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Cardiovascular proteomics in the era 
of big data: experimental and computational 
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Abstract 

Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analyti-
cal and computational advances in the past decade, proteomics applications can now go beyond merely inventory-
ing protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spec-
trometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review 
new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big 
data science on cardiovascular proteomics investigations and translation to medicine is highlighted.
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Background
The heart is in many ways an exceptional organ. Proteins 
at the sarcolemma, sarcomere, mitochondrion, and other 
cardiac organelles must orchestrate vital functions seam-
lessly on a beat-by-beat basis, while dynamically adjusting 
energetic and contractile outputs to environmental cues 
within seconds. Heart diseases including cardiac hyper-
trophy and failure are characterized by complex remode-
ling of various protein signaling networks and subcellular 
components, which often involve a multitude of collabo-
rating proteins. Therefore, understanding how multiple 
protein species interact to carry out higher physiological 
phenotypes and regulation has been an important objec-
tive of cardiovascular research. The power of proteomics 
to simultaneously provide information on the panoply 
of expressed proteins has made it uniquely suitable for 
resolving complex signaling conundrums and revealing 
disease mechanisms in the heart.

Advances in genome sequencing are often celebrated 
to have outpaced even the vaunted Moore’s law of com-
puting power [1]. Lesser known but equally impressive is 

the parallel surge in the capacity of mass spectrometry-
based proteomics last decade. To wit, when the first draft 
of the human genome was published in 2001, a state-of-
the-art two-dimensional electrophoresis technique could 
identify ~200 proteins in 3  days. Fast-forward to today, 
a modern mass spectrometer can generate over a mil-
lion spectra per day and quantify ~4000 proteins in the 
course of 1 h [2]. This quantum leap is attributable to par-
allel advances in three areas: (1) analytical chemistry in 
sample processing and liquid chromatography tandem 
mass spectrometry (LC–MS/MS) instrumentation; (2) 
bioinformatics and computational tools in high-through-
put data processing and analysis; and (3) completeness 
and accuracy of sequence and annotation databases. Rid-
ing on growing experimental capacity, there have been 
continued improvements to the experimental coverage 
of proteome analysis, the interpretability of data, the reli-
ability of results, and the diversity of protein parameters 
that may be interrogated. New applications and experi-
mental designs not possible a few years ago are now 
being exploited to explore new regulatory modalities in 
cardiac physiology.

Cardiovascular proteomics has grown rapidly in the 
intervening period, with >400 studies now being pub-
lished yearly (Fig.  1) [3]. To put into context, we recall 
two landmark reviews of cardiovascular proteomics, in 
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2001 [4] and 2006 [5], which noted that although many 
enabling technologies were emerging, cardiovascular pro-
teomics remained a field ‘on the threshold’ of future appli-
cations. Fast forward to the present and it is clear that 
proteomics has had a transformative impact on cardiovas-
cular sciences, as recounted in recent review articles. We 
attempt to complement these reviews here with a concise 
overview on the lockstep improvements in the analytical 
(separation sciences and mass spectrometry) and compu-
tational (data science and algorithms) advances of the past 
5 years that enabled landmark studies, as well as ongoing 
developments driving the next stage of applications.

Experimental and analytical advances
Improvements in analytical methods
An early hurdle that bedeviled cardiovascular proteomics 
was the limitation in the sensitivity and dynamic range 
of protein detection, which skewed results towards few 
high-abundance proteins (e.g., contractile proteins) and 
masked low-abundance species. This is due to the com-
plexity of proteomes. The mammalian heart is known to 
express at least ~8000 genes at significant levels [6], and 
at least 8325 human proteins have been referenced in the 
~1.4 million cardiac-related publications on PubMed [7]. 
Each human gene can encode multiple proteoforms, e.g., 
due to the average ~4 alternative splicing isoforms per 
human gene plus many more post-transcriptional and 
post-translational editing processes, resulting in at least 
~106 proteolytic peptides per sample. With the addition 
of post-translational modifications (PTMs)—e.g., the 

four histone proteins alone have identified PTMs on at 
least 105 different residues in myriad combinations [8]—
the total proteome complexity is likely orders of magni-
tude more complex still.

In the past decade, great strides have been made to 
improve proteome coverage, from how protein samples 
are extracted to mass spectrometry instrumentation. To 
perform proteomics analysis, it follows that the proteins 
must be effectively extracted and released from biologi-
cal samples. This is typically achieved via mechanical 
homogenization or chemical surfactants. Protein solu-
bilization techniques in early proteomics protocols were 
at times ineffectual in extracting hydrophobic or mem-
brane proteins, which often aggregated out of the sam-
ple and led to their non-detection. Development in this 
area in recent years have led to commercially available, 
mass spectrometry compatible surfactants [9], size exclu-
sion filter-mediated buffer exchange techniques [10], as 
well as empirically refined experimental protocols that 
are optimized for the analysis of various cardiac subpro-
teomes [11]; all of which serve to expand the portion of 
the proteome that is open to mass spectrometry explo-
ration. The incompleteness of proteolytic digestion was 
once found to be a limiting factor of the maximal peptide 
coverage of the experiment and contribute to batch-to-
batch variations. The use of optimized proteolysis proto-
cols including double lys-C/trypsin proteolysis is gaining 
traction [1].

Advances in separation sciences have had a particu-
larly tremendous impact on reducing the complexity of 
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Fig. 1  Trends in cardiovascular proteomics. Both (a) the volume of proteomics studies, and (b) the size of proteomics dataset have skyrocketed 
in the last decade. a The number of cardiovascular proteomics studies has increased approximately 400 % from 2004 to 2014, far outpacing the 
natural growth of the cardiovascular field, indicating increasingly common adoption of the technologies. b The protein coverage of proteomics 
experiments in the same time period has experienced considerable growth also, quantified as the numbers of identifiable cardiac proteins in an 
experiment. The maximum number of cardiac proteins (dashed lines) is based on estimated significantly expressed loci in the mouse heart and does 
not take into account proteoforms such as resulting from alternative splicing. This increase is driven by parallel advances in hardware instrumenta-
tion and computational technology. Coinciding with the notion of “complete proteomics”, proteomics studies can now interrogate more proteins of 
interest such as chromatin remodeling factors and transcription factors that express at low copy numbers. Effective means to analyze big proteom-
ics dataset are becoming a new frontier of growth in cardiovascular proteomics
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peptides prior to mass spectrometry signal acquisition. 
High-performance shotgun proteomics using mass spec-
trometry has supplanted two-dimensional (2D) electro-
phoresis to become the de facto standard for large-scale 
analysis of cardiac proteins (see general workflow of shot-
gun proteomics in Fig.  2). Whereas the now-dethroned 
2D electrophoresis was limited to detecting a few hun-
dred proteins, contemporary LC–MS experiments can 
resolve peptides from >10,000 proteins to allow their 
identification and quantification. Since 2001, separation 
science has led in a relentless pursuit to increase pro-
tein coverage [12, 13], with the success of strong cation 
exchange-reversed phase based MudPIT approaches fol-
lowed successively by other 2D-LC approaches including 
reversed-phase-reversed-phase separation [14] as well 
as very-long separation columns with high peak capac-
ity, nano-scale microfluidic devices driven by ultra-high 
pressure LC systems [15] and capillary electrophoresis 
separation (see [16, 17] for reviews on separation science 

developments). By separating the peptide samples into 
smaller subset based on their chemistry, a simpler mix-
ture of peptides is introduced into the mass spectrometer 
in any given time, which decreases ion competition and 
increases sensitivity.

State-of-the-art instruments including hybrid Orbit-
raps and time-of-flight instruments achieve high perfor-
mance by virtue of their high scan speed (allowing more 
peptides to be analyzed in the same analysis), sensitivity 
(allowing minute amounts of samples to be analyzed), 
and mass resolution (increasing power to differenti-
ate similar peptide species). Recent proteome profiling 
experiments of the mammalian heart using the latest and 
greatest LC–MS combinations routinely achieve 5000 or 
more proteins identified in an experiment (Fig.  1b). In 
a recent survey we quantified the relative abundance of 
8064 proteins in the mouse heart, covering more than 10 
major organelles and 201 major cellular pathways [18]. As 
little as micrograms of proteins are sufficient for shotgun 
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Fig. 2  Analytical and computational overview in protein identification. 1 Cardiac samples are processed to extract the proteomes or subproteomes 
of interest, which may then be proteolyzed to obtain peptide digests. 2 The resulting peptides are desalted and subjected to LC–MS/MS analysis 
to acquire MS1 and MS2 spectra. 3 The peptide sequences that are present in the MS dataset can be identified using a database search approach, 
which uses a sequence database (e.g., UniProt) to generate theoretical peptide sequence and predict their fragmentation patterns in silico, then 
automatically find the best-match theoretical spectra to the experimental spectra for protein identification. Alternatively, the proteins can be identi-
fied using a spectral library search. The resulting protein datasets can be further analyzed to extract other biomedically meaningful information (see 
Fig. 4)
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proteomics analysis. This amount may come from milli-
grams or less of cardiac biopsies, or ~105 cultured car-
diac cells, opening the door of proteome analysis to more 
experimental and clinical designs where sample amounts 
may be limiting.

Taken together, these advances have helped solve a 
principal challenge to proteomics applications, namely 
how to successfully detect the maximal number of pep-
tides inside the overwhelmingly complex mixture that 
is the cardiac proteome. Although each technologi-
cal development is incremental, over time they accrued 
into a qualitative transformation on the power and util-
ity of proteomics, when proteins of biomedical inter-
est gradually became measurable and discoverable in 
large-scale experiments. Catalogs of so-called “complete 
proteomes” (i.e., here narrowly defined as the detection 
of one protein product of every expressed locus in the 
genome) have now been described for many human tis-
sues and organs, including the heart [19, 20]. Therefore, 
although earlier cardiovascular proteomics studies were 
best equipped to discover changes in structural, contrac-
tile, or metabolic housekeeping proteins, contemporary 
studies can now easily interrogate regulatory proteins 
including membrane receptors, kinases, ubiquitin ligases, 
and chromatin remodeling factors, whereas the analyses 
of yet scarcer species such as transcription factors and 
cytokines are now on the cusp of routine applications.

Early applications were also plagued by the variability 
of quantification results, which limited power to discover 
significant changes between disease model and control 
samples. A major source of variability in proteomics 
quantification originated from the variable detectability 
of peptides with different amino acid compositions. Two 
equimolar peptide sequences can show rather different 
intensities in MS signals. Accurate prediction of pep-
tide intensity based on sequence information remains an 
unsolved issue in computational proteomics due to the 
large number of combinatorial variables that contribute 
to signal behaviors. Several methods have been devel-
oped to normalize peptide intensity and achieve accurate 
quantification. Targeted MS methods, such as Multiple 
Reaction Monitoring (MRM) [21], allow users to pro-
gram the mass spectrometer to scan for only targeted 
peptide ions for quantification. An advantage of targeted 
MS is the gain in reproducibility and sensitivity, which 
can avail the detection of low-abundance proteins at their 
native concentration. Targeted assays have been success-
fully developed such that very low amount of proteins in 
the sample can be quantified, as in the case of troponin 
I [22]. Isotope labeling methods including SILAC and 
Super-SILAC [23, 24] can also reduce variability in rela-
tive quantification by ensuring peptides from multiple 

samples are compared in identical experimental condi-
tions, but require additional labeling steps.

With advances in data acquisition methods, non-tar-
geted label-free techniques can also reliably deduce accu-
rate protein intensity from shotgun experiments directly 
through bioinformatics analysis. Label-free quantifi-
cation is analogous to deducing transcript abundance 
from read counts in next-generation sequencing. Exist-
ing approaches largely fall into two categories (Fig.  3). 
Spectral counting exploits the bias of shotgun proteomics 
towards abundant proteins, and calculates protein quan-
tity from the stochastic sampling frequency of peptide 
ions, i.e., the higher the protein abundance, the more of 
its MS spectra are likely to be identified. A major advan-
tage of spectral counting is that it quantifies directly from 
the identification output and thus is compatible with 
most workflows. Spectral counting algorithms tally the 
number of redundant spectra for each identifiable pep-
tide, then sum the numbers of spectra for all peptides 
assigned to a protein. On the other hand, ion intensity 
approaches integrate the intensity mass-specific ion sig-
nals over time in the chromatographic space. This utilizes 
a feature detection step in data analysis to read raw MS 
files and integrate the corresponding areas-under-curve 
of each peptide ion over time. Both labeled and label-free 
methods provide a useful guide to differential protein 
expression, and can now be used to discover candidate 
disease protein that can then be validated by further 
studies.

Improvements in software tools
The massive amount of MS data generated in proteom-
ics experiments requires computational aid for effective 
data processing and analysis. A growing number of open-
access computational tools concerning all steps of prot-
eomics data analysis are now freely available to users, a 
subset of which are listed in Table 1.

A major computational task in shotgun proteomics is 
to efficiently interpret the mass and intensity information 
within mass spectral data to identify proteins. The com-
putational task can be formulated thus: given a particular 
tandem mass spectrum, identify the peptide sequences 
most likely to have given rise to the set of observed par-
ent molecular mass and fragment ion patterns in a rea-
sonable time frame. A general solution to this problem 
is “database search”, which involves generating theoreti-
cal spectra based on in silico fragmentation of peptide 
sequences contained in a protein database, and then 
systematically comparing the experimental MS spectra 
against the theoretical spectra to find the best peptide-
spectrum matches. The SEQUEST algorithm was the 
first proposed to solve this peptide spectrum matching 
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problem in 1994 [25] and its variants (e.g., Comet, Pro-
LuCID [26]) remain among the most widely utilized algo-
rithms to-date for peptide identification. SEQUEST-style 
algorithms score peptide-spectrum matches in two steps, 
with the first step calculating a rough preliminary score 
which empirically restricts the number of sequences 
being analyzed, and the second step deriving a cross-
correlation score to select the best peptide-spectrum 
match among the candidates. Recent descendants of 
the SEQUEST algorithms have focused on optimizing 
its searching speed as well as improving the statistical 
rigor of candidate sequence scoring, with some programs 
reporting ~30 % more peptides/proteins identifiable from 
identical MS datasets and better definition of true-/false-
positive identifications [26–29]. Other search engines 
also exist that are commonly in use, including X!Tandem, 
which calculates the dot product between experimen-
tal and theoretical spectra, then derives the expectation 
value of the score being achieved in a random sequence 
match; MaxQuant/Andromeda, which considers frag-
ment ion intensities and utilizes a probabilistic model 
for fragment observations [30], MS-GF+ [31], and oth-
ers. Methods have also been developed to combine the 
unique strengths and biases of multiple search engines to 
improve total protein identifications [32].

Means to distinguish true and false positives are criti-
cal to all large-scale approaches. The “two-peptide rule” 
was once commonly adopted to decrease false positives 
at the protein level by requiring each protein to be identi-
fied by at least two independent peptides. However, this 
rather conservative rule could inflate false negatives, as 
some short or protease-incompatible proteins may only 
produce maximally one identifiable peptide. More recent 
conventions involve foregoing the two-peptide rule and 
instead estimating the false discovery rate (FDR) of iden-
tification through statistical models, often with the aid of 
decoy databases. The use of decoy databases/sequences 
(reversed or scrambled peptide sequences), allows a quick 
estimation of the number of false positive proteins, by 
assuming identical distribution in protein identification 
scores for false positive hits and the decoy hits. A maxi-
mum acceptable FDR can then be specified (convention-
ally 1–5 %) to determine which protein identifications are 
accepted in the final result. To explicitly reveal the poste-
rior probability of any particular identification being cor-
rect (also called the local FDR), a mixture model has been 
used that assumes that the peptide identification result is 
a mixture of correct and incorrect peptides with two dis-
tinct Poisson distributions of identification scores [33]. 
Auxiliary determinants including the presence of other 
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identified peptides from the same proteins can also be 
applied to infer overall likelihood of protein assignment 
[33]. Machine learning algorithms (e.g., Percolator) have 
been demonstrated to build classifiers that automatically 
distribute peptide spectrum matches into true and false 
positives [34]. New inference approaches have also been 
demonstrated that consider peptide and protein level 
information together to improve the confidence of iden-
tification [35].

With the increase in data size and multiplexity (num-
ber of sample compared) in proteomics experiments, 
statistical approaches to analyze data have also evolved 
to tackle high-dimensionality data. Whereas early stud-
ies utilized mostly confirmatory statistics, modern pro-
teomics datasets typically contain thousands of features 
(e.g., protein expression) over a handful of observations, 
hence simply testing whether each protein is significantly 
altered across experimental conditions can result in 
under-analysis and failure to distinguish latent structures 

across multiple dimensions, e.g., whether there exists a 
subproteome of co-regulated proteins across multiple 
treatment categories. To gain biological insights, quanti-
tative proteomics datasets are now routinely mined using 
statistical learning strategies that comprise feature selec-
tion (e.g., penalized regression methods), dimensionality 
reduction (e.g., principal component analysis), and both 
supervised and unsupervised learning (e.g., support vec-
tor machine and hierarchical models) to discern signifi-
cant protein signatures, disease-implicated pathways, or 
interconnected co-expression networks (Fig. 4).

Improvements to computational methods that allow 
more robust results from label-free quantification are an 
area of active research. For example, recent works (e.g., 
QProt) have attempted to resolve the respective quan-
tities of multiple proteins that share common peptide 
sequences in spectral counting, either using weighted 
average methods or more statistically motivated models 
[36, 37]. In ion intensity approaches, chromatographic 

Table 1  Selected open access software tools in proteomics

Proteomics software tools that provide open access to users. Many of these tools are also open source which potentially allows users to participate in the continual 
development of the tools

* Available open-source source code repository at the time of writing
†  Platform-independent (Windows, Linux, Mac)

Open access tools Language/framework License Publication Website

Database search engine (untargeted proteomics)

Comet*,† C++ Apache 2.0 [93] [94]

MS-GF+*,† Java Custom/Academic [31] [95]

MSAmanda† C#/Mono Custom/Academic [96] [97]

ProLuCID*,† Java Custom/Academic [26] [98]

X!Tandem*,† C++ OSI Artistic [99] [100]

Targeted proteomics and/or data-independent acquisition

Skyline* C# Apache 2.0 [101] [102]

OpenSWATH*,† C++ BSD 3-Clause [103] [104]

Protein inference and/or search post-processing

Percolator*,† C++ Apache 2.0 [34] [105]

ProteinProphet*,† C++ GNU LGPLv2 [106] [107]

ProteinInferencer† Java Custom/Academic [35] [98]

Protein quantification

MaxQuant .NET Custom/Academic [108] [109]

Census† Java Custom/Academic [110] [98]

PLGEM*,† R GNU GPLv2 [111] [112]

QPROT*,† C GNU GPLv3 [37] [113]

Pipelines and toolkits

Perseus .NET Custom/Academic [114] [115]

Crux* C++ Apache 2.0 [116] [105]

OpenMS* C++ BSD 3-Clause [117] [118]

TPP* C++ GNU LGPLv2 [119] [120]

Data access and reuse

PeptideShaker* Java Apache 2.0 [121] [122]

PRIDE inspector* Java Apache 2.0 [123] [124]
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features that correspond to peptide signals over mass- 
and retention time-dimensions are identified using image 
analysis or signal processing algorithms. Because LC 
gradients are seldom perfectly reproducible, nonlinear 
distortions in retention time may occur. To ensure iden-
tical ions are compared between experiments, automatic 
chromatographic alignment and clustering methods are 
used. Some software can identify small chromatographic 
features based on accurate mass/retention time alone, 
such that some peptides may be quantified even in exper-
iments where they were not explicitly identified. These 
processes tend to become computationally expensive 
for large experimental files [38], thus faster solutions are 
continuously developed.

With the proliferation of inter-compatible tools, an 
ongoing trend is to daisy-chain individual tools into 
user-friendly pipelines that provide complete solutions 
to a set of related data analysis problems. An ideal pro-
teomics pipeline may combine identification, quantifi-
cation, and validation tools in a modular organization 
accessible from a single location. Computation may be 
performed on the cloud to avoid the need to repeat-
edly copy, transfer, and store large files. Researchers 
can carry out computational tasks remotely from the 
browser on any computer system, obviating the need 
for redundant infrastructure investments. Currently, 
the Trans-Proteomics Pipeline [39] and the Integrated 
Proteomics Pipeline [40] are two example “end-to-end” 
pipelines that connect raw MS proteomics data to anal-
ysis output, whereas comprehensive, open-access pipe-
lines have also been demonstrated in other omics fields, 
including Galaxy for genomics/transcriptomics [41] and 
MetaboAnalyst for metabolomics [42]. In parallel, tools 
are also being federated into interoperable networks 
through open frameworks. A modular and open-source 
software development paradigm, where individual 
software functionalities can interoperate via common 

interfaces and standards, helps ensure that new soft-
ware can dovetail with existing ones with ease, and that 
software development may continue following inactiv-
ity from the original research team. Examples of such 
frameworks include the GalaxyP proteomics extension 
[43], and the proteomics packages within the R/BioCon-
ductor framework [44].

Improvements in annotation resources
Not unlike other omics approaches, the success of pro-
teomics experiments relies heavily on having adequate 
and up-to-date resources to analyze large-scale data. 
To wit, for protein database search to succeed, it fol-
lows that the protein being identified must first be docu-
mented on a sequence database. Fortunately, there have 
been tremendous advances on the completeness (num-
ber of true positive sequences recorded) and precision 
(removal of redundancy or artifacts) of sequence data-
bases such as UniProt and RefSeq. Some databases are 
manually curated to contain precise information, whilst 
others strive to be more comprehensive; but many now 
list precise “complete proteomes” for commonly studied 
laboratory species. Databases for human and popular 
laboratory model organisms have seen particular pro-
gress in the completeness of annotation in recent years, 
such that proteomics studies can now be performed simi-
larly well in mice, drosophila, rats, and other organisms 
to interrogate cardiac physiology. On the horizon, one 
can foresee an influx of sequence information on pro-
tein polymorphism and alternative splicing isoforms. 
Although current databases primarily originate from 
genomic translation or cDNA library of specific cell types 
or genetic backgrounds, “proteogenomics” efforts are 
underway to translate additional sequences for proteom-
ics studies, which will expand the scope and precision of 
protein identification. For non-model organisms, alterna-
tive search methods have been devised, such as against a 

Fig. 4  Proteomics data mining and functional annotations. Common computation approaches to extract information from massive proteomics 
datasets include (1) unsupervised cluster analysis, class discovery and visualization; (2) motif analysis and annotation term enrichment; (3) statistical 
learning methods for disease signature extraction; (4) network analysis; and (5) annotations with other functional information including protein 
motifs and cardiac disease relevance
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custom database generated by manual six-frame transla-
tion of genomic sequences.

Data interpretability problems arise when the com-
plex results comprising changes of many proteins could 
not be easily digested and summarized in terms that are 
relatable and of value to biomedical and clinical research-
ers. The biological significance of the implicated protein 
targets may be interpreted and connected to the grow-
ing corpus of biomedical knowledge through functional 
annotations. Commonly used annotation resources 
include Gene Ontology for biological functions [45], 
Reactome or KEGG for curated biochemical and signal-
ing pathways [46], PFAM for protein motifs and homol-
ogy [47], PhosphoSitePlus for PTMs [48], and so on.

To map molecular data to curated annotations, a class 
discovery approach is commonly utilized, which looks 
for annotated properties that are preferentially shared 
amongst a subset of proteins with interesting quantita-
tive features over the proteome-wide background, e.g., 
through sequence motif analysis or annotation term 
enrichment. The principle behind such analyses is to 
infer biologically relevant processes based on signifi-
cant overlaps between data features and the data anno-
tation classes. Computational and statistical approaches 
are used to determine whether particular annotations 
are over-represented in a particular subset results than 
would be expected by chance. This allows both bias-
free discovery and specific questions to be asked of a 
dataset, e.g., whether the down-regulated proteins in a 
heart failure patient are preferentially involved in fatty 
acid metabolism, etc. Enrichment analyses can be easily 
carried out using online tools that perform binomial or 
hypergeometric tests on the over-representation of func-
tional annotations, including NCBI DAVID, WebGestalt, 
and Pantherdb [49–51]. For users conversant in statisti-
cal programming and data analysis environment, open-
access packages dedicated to proteomics data operation 
have been made available in languages such as R and 
Python, including the RforProteomics package [52] for 
MS data visualization on the R/Bioconductor reposi-
tory, and the Python Pyteomics library [53] for parsing 
and processing MS data. These packages allow users to 
connect upstream MS analysis to downstream functional 
annotation services that are commonly employed.

We note that many proteomics functional analy-
sis strategies were originally developed for microarray 
datasets. Although the analytical goals between prot-
eomics and microarray experiments often overlap, i.e., 
identify functional associations from numerical molecu-
lar expression data, several methodological differences 
merit considerations. The stochastic nature of shotgun 
proteomics can lead to missing values and high variabil-
ity in the data for low-abundance proteins. To address 

this, several proteomics-focused enrichment analysis 
tools have recently been developed to address specific 
features of proteomics datasets, e.g., using weighted sam-
pling, which should account for relative abundance and 
variability of observations and further improve quantifi-
cation performance. Monte Carlo sampling approaches 
have also been used to counter the bias of annotations on 
high abundance proteins when calculating enrichment 
significance [54].

As in the case for protein identification, the success 
of functional analysis is contingent upon the complete-
ness and accuracy of annotations in knowledgebases. 
Commonly used knowledgebases such as Uniprot and 
Reactome have steadily improved in size and richness 
of functional information. Nevertheless, it sometimes 
remains the case that some classes of annotations are 
more complete, either because they are easily comput-
able from sequence information (e.g., do these phospho-
proteins with increased phosphorylation in heart failure 
share putative kinase domains?) or can be derived from 
popular experimental designs (e.g., whether a particular 
cardiac protein localizes to the mitochondrion?), and as a 
result are more likely to turn up in functional enrichment 
analyses. On the other hand, annotations on higher-level 
pathophysiology and tissue-specific regulations are more 
challenging, because a majority of such information is 
hidden in unstructured free text in the literature. With 
>2  million cardiovascular related articles alone on Pub-
Med [55], however, the volume of literature data being 
published dwarfs the capacity of human expert biocu-
rations to translate them. Hence in recent years many 
approaches are being pursued to improve biocuration, 
including crowdsourcing initiatives to leverage public 
contributors through web-based micro-tasks, as well as 
text-mining algorithms that comb through the literature 
and automatically convert free texts into computable 
formats. Domain-specific knowledgebases (including 
organelle specific databases [56], and cardiovascular dis-
ease specific knowledgebases [57] have also been devel-
oped to provide richer cardiovascular contexts in data 
interpretation.

Examples and frontiers in cardiovascular 
applications
The aforementioned analytical and computational 
advances have enabled novel and noteworthy applica-
tions in cardiovascular proteomics. An exciting trend is 
to venture beyond simply inventorying which proteins 
are present in the heart or the blood, and into quantify-
ing their dynamic and spatiotemporal properties. Protein 
complexity necessitates that many parameters are needed 
to sufficiently describe the overall proteome in a particu-
lar physiological state. New methodologies continually 
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arise that enable new insights into protein–protein inter-
actions [58], protein homeostasis [59], and spatial distri-
butions [60]. Many molecular parameters are now known 
to be directly involved in disease pathogenesis thanks to 
proteomics studies, including the PTMs of proteins, their 
spatiotemporal distributions, and interacting partners.

Quantifying diverse post‑translational modifications
With increased experimental power to detect peptides, 
rare and hard-to-detect peptides are increasingly analyz-
able, including many modified by PTMs. Because trans-
lational modifications are attached to proteins following 
synthesis, their chemical identity, position, and fractional 
quantity cannot be easily predicted from transcripts, 
necessitating proteomics studies. PTMs have been the 
focus of proteomics studies for over a decade and these 
efforts have increasingly begun to bear fruit in various 
biomedical investigations. In a recent notable example, 
Lee et al. [61] used a global approach was used to discern 
the roles of phosphodiesterase (PDE) in cyclic guanosine 
monophosphate (cGMP) degradation in cardiac signal-
ing. Although once assumed to be a common pathway 
acting through a single secondary messenger, the sub-
components are modulated by two different enzymes 
PDE5A and PDE9A at different cellular locations. A 
global, high-throughput phosphoproteomics profiling 
approach was used to differentiate the downstream sign-
aling targets of the two pathways, allowing their precise 
regulations to be elucidated and subclassified. Therapeu-
tic decision and precision medicine may be informed by 
targeting PDE9A versus PDE5A with different pharmaco-
logical compounds.

Evidence suggests that the current investigations into 
PTMs have barely scratched the surface of their com-
plexity. Over 380,000 PTM events are documented on 
the PhosphoSitePlus database [48], including acetylation, 
di-methylation, mono-methylation, O-GlcNAcylation, 
phosphorylation, sumoylation and ubiquitiylation, etc. 
on a variety of proteins. But many additional, unknown 
modifications likely lurk in acquired spectra that await 
identification, which are the subject of ongoing devel-
opments such as using cascade search, open search, or 
spectral clustering approaches [62, 63]. In addition to 
classical studies of phosphorylation and ubiquitination, 
improved methods to isolate and identify PTMs have 
fueled investigations into many different kinds of modifi-
cations including glycosylation, acetylation, sumoylation, 
and oxidative modifications that are now known to play 
critical and indispensable roles in the regulations of core 
aspects of cardiac physiology. Publications from multi-
ple groups have led to increasing appreciation of the fine 
regulations of oxidative cysteine modifications (including 
disulfide bridge, S-nitrosylation, and S-glutathionylation) 

in cardiac redox regulation [64]. Examples include the 
discovery of S-nitrosylation at TRIM72 in regulating 
ischemic injury [65], and the unexpected “moonlight-
ing” of GAPDH in the mitochondria to confer S-nitros-
ylation in the heart [66]. An increasing number of other 
examined modifications are likewise now implicated in 
important cardiac processes, at a rate that far exceeds 
that which would be attainable in traditional single-tar-
get, hypothesis-driven investigations. These include for 
instance the role of acetylation in the context of mito-
chondrial metabolism [67, 68]; sumoylation in the con-
text of heart failure [69]; O-GlcNAcylation in the context 
of diabetic hearts [70], and lysine succinylation in the 
context of ischemic injury [71]. These studies represent a 
broadening of our observable universe, and are driven by 
both advances in specific purification or labeling strate-
gies, as well as a general increase in MS instrumentation 
and data analysis maturity that together propel the exper-
imental scope, scale and reproducibility past the thresh-
old of informativeness.

Tracing protein spatiotemporal distributions
The function and functionality of a protein are modu-
lated to a great extent by the spatial milieu in which it is 
situated, which in turn dictates the substrates and inter-
acting partners with which it comes across. Ongoing 
studies into the spatial distributions of cardiac proteins 
are inventorying the protein compositions in different 
cardiac organelles, with particular successes in cardiac 
mitochondria and nucleus proteomes, as elucidated via 
targeted enrichment of specific organelles. More recent 
studies in other organs are suggesting the possibility 
that proteins are actively and constantly translocalizing 
between organelles in response to cues, which can be 
measured by combining differential centrifugation, iso-
tope labeling, and machine learning techniques. Recent 
advances in data analysis have allowed such differential 
centrifugation techniques to be used for pan-organellar 
mapping. Instead of enriching only for a pure sample 
of a particular organelle type, a centrifugation gradi-
ent here is matched to a supervised classification algo-
rithm to classify proteins based on their sedimentation 
behaviors. The average intracellular position of many 
proteins can therefore be discovered by their group-
ing with known organellar markers. These approaches 
can be readily adopted to understand dynamic protein 
translocalization from one organelle to another, using 
new analytical frameworks that can quantify protein 
translocation in differential centrifugation experiments 
[60, 72]. Through proteomics studies, it is also demon-
strated that many proteins important in the heart can 
have multiple localizational isoforms that carry out dif-
ferent functions [73].
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Secondly, the synthesis rates of proteins have also 
proven important to tracing the progression of cardiac 
hypertrophy preceding heart failure. Interests in classi-
cal physiology to understand skeletal and cardiac mus-
cle mass gain have propelled technological and software 
developments aimed at understanding protein turnover, 
which can be applied to other fields. There have been 
particular developments in isotope labeling and kinetic 
modeling methods, which have elucidated the half-life 
of proteins in many various cellular compartments in 
the heart [74–77]. Developments in data analysis meth-
ods are particular important in this area, as although 
stable isotope administration and mass spectrom-
etry approaches have been in use for decades, MS data 
measuring the rate of isotope incorporation cannot be 
efficiently analyzed on a very large scale without spe-
cialized software that can deconvolute isotope patterns 
and fit massive datasets to kinetic models [78, 79]. Fol-
lowing these advances, in  vivo studies are revealing a 
previously unknown regulatory layer and architecture of 
the proteome in which functionally associated proteins 
share more synchronous turnover rates. During dis-
ease development, protein pathways have been found to 
deviate from physiological baseline via elevated protein 
replacement but not any apparent change in steady-state 
abundance, a result consistent with increased protein 
synthesis counterpoised by increased degradation [79]. 
Hence the measurement of half-life is also pursued to 
identify candidate disease proteins and from which to 
infer significantly dysregulated biological processes dur-
ing pathogenesis.

Mapping protein–protein interaction networks
There have been marked improvements in experimental 
protocols in affinity purification, as well as statistical and 
data science methods to filter out false positives in pull-
down experiments. Chiang et al. recently elucidated the 
interactome of the protein phosphtase 1 catalytic subu-
nit (PP1c), identifying 78 interacting partners in human 
heart. The proteomics results found increased binding to 
PDE5A in paroxysmal atrial fibrillation patients to impair 
proteins involved in electrical and calcium remodeling, 
a result that has implications in the understanding and 
treatment of atrial fibrillation [80]. Waldron et al. identi-
fied the TBX5 interactome in the developing heart to dis-
cover its interactions with the repressor complex NuRD, 
elucidating the mechanisms by which TBX5 mutations 
can influence cardiac development and confer congenital 
heart diseases. The accretion of public-domain protein–
protein interactome data are also serving as a perma-
nent resource that benefits other investigators outside 
the proteomics field, and in one but many recent exam-
ples provided important context to systems genetics 

experimental data to evidence the involvement of an 
interacting cilia protein network in congenital heart dis-
eases [81]. More recently, the CoPIT method extends the 
scope of comparison to degrees of interactions among 
samples across cell states with more rigorous statistics, 
and is particularly notable in its suitability for quantifying 
differential interactomes of membrane proteins in human 
diseases [47]. Potential protein–protein interactions 
can now also be predicted in silico and de novo using 
machine learning algorithms that take in experimental 
data and auxiliary information [82].

At the same time, there is renewed interest to per-
form crosslinker studies on a large scale, which in addi-
tion to identifying protein–protein interaction partners, 
can provide information on the topology and protein 
domains involved in the interactions. Again we note that 
the development of new proteomics methodologies now 
necessitates hand-in-hand advances of novel data sci-
ence solutions almost without exception. An example is 
the application of chemical cross-linkers in proteomics, 
which allows the linking of proximal proteins to quantify 
the degrees and likelihood of protein–protein interac-
tions in their native cellular environment. Cross-linking 
proteomics experiments are however infeasible without 
specialized search engines that can consider the combi-
natorics of crosslinked peptide sequences, and identify 
interacting proteins whilst controlling for the FDR that 
result from the quadratic increase of search space [83, 
84].

Outlooks: emergence of proteomics big data
Quantitative shotgun proteomics has developed into a 
remarkably powerful technology that enables sophisti-
cated questions on cellular physiology to be asked. The 
total volume of proteomics data generated per year now 
ranges in the petabytes. This is paralleled by an increas-
ing number of available proteomics datasets in the public 
domain that can be reused and reanalyzed, with as many 
as 100 new datasets being made available per month on 
the proteomics data repository PRIDE [85]. Hence join-
ing next-generation genomics, proteomics has become a 
veritable source of biomedical “big data”. As our capac-
ity for data generation surges, opportunities for break-
throughs will increasingly come from not how much 
more data we can generate, but how well we can make 
sense of the results. As a corollary, the need for proteom-
ics big data solutions is poised to skyrocket in the coming 
few years, where new resources, tools, and ways of doing 
science are needed to rethink how best to harness data-
sets and discern deeper meanings. The production of bio-
logical knowledge will involve tools and solutions devised 
in the field of data science, including those concern-
ing data management, multivariate analysis, statistical 
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learning, predictive modeling, software engineering, and 
crowdsourcing. Several current limitations and possible 
future frontiers, out of many, are discussed below:

Despite impressive gains, improvement of protein 
identification will likely continue to be an area of active 
research. It is estimated that up to 75–85 % of mass spec-
tra generated in a proteomics experiment can remain 
unidentified by current data analysis workflows [62, 86], 
thus leaving room for continuous growth through better 
bioinformatics in the near future. Currently the uniden-
tified “junk” spectra are mostly siloed or discarded, thus 
they constitute a major untapped source of biomedical 
big data. More inclusive search criteria (e.g., consider-
ing non-tryptic cleavage) can enhance identification, but 
there also exists a substantial portion of spectra that rep-
resent bona fide peptides not amenable to existing meth-
ods. These include peptides too short to score well in 
searching algorithms (≤5 amino acids), and peptides that 
are absent from protein sequence databases, e.g., variant 
peptides from polymorphisms or unknown splice iso-
forms. The advent of massive publicly available datasets 
has opened new avenues to tackle this problem [62, 63]. 
For instance, the millions of unidentified spectra that are 
uploaded to the PRIDE proteomics data repository may 
be systematically sorted and clustered, then analyzed via 
more exhaustive search protocols to identify what pep-
tides are commonly present but unidentified across data-
sets and experiments.

Secondly, advances in protein quantification tech-
niques, via both experimental and computational 
developments, will likely continue unabated. Many quan-
tification techniques do not take into account the pep-
tides that may become post-translationally modified or 
otherwise lost in a biological state. Currently, decreases 
in label-free measured quantity may be confounded by 
differences in protein modifications, digestion, or ioni-
zation, or matrix effects from different samples. For 
instance, the acquired spectral counts may be inflated by 
the existence of shared peptides among multiple (docu-
mented or undocumented) protein forms [87] as well 
as the sampling saturation for high-abundance peptides 
[88]. Statistical approaches pioneered in transcriptomics 
may be useful which can take into account the many-to-
many mappings between proteins and peptides and to 
reconstruct proteoforms from individual peptide signals.

Lastly, the identification of unknown or unspecified 
PTMs will likely see continued progress. Because the 
multiplicity of the possible modification types on a pep-
tide can shift peptide fragment masses combinatorially, 
they can greatly inflate the number of possible matches. 
Efforts are underway to develop custom sequence data-
bases and devise new algorithms to extract information 
from existing cardiovascular proteomics datasets that 

is currently “hiding in plain sight”. For instance, algo-
rithms can be used to predict peptide fragment intensity 
to improve peptide identification [89]. To make PTM 
search computationally tractable, multi-pass or cascade 
search approaches have been implemented that restrict 
the possibility of modified peptides to only within pro-
teins that were preliminarily identified in the initial 
search. To improve peptide identification, “spectral 
libraries” including library modules for the cardiovas-
cular system have been constructed that contain previ-
ously identified spectra, against which new experimental 
spectra can be directly matched for identification [57, 
90, 91]. Because spectral libraries contain only a small 
subset of all theoretical sequences, and contain precise 
peptide fragment intensity in addition to ion masses, 
library search can lead to faster and more accurate 
identification.

To summarize, we recall an apt analogy provided by 
Loscalzo to compare the understanding of cardiac pro-
teome with that of building a house and the genome 
with that of its floor plan [92]. Genomics kick-started 
the era of high-throughput omics investigations, but 
building a house requires more than just the blueprint; 
the complexity of protein regulation and pathway func-
tions is better approached with proteomics. Technologi-
cal advances in the last decade have gained tremendous 
power to discover finer minutiae of the house of the 
cardiac proteome. Success in the next 5 years will likely 
come from interfacing big proteomics data and compu-
tational approaches to distill regulatory principles and 
to support diagnostic/prognostic process from seem-
ingly overwhelming information. The notion that exist-
ing data contain additional latent information that may 
be extracted to answer future questions is a fundamen-
tal tenet of big data science. Extrapolating from current 
developments, one can envision sophisticated discovery-
driven studies in cardiac biomedicine, where original 
research projects may be initiated by data scientists using 
publicly-accessible proteomics datasets to ask new and 
unanticipated questions. A vibrant data science culture 
that promotes interactions between data generators and 
informaticians will facilitate the design and validation of 
computational methods and promote continued develop-
ment in proteomics.
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