.73, respectively.

Using the above-mentioned Jamshidi et al. class 
label,218 Bonakdari et  al.219 further developed a 
gender-based model that bridges major OA risk 
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factors and serum levels of adipokines/related 
inflammatory factors at baseline. Five machine 
learning techniques were evaluated (k-nearest 
neighbor, random forest, decision tree, extreme 
learning machine, and support vector machine). 
The support vector machine was used for the 
model development of OA structural progressors. 
Feature selections revealed that the combination 
of two risk factors, age and body mass index, and 
the two ratios C-reactive protein/monocyte chem-
oattractant protein-1 and leptin/C-reactive pro-
tein are the most important variables in predicting 
OA structural progressors in both genders with 
AUC ⩾ 0.81.

Schiratti et  al.220 developed a proof-of-concept 
predictive model for OA progression defined as 
minimum JSN at 12 months ⩽0.5 mm using a 
supervised deep-learning method and MRI as 
input. The generated heatmaps using a gradient-
weighted class activation mapping method high-
light the medial joint space as a relevant and 
important region in the knee (AUC 0.63). Further 
analyses were conducted to predict pain evalu-
ated by WOMAC using MRI and clinical data at 
the same visit with an AUC 0.72 for pain predic-
tion (WOMAC pain score ⩾2 points) in which 
the intra-articular space and effusion–synovitis 
were the most important.

Bonakdari et al.221 built a gender-based predictive 
model of cartilage volume loss at 1 year. This 
study was motivated by the fact that although car-
tilage degradation is the hallmark of OA, other 
knee structures were shown to precede this knee 
tissue alteration, one of which is bone curvature.11  
The inputs were eight baseline bone curvatures 
(lateral and medial trochlea, central and posterior 
condyles, and tibial plateau), as evaluated by 
MRI, in addition to two risk factors (age and 
body mass index). The outcomes included 12 
regions of cartilage volume loss at 1 year (global 
knee, femur, condyle, tibial plateau; lateral com-
partment, femur, condyle, tibial plateau; medial 
compartment, femur condyle, and tibial plateau). 
Five machine learning techniques were evaluated 
(random forest, M5Rules, M5P, multi-layer per-
ceptron and the adaptive neuro-fuzzy inference 
system) to select the inputs. The adaptive neuro-
fuzzy inference system was used for the model-
ling. The gender-based model included five bone 
curvature regions at baseline (lateral tibial pla-
teau, medial central condyle, lateral posterior 
condyle, and lateral and medial trochlea) to ena-
ble the prediction of the above-mentioned 12 

global and regional cartilage volume loss at 1 year 
with AUC ⩾0.79 for both genders.

Recent years have seen an increase in OA genomic 
studies looking for genes and their role and inter-
play with OA. It is becoming apparent that many 
of them, when alone, demonstrate a small effect 
size, when combined, could contribute to the risk, 
development, and progression of the disease. A 
recent study by Bonakdari et  al.222 evaluates 
whether eight single nucleotide polymorphism 
genes (TP63, FTO, GNL3, DUS4L, GDF5, 
SUPT3H, MC2FL, and TGFA) and mitochon-
drial DNA haplogroups (H, J, T, Uk, and others) 
and clusters (HV, TJ, KU, and C-others), in addi-
tion to two risk factors (age and body mass index), 
could predict early knee OA structural progres-
sors. The Jamshidi et al.218 class label was used to 
discriminate knee structural progressors from 
non-progressors. Seven machine learning tech-
niques (single algorithm support vector machine, 
k-nearest neighbor, random forest, decision tree, 
extreme learning machine, the hybrid self-adap-
tive extreme learning machine, and a combination 
of decision tree and self-adaptive extreme learning 
machine) were evaluated, and the support vector 
machine was used to develop the models. Two 
gender-based models could predict with high 
accuracy structural progressive knee OA and con-
sist of (i) age, body mass index, TP63, DUS4L, 
GDF5, FTO (AUC 0.85), and (ii) age, body mass 
index, mitochondrial DNA haplogroup, FTO, 
SUPT3H (AUC 0.83).

Prediction of knee replacement
Also developed were models in which the total 
knee replacement was used to predict the risk of 
progression. Although models using MRI in pre-
dicting total knee replacement have a limited his-
tory, below are the developed models.

Using deep-learning 3D densely connected con-
volutional network-121 CNN and logistic regres-
sion, Tolpadi et al.223 created a model enabling the 
prediction of the risk of total knee replacement 
within 5 years using MRI in which the medial 
patellar retinaculum, gastrocnemius tendon, and 
plantaris muscle were the most important identi-
fied in addition to clinical and demographic infor-
mation (integrated model, AUC 0.83). The 
clinical and demographic information fed into the 
model includes age, body mass index, education, 
ethnicity, income, nonsteroidal anti-inflammatory 
drug usage, analgesics usage, systolic blood 
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pressure, considering total knee replacement, 
physical activity scale for the elderly, KOOS qual-
ity of life and pain scores, as well as WOMAC 
pain and disability scores. Importantly, the model 
could also predict the risk of total knee replace-
ment in patients without OA at baseline with an 
AUC 0.94. Also shown is the increased perfor-
mance of 3D MRIs than 2D radiographs (inte-
grated model, no-OA, AUCs MRI 0.94 and X-ray 
0.80; severe OA, MRI 0.73 and X-ray 0.64), sug-
gesting MRI has a role in total knee replacement 
risk screening.

In a study including standard and uncommon vari-
ables such as image-based features and using seven 
machine learning techniques (Cox-PH, deep feed-
forward neural network, linear multi-task logistic 
regression, neural linear multi-task logistic regres-
sion, random forest, support vector machine, and 
kernel support vector machine), Jamshidi et al.224 
built a prediction model for estimation time to 
total knee replacement for OA. The final model 
developed with the deep feed-forward neural net-
work revealed that 10 variables were the most 
important to predicting risk and time to total knee 
replacement (BML in the medial condyle, hyalu-
ronic acid injection, performance measure, medi-
cal history, five radiographic measurements, and 
knee-related symptoms) with AUC 0.87. Further 
analysis demonstrated that the model could be 
reduced to only three variables (presence of BMLs 
in the medial condyle, Kellgren–Lawrence grade, 
and knee symptoms) with a comparable prediction 
outcome (AUC 0.86). In addition, the model 
allows the possibility to predict with a high degree 
of certainty (AUC 0.86) that the OA patient will 
progress fast towards knee replacement.

Perspective
Studies have shown that incorporating MRI data 
with other markers improves the accuracy of 
machine/deep-learning prediction models. Using, 
among others, MRI markers as inputs and/or an 
outcome, early knee OA prediction or prognosis 
could be achieved for some models with great 
accuracy. Appendix Table A2 summarizes the 
models performed with machine/deep learning, 
which include MRI data for early OA diagnosis 
and prognostic predictions.

A limitation of such predictive models is that not 
all imaging-based variables and other biomarkers 
and parameters included in many developed 
models are easy to obtain in clinical practices.

Moreover, there are nuances in MRI data collec-
tion. For example, knee images are acquired 
using different protocols, imaging grading has 
various definitions, and symptom and knee struc-
ture assessments can be done in many ways. Data 
harmonization and standardization are important 
and should be prioritized in future years.

Another limitation could be that, to date, several 
OA prediction studies use the same few cohorts 
to build their models. The major ones utilized are 
the Osteoarthritis Initiative and the Multicenter 
Osteoarthritis Study. To have a larger sample size 
in addition to more parameters, an option could 
be to combine datasets from different cohorts, 
which could improve the prediction models. 
Moreover, population-based cohort studies with 
healthy individuals and those who had not yet 
developed OA but are at risk at their enrolment 
would allow the investigation of temporal rela-
tionships of the different features of those who 
will develop the disease. In addition, such a pop-
ulation-based cohort could provide highly valua-
ble reference datasets by generating data from 
healthy individuals.

Another weakness of the prediction models is that 
validation is often performed within the dataset 
used for the modelling. Although required for 
model generalizations, only a few studies report 
validation with external and/or clinical trial data.

Defining outcomes for progressive OA is chal-
lenging as this disease is heterogeneous and mul-
tifactorial. The next step in prediction could be to 
look for the validity and behaviour of the out-
comes used for OA rapid structural progression 
from different OA phenotypes.

Conclusion
This article reviews the MRI approaches devel-
oped for knee tissue segmentation and prediction 
models using machine/deep learning and MRI 
data for early OA diagnosis and prognosis. A vari-
ety of methodologies have been proposed for knee 
OA segmentation. Still, the advancement of 
machine/deep-learning methodologies, and espe-
cially CNN, has yielded faster and improved effi-
ciency and automation for OA knee applications. 
The main disadvantage of machine/deep method-
ologies is their requirement for large datasets to be 
trained. The decision process is also frequently 
considered a black box, making it difficult to char-
acterize. Nevertheless, machine/deep-learning 
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CNN approaches have revolutionized knee MRI 
image recognition and segmentation and provided 
ground-breaking results in OA structural predic-
tion. These technologies, combined with OA MRI 
and other parameters, have also been a catalyst for 
developing patient-specific structural prediction 
models, with the vision of integrating these mod-
els into clinical practice for precision medicine.

The standard of care for OA, based on non-phar-
macological and symptomatic pharmacological 
treatments, has shown a limited effect on function 
and pain in addition to the first-line medications 
having a range of unwanted side effects and 
increased comorbidities. It is, therefore, impor-
tant that we could detect early individuals at risk 
of developing OA. This could not be done by the 
current diagnosis parameters used in clinics, 
standard routine blood tests, or standard radio-
graphs. Moreover, the current classification of 
knee OA under the present guidelines from, for 
example, the American College of Rheumatology, 
the European Alliance of Associations for 
Rheumatology, Osteoarthritis Research Society 
International identified individuals that already 
have significant structural joint damage. To 
address the problem of early diagnosis of OA 
patients, it is believed that early-stage knee OA 
classification should be constructed based on the 
knee articular structure itself. In this line of 
thought, MRI has proved invaluable by allowing 
the tissue morphology to be visualized and quan-
titated, and their early changes followed and 
quantitated over time on the same patient.

Clinicians should be able to predict the disease 
progression or at least individuals who will be 
confronted with rapid knee progressive structural 
damages ahead of the emergence of clinical fea-
tures. This is important for a personalized thera-
peutic approach. Such early predictive models 
will allow the clinician not to be bewildered by the 
many secondary and confounding factors as in 
the advanced disease, which increases the com-
plexity of the disease process, its manifestations 
and treatment.

Moreover, it could also assist the development of 
DMOADs. Hence to date, the unsuccessfulness 
in developing such drugs is due, in large part, to 
the recruitment of OA individuals having signifi-
cant differences in the progression of articular tis-
sue degradation in which the majority will not be 
progressive during the timeframe of the clinical 

study or are at a late stage. Therefore, the OA 
heterogeneous evolution in a broad population 
makes it challenging to attain in a clinical trial the 
statistical power for the effectiveness of DMOAD.

The presented findings in this review support the 
prospects of using algorithms/models in patient-
specific to early diagnosis/prognosis prediction of 
individuals. However, for these models to be 
available to healthcare professionals, democrati-
zation through the development of available 
applications will allow for broader use. Future 
efforts should be made to integrate prediction 
models into open space, enabling early disease 
management to prevent or delay the OA out-
come. These technological advances, in concert 
with changing the mindset of clinicians, can facili-
tate the early personalized management of OA 
care.
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Appendix

Table A1.  Magnetic resonance imaging knee tissue segmentation methodologies.

Semi-quantitative Quantitative

  Scoring Manual Semi-automated Fully automated

Global knee •• WORMS14  

  •• BLOKS15  

  •• MOAKS16  

  •• KOSS17  

Cartilage

  Defect •• Modified 
Outerbridge 
classification19

 

 � Compositional 
MRI 
techniques

•• DWI (water)41 and DTI42  

  •• gagCEST (water, PGs)43

  •• dGEMRIC (GAGs, PGs)44

  •• Sodium MRI (GAGs)45

  •• T1 mapping (PGs)46

  •• T1rho mapping (PGs)47,48

  •• T2 and T2* mapping49–51

  •• UTE and UTE-T2*67,68

  •• UTE-MT and UTE-Adiab 
T1ρ69,70

 � Volume/
thickness

•• Drawing contour73 •• Active contour74–76 •• Deep learning dynamic abnormality 
detection and progression 
framework,99 2D or 3D100,101,103 and/
or 3D CNN algorithms with/without 
U-Net and encoder/decoder,102,104–107 
conditional generative adversarial 
network108 with U-Net,109 or 
integrated transfer learning110

  •• Atlas models77

  •• B-spline snakes78

  •• Graph cuts79

  •• Gradient vector flow 
snakes86–88

  •• k-nearest neighbor80

  •• 3D Euclidean distance 
transformation81

•• Machine learning techniques: 
LOGISMOS,97 support vector machine 
and discriminative random field98

  •• Multi-atlas89–91

  •• Multiregional segmentation with 
fuzzy thresholding92

(Continued)
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Semi-quantitative Quantitative

  Scoring Manual Semi-automated Fully automated

  •• Spatial gradient projection 
thresholding and texture analysis93

  •• Supervised voxel classification94,95

  •• 3D graph algorithm96

Bone •• Area: drawing 
contour111,112

•• Volume: summation 
of slices111

•• Mathematical 
morphology113

•• Distance-regularized level-set 
evolution116

  •• Texture level set, shape 
information, classification 
with support vector 
machine114

•• Watershed transform with 
markers115

•• Graph cut algorithm117

  •• Texture, feature classification118

  •• Ray casting119

  •• Texture level set and model fitting120

  •• 2D and 3D deep learning: coarse-to-
fine-approach,123 statistical shape 
and CNN,124 multistage CNN,125 
R-net,126 SegNet and a 3D deformable 
model,101 U-net,127 V-net.128 Femur 
only: random forest classifier, U-net, 
and statistical shape models122

•• 3D active shape models121

Bone marrow 
lesions

•• % subregion 
affected14,20

•• Cross-sectional 
diameter or 
volume: linear 
measurements21,129,130

•• Manual selection and 
masking131

•• Region-based curve 
evolution algorithm and 
thresholding132

•• Geometric filtering133

•• MRNet deep learning134

Osteophytes •• Edge detection137 •• Ray casting and geometric 
characteristic119

Shape and 
curvature

•• Distribution and texture 
active contours120,138

•• Multi-atlas and multi-
phase Chan-Vese models139

•• Thresholding and 
adaptive region 
growing and Bayesian 
classifications140,141

•• Active and statistical shape & 
appearance models.9,121,142–144

•• Bone curvature11: cylindrical 
coordinate and ray casting119

•• Bone shape vector145

•• Subchondral bone length146

Table A1.  (Continued)
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Semi-quantitative Quantitative

  Scoring Manual Semi-automated Fully automated

Meniscal alteration

 � Volume and/or 
extrusion

•• % meniscal area 
extrusion24–26

•• Manual drawing and 
volume quantification 
using PACS25

•• Manual segmentation: 
area, volume, and 
extrusion147

•• Edge detection and 
thresholding with noise 
reduction,148 thresholding 
and Gaussian fit model149

•• Extreme machine learning 
and random forest150

•• Fuzzy rule approach151

•• Region growing using 
statistical segmentation152

•• 2D and 3D CNN using U-Net,155–157 
conditional generative adversarial 
network with U-Net,109 random 
forest classifier,159 and with/without 
statistical shape104,158

•• Learning machine and 
discriminative random field153

•• Intensity and position-based 
images with k-nearest neighbor 
classification90

•• Statistical and active shape, 
registration based for 2D and 3D 
images154

  Tear •• Meniscal tears 
proportion24,25

•• Intrameniscal 
signal27,28

•• Index of suspicion29

•• Signal intensity 
and morphological 
abnormalities30

•• Canny edge algorithm160

•• Custom-designed 
extraction and 
thresholding161

•• Extreme machine learning 
and random forests162

•• Histogram with edge 
detection filtering and 
statistical segmentation163

•• Morphology164

•• Type-II fuzzy with a 
perception neural 
network165

 

 � Myxoid 
degeneration

•• Meniscal 
degenerated areas 
proportion24

•• All the meniscus25

•• Image analysis 
(posterior horn) using 
a custom-developed 
algorithm166

 

Infrapatellar fat pad

  Area •• Drawing contour167,168

•• Drawing fat boundary 
using an image 
analysis software169,170

 

  Volume •• Voxel intensity 
segmentation using ITK-
SNAP software171

•• 3D CNN multi-atlas with U-net172

  Hypointense •• Counting slices 
only where the 
signal is present34

 

  Hyperintense •• % signal 
intensity16,35

•• Canny edge algorithm173

•• 3D voxel-based texture174
 

Synovial membrane and fluid

  Effusion •• Maximal distention 
of the synovial 
cavity14,17

•• Suprapatellar 
pouch volume 
estimation36

 

Table A1.  (Continued)
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Semi-quantitative Quantitative

  Scoring Manual Semi-automated Fully automated

 � Synovial 
membrane 
thickness

Contrast-enhanced:  

  •• Gaussian deconvolution176

  •• 2D shape mask with 
targeted thresholding175

  •• 3D-model/mesh using 
active appearance 
modelling177

  Non-contrast-enhanced: four 
regions of interest178

 � Synovial fluid 
volume

Non-contrast-enhanced: Intensity 
threshold, contrast and mesh model179

Ligament ACL 
tears

Scoring40 •• Drawing contour181

•• Finite element180
•• Graph cuts with label and 

superpixel refinement182

•• Morphological and Chan-
Vese active contour183

•• CNN with DenseNet,184 MRNet,185 
ResNet,186 and 3D CNNs187

Muscle and 
muscle fat

•• Drawing vastus 
medialis contour190

•• Active shape with active 
contour193

•• Generalized log-ratio 
transformation, multi-atlas 
segmentation,202,203 random walks204

•• Pre-trained deep learning and 2D 
U-Net192,205

  •• Discriminative random 
walks194

  •• Edge detection195

  •• Level set segmentation196

  •• Fuzzy c-mean with 
morphological 
segmentation197

  •• Simple mesh198

  •• Statistical shape atlas199

  •• Thresholding200

  •• Voxel classifier with 
morphology201

  •• Inter-muscular fat 
segmentation with 
filtering190

ACL, anterior cruciate ligament, BLOKS, Boston Leeds Osteoarthritis Knee Score; CNN, convolutional neural network; DenseNET, dense 
convolutional network; dGEMRIC, delayed gadolinium-enhanced MRI of cartilage; DTI, diffusion tensor imaging; DWI, diffusion-weighted 
imaging; GAGs, glycosaminoglycans; gagCEST, glycosaminoglycan chemical exchange saturation transfer; ITK-SNAP, interactive software 
application allowing navigation in three-dimensional medical images; KOSS, knee osteoarthritis scoring system; LOGISMOS, optimal graph image 
segmentation of multiple objects and surfaces; MOAKS, MRI osteoarthritis knee score; MRI, magnetic resonance imaging; MRNet, knee MRI 
datasets collected by Stanford ML group; PACS, picture archiving and communication system; PG, proteoglycan; ResNet, residual neural network; 
R-Net, rotatable region-based residual network; Seg-Net, semantic segmentation model; U-Net, convolutional neural network developed for 
biomedical image segmentation; UTE, ultra-short echo time; V-Net, volumetric medical image; UTE-AdiabT1rho, ultra-short echo time adiabatic 
T1ρ; UTE-MT, ultra-short echo time magnetization transfer; WORMS, whole-Organ MRI Score; 2D or 3D, two- or three-dimensional.

Table A1.  (Continued)
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Table A2.  Summary of prediction models for knee osteoarthritis diagnosis and prognosis using machine/deep learning and MRI 
data.

Author Purpose of the study Algorithm Best predictive input 
variables

Outcome(s) Best prediction 
accuracy

A)  Diagnosis of osteoarthritis

 � Ashinsky 
et al.209

To evaluate the ability 
of a machine learning 
algorithm to classify 
MRIs of human articular 
cartilage for the 
development of OA

Inherent MRI texture and 
intensity information using 
the weighted neighbour 
distance and compound 
hierarchy

Central weightbearing 
of cartilage within the 
medial femoral condyles 
as segmented using T2-
weighted images

Change in the 
WOMAC total 
score > 10 points 
at 36 months from 
baseline

0.75

 � Lazzarini 
et al.210

To predict the occurrence 
of knee OA within 
30 months in middle-
aged, overweight women 
without knee OA at 
baseline

Ranked guided iterative 
feature elimination and 
random forest

BMI, haemoglobin A1c, 
presence of OA on MRI, 
grinding/clicking sound 
when moving the knee, 
and the frequency of eating 
apples and pears/per week

Kellgren–Lawrence 
incidence of OA

⩾0.82

 � Pedoia 
et al.103

To study to what extent 
conventional and deep-
learning-based T2 
relaxometry patterns 
can distinguish between 
knees with and without 
radiographic OA

1. �Classical T2 using 
principal components and 
random forests

First ten principal 
components (PC 1-10) in 
the overall T2 maps, age, 
gender, BMI, and KOOS 
pain score

Kellgren–Lawrence 
grade ⩾ 2

1.   0.78

  2. �T2 mapping using densely 
connected convolutional 
neural network

2.   0.83

 � Kundu 
et al.211

To develop an approach 
that enables sensitive 
OA detection in pre-
symptomatic individuals

T2-weighted imaging 
combined with a 3D mass 
transport with statistical 
pattern recognition

Patterns of early cartilage 
fissuring

In healthy 
individuals, 
36 months before 
symptoms change in 
total WOMAC score

0.78

 � Hirvasniemi 
et al.212

Distinguish knees without 
and with OA using MRI-
based radiomic features 
from tibial subchondral 
bone

Elastic net and a semi-
automatically extracted 
MRI-based radiomic 
features from tibial bone

1. �3D volumes of six bone 
regions (medial and 
lateral subchondral 
bone, mid-part of 
medial and lateral 
compartments, and 
medial and lateral 
trabecular bone), in 
addition to the covariates 
age and BMI.

Discriminating 
knees without and 
with OA

1.   0.68

  2. �Volumes from the medial 
subchondral bone and 
mid-part with both 
covariates, age, and BMI

2.   0.80

  Hu et al.213 To investigate the effect 
of a deep learning model 
combined with different 
MRI sequences in the 
evaluation of cartilage 
injury of knee OA

Image super resolution 
algorithm based on an 
improved multiscale wide 
residual network model

3D sagittal double-echo 
stable water excitation

Injury grades 
I–IV evaluated using 
arthroscopy

Grade I:  0.85

  Grade II:  0.72

  Grade III:  0.85

  Grade IV:  0.97

(Continued)
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Author Purpose of the study Algorithm Best predictive input 
variables

Outcome(s) Best prediction 
accuracy

 � Joseph 
et al.208

To develop a machine 
learning-based 
prediction model for 
incident radiographic 
osteoarthritis of the knee 
over 8 years

Extreme gradient boosting Chair stand time, age, 
medial femur cartilage 
T2, maximum meniscus 
WORMS score, knee 
muscle extension strength, 
systolic blood pressure, 
mean cartilage T2 (in 
all regions), maximum 
cartilage WORMS score, 
WOMAC pain score, and 
BMI

Kellgren–Lawrence 
grades 2–4 in the 
right knee over 
8 years

0.77

B)  Prognosis of osteoarthritis

 � Hafezi-Nejad 
et al.214

To investigate the 
association between 
baseline lateral femoral 
cartilage volume in 
medial joint space loss 
progression

Multi-layer-perceptron 24- to 48-month changes 
in the lateral femoral plate 
cartilage volume

Medial joint space 
loss >0.7 mm 
progression

 

  1. at baseline 1.  0.63

  2. �24-month change 2.  0.67

  Du et al.215 To explore the hidden 
cartilage biomedical 
information from knee 
MRI for OA prediction

Principal component, 
artificial neural network, 
support vector machine, 
random forest, and naïve 
Bayes

The 3D feature set is 
divided into 18 medial 
and 18 lateral features of 
tibiofemoral cartilage

Change over 2 years 
of

 

  1. �Kellgren–
Lawrence grade,

1.  0.76

  2. �JSN grades 
on the medial 
compartment

2.  0.79

  3. �JSN grades 
on the lateral 
compartment

3.  0.70

 � MacKay 
et al.217

To assess if a change in 
MRI subchondral bone 
texture is predictive of 
radiographic knee OA 
progression

Subchondral bone texture 
using radiomic approach

12- to 18-month follow-up 
change in subchondral 
bone texture features when 
tibial and femoral data are 
combined

Minimal JSW 
⩾0.7 mm

 

  1. �at 36 months 
(initial change)

1. 0.65

  2. �change between 
36 and 72 months

2. 0.68

 � Nelson 
et al.207

To define the progression 
of OA phenotypes 
that are potentially 
more responsive to 
interventions

Distance-weighted 
discrimination, direction-
projection-permutation, and 
clustering methods

Baseline variables with 
the most significant 
contribution

1. �To non-progression: 
WOMAC pain score, 
lateral meniscal 
extrusion, and serum 
N-terminal pro-peptide 
of collagen IIA

Medial 
JSN ⩾ 0.7 mm and 
WOMAC total score 
increase ⩾ 9 points 
at 48 months

Separation of 
progressors 
and non-
progressors 
(z = 10.1)
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Author Purpose of the study Algorithm Best predictive input 
variables

Outcome(s) Best prediction 
accuracy

  2.   �To progression: bone 
marrow lesions, 
osteophytes, medial 
meniscal extrusion, 
and urine C-terminal 
crosslinked telopeptide 
type II collagen

 

 � Jamshidi 
et al.218

To identify the most 
important features of 
structural knee OA 
progressors

Six machine learning 
techniques: least absolute 
shrinkage and selection 
operator, elastic net 
regularization, gradient 
boosting machine, random 
forest, information gain, and 
multi-layer perceptron

Baseline medial minimum 
JSW, MRI-based mean 
cartilage thickness of 
peripheral, medial and 
central tibial plateau, and 
medial JSN as a score

1. �JSN ⩾1 mm at 
48 months

1.  0.92

  2. �Cartilage volume 
loss as evaluated 
by MRI at 
96 months

2.  0.73

 � Bonakdari 
et al.219

To build a comprehensive 
gender-based machine 
learning model for early 
prediction of at-risk knee 
OA patient structural 
progressors using 
baseline serum levels 
of adipokines/related 
inflammatory factors, and 
age and BMI

Five machine learning 
techniques were evaluated 
(k-nearest neighbor, 
random forest, decision 
tree, extreme learning 
machine, and support vector 
machine), and the support 
vector machine served for 
model development

Age, BMI, C-reactive 
protein/monocyte 
chemoattractant protein-1 
and leptin/C-reactive 
protein

Prediction of knee 
OA structural 
progressors as in 
Jamshidi et al.,218 
in which the inputs 
were baseline 
medial minimum 
JSW, MRI-based 
mean cartilage 
thickness of 
peripheral, medial 
and central tibial 
plateau, and medial 
JSN as a score and 
the outcome JSN 
⩾1 mm

⩾0.81

 � Schiratti 
et al.220

To develop a proof-of-
concept predictive model 
for OA radiographic 
progression and knee 
pain

Gradient-weighted class 
activation mapping method

1.  Medial joint space
2. � Intra-articular space 

Where effusion is 
observed

1. �OA progression 
defined as 
minimum JSN at 
12 months 
⩽ 0.5 mm

1.  0.63

  2. �Pain prediction 
(WOMAC pain 
score ⩾ 2 points)

2.  0.72

 � Bonakdari 
et al.221

To assess if baseline 
knee bone curvature 
could predict cartilage 
volume loss at 1 year. 
Development of a gender-
based model

Five machine learning 
techniques were evaluated 
(random forest, M5Rules, 
M5P, multi-layer perceptron 
and the adaptive neuro-
fuzzy inference system) 
to select the inputs. The 
adaptive neuro-fuzzy 
inference system was used 
for the modelling

Baseline bone curvature 
regions of the lateral tibial 
plateau, medial central 
condyle, lateral posterior 
condyle, and lateral and 
medial trochlea

Twelve global or 
regional knee 
cartilage volume 
losses at 1 year 
(global knee, femur, 
condyle, tibial 
plateau; lateral 
compartment, 
femur, condyle, 
tibial plateau; 
medial 
compartment, 
femur condyle, and 
tibial plateau)

⩾ 0.79
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 � Bonakdari 
et al.222

To evaluate if single 
nucleotide polymorphism 
genes and mitochondrial 
DNA haplogroups/
clusters could predict 
early knee OA structural 
progressors

Seven machine learning 
techniques were evaluated 
(support vector machine, 
k-nearest neighbor, random 
forest, decision tree, 
extreme learning machine, 
self-adaptive extreme 
learning machine, and a 
combination of decision tree 
and self-adaptive extreme 
learning machine.
The support vector machine 
was used to generate 
gender-based models

1. � Age, BMI, TP63, DUS4L, 
GDF5, FTO

Prediction of knee 
OA structural 
progressors as in 
Jamshidi et al.,218 
in which the inputs 
were baseline 
medial minimum 
JSW, MRI-based 
mean cartilage 
thickness of 
peripheral, medial 
and central tibial 
plateau, and medial 
JSN as a score and 
the outcome JSN 
⩾1 mm

1.  0.85

  2. � Age, BMI, 
mitochondrial DNA 
haplogroup (H, J, T, 
Uk, and others), FTO, 
SUPT3H

2.  0.83

C)  Prediction of knee replacement

 � Tolpadi 
et al.223

Leveraging deep-learning 
magnetic resonance 
images and clinical and 
demographic information 
to predict total knee 
replacement

Integration of imaging and 
non-imaging data was 
done with random forest 
regression, support vector 
machine, neural network, 
and LR architectures. 
MRI was trained with 3D 
DenseNet-121 convolutional 
neural networks and logistic 
regression

MRI (medial patellar 
retinaculum, 
gastrocnemius tendon, 
and plantaris muscle) and 
clinical and demographic 
information

1. �Prediction 
of total knee 
replacement risk 
in symptomatic 
OA patients

1.  0.83

  2. �Prediction of total 
knee replacement 
risk in patients 
without OA

2.  0.94

  To build a model to 
predict risk and time to 
total knee replacement of 
an OA knee

Seven machine learning 
techniques were used 
(Cox-PH, deep feed-
forward neural network, 
linear multi-task logistic 
regression, neural 
linear multi-task logistic 
regression, random forest, 
support vector machine, 
and kernel support vector 
machine), and the deep 
feed-forward neural 
network was used to build 
the model

1. �Bone marrow lesions 
in the medial condyle, 
hyaluronic acid 
injection, performance 
measure, medical 
history, five radiographic 
measurements, and 
knee-related symptoms

Time to total knee 
replacement for a 
given knee

1.  0.87

  2. �Bone marrow lesions, 
Kellgren/Lawrence 
grade, and knee-related 
symptoms

2.  0.86

BMI, body mass index; DenseNET, dense convolutional network; DNA, deoxyribonucleic acid; DUS4L, dihydrouridine synthase 4-like; fat mass and 
obesity; GDF5, growth differentiation factor; JSN, joint space narrowing; JSW, joint space width; KOOS,  
knee injury and osteoarthritis outcome score; MRI, magnetic resonance imaging; OA, osteoarthritis; SUPT3H, SPT3 homologue; TP63, tumor 
protein P63; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index; WORMS, Whole-Organ MRI Score; 3D, three-dimensional.
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