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Introduction
Respiratory diseases are extremely costly to the swine industry, 
and research is essential for gaining a better understanding of 
the pathogenesis, diagnosis, and prevention of a respiratory 
disease. Pseudorabies virus (PRV) strain FS268 virus-induced 
pneumonia in young pigs provides a model for examining the 
response of the immune system to a respiratory pathogen.1

PRV is a neurotropic alphaherpesvirus2 that produces 
fatal encephalitis in newborn pigs, respiratory disorders in fat-
tening pigs, and reproductive failure in sows. There are three 
classes of swine in the US as defined in the USDA Veterinary 
Services PRV Program Standards: feral swine that are wild 
and free roaming, transitional swine that are considered to be 
owned by someone and may enter the food chain, and com-
mercial swine that are raised in an environment in which there 
is no contact with feral swine. Since the eradication of PRV 
from the US commercial swine herd, there have been rare 
case reports of transitional swine becoming infected with feral 
swine PRV isolates. The continued expansion of the feral swine 
population in North America presents an emerging threat to 
the PRV-free status of the US commercial swine herd.

Relatively little is known about the interactions of PRV 
and the cells infected by PRV in vivo. It is known that viruses 
hijack the biosynthetic, metabolic, and signaling machinery 
of the cell for their own ends. Viral proteins interact with spe-
cific cellular components to alter the function of these path-
ways and even alter gene expression in the host cell to bring 
about successful replication and production of progeny virus. 
As a defense, the cell has a number of innate mechanisms for 
detecting the diversion of these functions and will initiate 
events to inhibit viral replication or to kill itself in an attempt 
to stop the infection. These events, and how effective they are, 
have a profound effect on the events that follow, which include 
the ability to respond to and end the infection at the cellular or 
organismal level and the pathological changes that may occur, 
leading to death in severe cases.3 The isolation of PRV from 
porcine alveolar macrophages indicates replication of PRV 
during the course of infection that directly impairs the host’s 
defense mechanisms in the respiratory tract through lytic 
destruction of cells. The indirect effects on the host and the host 
response to infection can be measured through transcriptom-
ics, which provides insight into the molecular host/pathogen 
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response. In the case of PRV infection of nursery-age swine, 
we expect an acute respiratory disease that may be resolved 
by a robust host response, or if the virus is sufficiently patho-
genic, it may result in a central nervous system infection and 
death. To characterize the host–virus interaction, we chose 
to examine the tracheobronchial lymph nodes (TBLNs) that 
drain the inflamed lungs, because the lymph node is the site 
where the innate (early, nonspecific) immune response com-
municates with the adaptive (later, specific) immune system, 
which could provide a temporal site to study the host response 
to a viral pneumonia.

Serial analysis of gene expression (SAGE) is a powerful 
technique that allows for a detailed and profound quantita-
tive and qualitative knowledge of gene expression profiles, 
without previous knowledge of the sequence of analyzed 
genes. The output of eukaryotic genomes is much more 
complex than expected. Genes produce different variants of 
RNAs from multiple promoters. One of the ultimate targets 
of biological analysis is to establish a relationship between 
the messenger RNAs that are transcribed and the genomic 
regions (promoters) that control their expression. This entails 
deciphering the networks that regulate gene expression and 
the transcription factors that act as master regulators of 
transcriptional control.

Digital gene expression tag profiling (DGETP) is 
the most advanced derivate of the SAGE technology for 
the analysis of expressed genes in eukaryotic organisms (gene 
expression profiling).4 As in SAGE, a specific tag from each 
transcribed gene is recovered. By sequencing and counting as 
many tags as possible, the transcription profile, stating what 
gene is identified and how often, becomes apparent. DGETP 
uses the restriction enzyme, DpnII, to cut 21 bp long sequence 
tags from each transcript’s cDNA, expanding the tag size by 
at least 7 bp as compared to the predecessor techniques such as 
SAGE and LongSAGE. The longer tag size allows for a more 
precise allocation of the tag to the corresponding trancript, 
because additional bases increase the confidence in the map-
ping of the tag to a transcript or genomic position. We used 
the Solexa/Illumina Genome Analyzer II, in which adapter 
sequences, ligated to both ends of the DNA molecule, are 
bound to a glass surface coated with complementary oligo-
nucleotides. This is followed by solid-phase DNA amplifica-
tion and sequencing by synthesis.5 The system yields millions 
of short reads and is therefore very suitable for tag-based 
transcriptome sequencing. Each and every transcript can be 
quantified by counting the tags in a DGETP library such that 
quantitative genetics is readily possible with DGETP.

Our objective was to study the changes in the tran-
scriptome within the porcine TBLN during the acute phase 
of PRV infection. Using DGTEP, we identified host genes 
that showed significant changes in mRNA levels during 
experimental PRV infection in vivo. Here, we present a large-
scale analysis of the porcine physiological pathways regulated 
during viral infection.

Methods
Virus, animals, and experimental design. The animal study, 

conducted according to the National Animal Disease Center 
Institutional Animal Care and Use Guidelines, has been previ-
ously described by Miller et al.1 Briefly, 40 conventionally raised 
4- to 5-week-old pigs, free of clinical disease, were purchased 
from a Porcine Circovirus 2-, Swine Influenza Virus-, Porcine  
Respiratory and Reproductive Virus-, and PRV-negative herd. 
Pigs were equally allotted to two equal treatment groups, and each 
group was housed in an isolation room for about one week prior 
to the beginning of the experiment. On 0 day post-inoculation 
days post-inoculation (dpi), pigs received an intranasal challenge 
with 2 mL of either sham inoculum (n = 20), prepared from 
swine testicle cell culture, or virus inoculum (n = 20) of the Flor-
ida strain isolate (FS 268) of feral swine PRV6 at 1 × 106 cell cul-
ture infectious dose 50% (CCID50) per pig. Five pigs from each 
group were euthanized and necropsied on 1, 3, 6, and 14 dpi.

tissue collection and total rNA isolation. One gram of 
TBLN from each pig was collected immediately upon necropsy, 
minced, and stored in RNAlater at −80 °C until homogenization 
for extraction of total RNA with MagMAX™-96 for Micro-
arrays Total RNA Isolation Kit (Applied Biosystems) according 
to the manufacturer’s protocol. The integrity of the RNA was 
confirmed using a 2100 Bioanalyzer and RNA 6000 Nano-chip 
(Agilent Technologies). The samples had an average RNA Integ-
rity Number (RIN) value of 7.8 and 28S:18S rRNA ratio of 1.9.

digital gene expression tag profiling. Tag library prepara-
tion was performed at Iowa State University DNA facility using 
a DGETP DpnII Sample Prep kit and protocol (Illumina). In 
brief, total RNA aliquots (1 mg) were diluted in 50 mL of nucle-
ase-free H2O and heated at 65 °C for five minutes to disrupt the 
secondary structure prior to incubation with magnetic oligo-dT 
beads to capture the polyadenlyated RNA fraction. First- and 
second-strand cDNA were synthesized, and bead-bound cDNA 
was subsequently digested with DpnII to retain a cDNA frag-
ment from the most 3′ GATC to the poly(A)-tail. Unbound 
cDNA fragments were washed away prior to ligation with GEX 
DpnII adapter to the 5′ end of the bead-bound digested cDNA 
fragments. This adapter contains a restriction site for MmeI that 
cuts 17 bp downstream from the DpnII site. After subsequent 
digestion with MmeI, 21 bp tags starting with the DpnII recog-
nition sequence were recovered from the beads and dephospho-
rylated prior to phenol–chloroform extraction. Then, a second 
adapter (GEX adapter 2) was ligated onto the 3′ end of the 
cDNA tag at the MmeI cleavage site. The adapter-ligated cDNA 
tags were enriched by a 15-cycle PCR amplification using Phu-
sion polymerase (Finnzymes) and primers complementary to 
the adapter sequences. The resulting fragments were purified by 
excision from a 6% polyacrylamide TBE gel.

The DNA was eluted from the gel debris with 1 × 
NEBuffer 2 by gentle rotation for two hours at room tempera-
ture. Gel debris was removed using Spin-X Cellulose Acetate 
Filter (2 mL, 0.45 µm), and the DNA was precipitated by add-
ing 10 µL of 3 M sodium acetate (pH 5.2) and 325 µL of 
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ethanol (−20 °C), followed by centrifugation at 14,000 rpm for 
20 minutes. After washing the pellet with 70% ethanol, the 
DNA was resuspended in 10 µL of 10 mM Tris–HCl at pH 
8.5 and quantified with a Nanodrop 1000spectrophotometer. 
Sequencing using Solexa/Illumina Whole Genome Sequencer 
Cluster generation was performed according to the manufac-
turer’s instructions. Image analysis and base calling were per-
formed using the Illumina Pipeline to create a fastq file for each 
library. The data for each library have been submitted to the 
public repository Gene Expression Omnibus (GSE74473).

transcriptome determination. Figure 1 depicts how the 
tag data were processed, related to preexisting genomic data, 
and analyzed.

Step 1 – Populate the Identitag database with tag data 
and library metadata. Illumina fastq files for the infected and 
control libraries were processed by a custom perl script that 
created the three-column Filtered Tag Count File consisting 
of the first 20 bases of the tag sequence, raw tag count, and 
the normalized tag count in units of tag per million (TPM). 
A transcripts per million value for a specified transcriptional 
unit (TU) was calculated by counting the appearance of 
DEGTP tags for a given TU divided by the total number 
of TU counts obtained from a particular tissue and normal-
ized per million. Using a customized perl script, the Filtered 
Tag Count File for each library was parsed into the Identitag 
database as well as sequencing library metadata, as previously 
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described.7 The Identitag database has been optimized for tag-
centric queries that provide a convenient mechanism to asso-
ciate swine tags with RefSeq (NM_and XM_) transcripts. 
Only those tags that mapped uniquely to the swine genome 
assembly SGSC Sscrofa10.2/susScr3 were used in subsequent 
steps in our pipeline.

Step 2 – Compute differential TBLN transcript abundance 
between PRV-infected and control swine pools with MatLab. 
For each library, the tag sequences and associated normalized 
abundance at two TPM or greater were imported into Mat-
Lab cells using the MatLab Toolbox’s query builder utility and 
aggregated into infected and control four-column matrices; the 
columns corresponded to 1, 3, 6, and 14 dpi, while the rows 
were associated with a unique tag sequence. The methods of 
Audic and Calaverie8 were used to calculate a P-value for each 
infected: control pair at 1, 3, 6, and 14 dpi. These P-values were 
corrected for multiple testing, and to generate an associated 
q-value, the positive false discovery rate corrected analog of the 
P-value was calculated according to the methods of Storey and 
Storey and Tibshirani9,10 with mafdr (Bionformatics Toolbox 
function). For each dpi using unique tag sequence and their 
q-values as input, volcano plots (Bionformatics Toolbox mavol-
canplot) were used to select those tags with at least a twofold 
abundance difference between infected vs control with a sig-
nificance q-value of 0.01 or less. The tags selected in this man-
ner were defined to be differentially expressed (DE). The DE 
tags at time X were clustered with respect to their abundance at 
every time point throughout the course of the experiment using 
a correlation distance measure (Statistics Toolbox − k-means, 
using the distance: correlation parameter: value pair) to cluster 
the data; this distance measure is useful because both highly 
and lowly abundant tags that tend to change synchronously 
through time will cluster together. Optimum cluster number 
was determined by maximizing the distances between the 
clusters using silhouette plots (Statistics Toolbox – silhouette 
using the correlation interpoint distance function). The DE tag 
sequences, q-values, fold changes relative to control, and cluster 
number at every time for this virus challenge experiment were 
saved in a Matlab DataMatrix object (Bioinformatics Toolkit); 
additionally, flat file representation of each of the DataMatrix 
objects was created and parsed into the Identitag database, one 
table for each DataMatrix object. Ad hoc queries were con-
structed to link tag sequence, transcript, gene, and finally to 
gene metadata. For instance, a view was constructed to link 
DE tag sequence to both the swine RefSeq transcript and the 
swine gene symbol.

Step 3 – Discover significant associations between groups 
of DE swine genes with pathways and other datasets. The 
input of gene set enrichment analysis (GSEA) was a two-col-
umn tab delimited file, false discovery rate corrected Ranked 
Gene list, with the gene symbol of the DE tag in the first 
column and fold change tag abundance of infected relative 
to control in the second column. The genes in this list were 
ranked from most overexpressed to most underexpressed. 

The data gene rank files were loaded into GSEA via its “Load 
Data” menu item and subsequently processed using the 
GSEA Pre-Ranked Gene List tool using the following para-
meters: nperm:1000, norm:meandiv, collapse:false, set_min:5, 
set_max:1500, make_sets:true, mode:Max_probe, scoring_
scheme:weighted. In our analyses, chip: gseaftp.broadinstitute.
org://pub/gsea/annotations/GENE_SYMBOL.chip, we used 
the following reference gene lists: c2.all.v3.0.symbols.gmt, 
c3.all.v3.0.symbols.gmt, c4.all.v3.0.symbols.gmt, c5.all.
v3.0.symbols.gmt downloaded from gseaftp.broadinstitute.
org://pub/gsea/gene_sets. The DE genes for each dpi were pro-
cessed through GSEA against these four reference gene lists. 
For each DE gene list and reference gene list combination, 
a directory of results linked together via an index.html webpage  
was created. The resulting files gsea_report_for_na_pos*.xls 
and gsea_report_for_na_neg*.xls (*, a wildcard placeholder) 
are Excel spreadsheets that report reference gene sets and 
enrichment and significance statistics for those reference gene 
sets that are enriched in the genes present in the input DE gene 
list. These GSEA-generated Excel spreadsheet results were 
parsed into our database to be accessed by our visualization 
pipeline in Step 4. Additionally, leading edge analyses (http://
www.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.
html) were performed after the GSEA analysis to identify 
core genes from a given group of gene sets that were signifi-
cantly (false discovery rate [FDR] # 0.25) enriched in the 
genes present in the input DE gene list.

Step 4 – Hive plot visualization of the GSEA data. Hive 
plots11 were generated with the linnet (http://www.hiveplot.
net/distro/hiveplot–0.02.tgz) application (version 0.02) using 
as input a custom configuration file (Supplemental data 1) and 
a data file (Supplemental data 2) generated from a custom 
perl script, create_hiveplot_input.pl. A GSEA database was 
created within which two important tables were populated, 
a Gene_Set_Hiveplot table that related NCBI gene symbols, 
with Molecular Signature Database collection, gene set, num-
ber of genes in the particular gene set, and ordinal position on 
the central vertical axis. The second table, GSEA_Report_
XLS, was populated with the output of the GSEA-generated 
spreadsheets. Within our existing virus database, the Swine_
Genes_Pos_For_Hive_Plot table was populated with data 
that related GeneID, Gene Symbol, chromosome, and ordi-
nal positions on the chromosome and genome; the Hiveplot_
Link_Colors table was populated with data that related tag 
sequence, dpi, fold change (infected relative to control), and 
link color. These four tables were required to generate the data 
files necessary for linnet to create the hive plots presented here. 
The hive plot input file was derived only from the tags that 
mapped to swine transcripts with EntrezGene Gene Symbols 
that were identical to human EntrezGene Gene Symbols.

results
clinical evaluation. The clinical symptoms and gross 

pathology, previously described,1 were typical of a systemic 
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infection that resembled expectations based on experimental 
and natural infections.12 Briefly, PRV-inoculated pigs devel-
oped mild clinical disease, with symptoms such as anorexia, 
sneezing, increased respiration rates, and dyspnea, beginning 
from 2 to 3 dpi and resolving by 14 dpi. Control animals did 
not display clinical signs or gross lung lesions consistent with 
PRV infection. Pigs inoculated with PRV had an increased 
(P , 0.05) rectal temperature from 1 to 6 dpi. No significant 
differences (P . 0.05) were found in daily weight gain between 
pigs inoculated with PRV (average 0.6 kg/day) and control pigs 
(average 0.6 kg/day). Gross lung lesions in PRV-inoculated 
pigs consisted of mainly hilar multifocal areas of purple to 
red areas of consolidation. Lesions were most pronounced at 
3 and 6 dpi. Bacteria typically associated with porcine respira-
tory disease were not isolated from the broncho-alveolar lavage 
fluid (BALF) of any of the pigs. Pig serum was negative (mean 
S/N 1.22) for PRVgB antibody at 0 dpi and positive (mean 
S/N 0.26) at 14 dpi.

transcriptome analysis. For an in-depth assessment of 
the PRV-infected pig transcriptome, we generated and ana-
lyzed eight DE libraries with an average of 11,461,225 tags 
per library. Linkers and transcript tags with a count of less 
than two TPM were removed, resulting in a total of 7,286,872 
TPM sequences of which 1,927,547 were unique tag sequences. 
To elucidate the global transcriptional response during infec-
tion, pairwise comparisons between infected and control at 
four time points were calculated (Fig. 2).

cluster analysis. Volcano plots show that 288 tags at 
1 dpi (Fig. 3), 308 tags at 3 dpi, 288 tags at 6 dpi, and 661 
tags at 14 dpi were found to be DE (fold change estimates 
(fc) . 3 (q , 0.001) relative to control tags). A total of 137 tags 
at 1 dpi are also DE at 3 dpi and of those 137 common tags, 
40 transcripts matched to Refseq. The behavior of the DE 
tags at each time point was followed throughout the course of 
the experiment using k-means clustering of tags: cluster with 
respect to correlation distance (Fig. 4). The number of clus-
ters is selected using silhouette plots, choosing the number of 
clusters that maximizes the silhouette values for all clusters. 
It is an objective way of determining the number of clusters. 
Figure 4 shows the little variation in the control tags using 
the optimum number of clusters for the different time points, 
where each line represents an individual tag. The number of 
DE tags changes between the time points (DE threshold set 
at 2 × fold change with an FDR of q # 0.01).

Gene set enrichment analysis. The updated analysis 
pipeline contains 7,804 swine RefSeq sequences and 240,420 
HarvardGI accessions (SSGI release 14), allowing us to asso-
ciate tags with transcripts and genes. Virus sequences from 
Refseq and GenBank allowed us to determine viral tag counts 
in the libraries. The DE swine genes were processed though 
the GSEA application,13,14 with the results parsed into a 
database. GSEA is a computational method that determines 
whether an a priori defined set of genes shows statistically 
significant and concordant differences between two biological 
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states (eg, phenotypes). In the present case, the two states are 
infected vs. control at particular dpi as quantified by the DE 
transcript phenotype. The a priori defined 6,443 sets of genes 
were downloaded from the Molecular Signatures Database at 

the Broad Institute and consisted of four major collections: 
C2 – curated gene sets (ie, from various sources such as the 
KEGG, Biocarta, and Reactome databases, publications in 
PubMed, and knowledge of domain experts), C3 – motif gene 
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sets based on genes known to share a cis-regulatory motif rep-
resenting known or likely regulatory elements in promoters 
and 3′-UTRs,15 C4 – computational gene sets gleaned from 

cancer-oriented microarray data, and C5 – GO gene sets of 
sharing the same GO term. Gene sets refer to the Molecular 
Signatures Database collections, while gene lists refer to DE 
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gene lists determined in the experiments described. Because 
the GSEA application processes expression data associated 
with human gene symbols, our analysis of swine genes was 
restricted to those with gene symbols that exactly matched 
their human homolog. The GSEA application involved mul-
tiple tests corrected via bootstrap. The primary result of the 
GSEA is the enrichment score (ES), which reflects the degree 
to which a gene set is overrepresented at the top of bottom of 
a ranked list of genes. In the analysis results, the enrichment 
plot provides a graphical view of the ES for a gene set (Supple-
mentary data 1). The GSEA determined P-values, and FDRs 
refer to the statistics of association of the gene sets with our 
gene lists, not with differential expression. GSEA calculates 
the ES by walking down the ranked list of genes, increasing 
a running-sum statistic when a gene is in the gene set and 
decreasing when it is not. The magnitude of the increment 
depends on the correlation of the gene with the phenotype. 
The ES is the maximum deviation from zero encountered in 
walking the list. A positive ES indicates gene set enrichment 
at the top of the ranked list; a negative ES indicates gene 
enrichment at the bottom of the ranked list. Enrichment and 
normalized ES were calculated that provided a measure of the 
overrepresentation of a particular reference gene set at the top 
or bottom of the input ranked list of DE genes. Leading edge 
analyses were performed after the GSEA analysis to identify 
core genes from a given group of gene sets that were signif-
icantly (FDR # 0.25) enriched in the genes present in the 
input DE gene list. The goal of this analysis is to identify those 
genes that were present in multiple significantly enriched gene 
sets (Supplementary data 1). Within a highly ranked gene set, 
each gene may not necessarily earn a high score, but the lead-
ing edge analysis reveals key subsets of genes and uncovers 
genes that behave similarly yet belong to distinct gene sets and 
therefore can detect subtle changes in gene expression.

In the leading edge analysis of the C2 curated gene sets, 
labeled with their experimental reference in Supplemental 
data 2, we observe that the number of gene sets increases from 
1 dpi, with IL1B most common in inflammatory response 
gene sets16 followed by OAS1 found in interferon response 
gene sets,16 to a maximum at 3 dpi, with ISG15 and OAS2 
present in 30 gene sets followed by IFITM1 and IRF7 in 
29 gene sets, and decreases at 6 dpi, with IFIT3, IFIT1,  
OAS2, and ISG15 in the highest number of gene sets, and 
14 dpi, with CCNB1 and BIRC1 in the highest number of 
gene sets that appear to be those related to regulation of cell 
cycle, cancer, and cell death. Many members of the herpes virus 
family have also been shown to manipulate p53 for their own 
purposes, using specific viral proteins.17–21 The role of cyclin 
B1 (CCNB1) is to transition the cell from G2 to M phase, 
but it becomes unregulated when overexpression of cyclin B1 
can lead to uncontrolled cell growth by binding to its partner 
Cdks. This is a consequence of p53, tumor suppressor protein, 
being inactivated. Regulation of survivin (BIRC1) also seems 
to be linked to the p53 protein.22 At 1 dpi, the motif gene set, 

C3, contained genes originating from the bottom of the gene 
list, which are downregulated  and involved in regulatory roles 
in neuronal growth, and the most common across the gene sets 
was Stathmin 2 (STMN2). No C3 gene sets were significantly 
differently expressed from controls at the other time points. 
Many of the C4 computational cancer-related gene sets were 
DE at all time points. Interestingly, at 3 dpi, the genes were all 
originating from the top of the gene list, that is, upregulated 
in relation to control, yet those from the module_44_signal 
gene set, IFIT1 and ISG15 in particular, were found to be 
downregulated at 6 dpi. The C5 GO gene sets sharing the 
same GO term showed only two different gene sets, each at 3 
and 14 dpi.

Hive plots. Hive plots were used to visualize the genome-
wide changes in the swine transcriptome, at each dpi, by the 
physical genome position of the regulated genes, the genes’ 
transcript abundance, and by GSEA collection encompassing 
KEGG pathway, regulatory motifs, and GO classification for 
each treatment vs control, allowing direct comparison by dpi 
and virus infection. We chose the layout of the visualization 
axes to depict that at a given dpi, a particular gene may be 
simultaneously involved in distinct regulatory motifs, KEGG 
pathway(s), and/or GO classification. This one-to-many rela-
tionship, gene to role, reflects the multiple biological roles of a 
particular gene in a given environmental history the organism 
was subjected to. This depiction is an attempt to ascribe data-
driven physico-temporal qualities to genes that reveal their 
roles in PRV infection. A three-axis coordinate system was 
chosen as depicted in Figure 5, with two axes representing the 
swine autosomes stacked from the center of the figure radially 
outward from chromosomes 1–19, X, Y, and MT (mitochon-
drion) with the axis extending to the right being associated 
with gene set associations at the top of the experimental gene 
list (generally speaking, over DE with respect to control) and 
the left axis associated with the bottom of the gene lists (gen-
erally speaking, under DE with respect to control). Each gene 
set from categories C2–C5 in the Molecular Signatures Data-
base is represented by a position on the center axis that extends 
vertically from the center toward the bottom of Figure 5. The 
gene sets were positioned on the axis relative to each other 
within a given category; those gene sets with more genes were 
placed above gene sets with fewer genes. The hive plot input 
file was derived only from tags that mapped to swine tran-
scripts with EntrezGene Gene Symbols that were identical to 
human EntrezGene Gene Symbols.

Hive plots identified regions of the swine genome that 
encompassed all chromosomes (1–18, X, Y) and the mitochon-
drial genome, which were DE either negatively or positively 
and associated with the GSEA gene set indicated by colored 
lines, where the color is proportional to the fold change with 
respect to uninfected controls permutated 20% (Fig. 6). Here, 
we can visualize the DE gene behavior profile across the whole 
genome at the time points during acute PRV infection. Most 
noticeably, early in infection, the DE gene sets associated 
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figure 6. (Continued)

or lack of activity in differential expression across all gene sets 
at 6 dpi. We found that transcripts associated with ribosomal 
function are consistently depressed relative to the control (3, 
6, and 14 dpi). The GSEA strategy shows coregulated genes 
within gene sets. Transcripts of genes sharing common motifs 
(C3) are DE. Regulatory targets appear to be involved early in 
the disease process. The hive plots also show that genes with 
similar expression levels tend to be clustered within the same 
genomic neighborhoods.

discussion
We hope that by studying the transcriptome of the host, 
we could gain insight into the progression of PRV disease. 
The status of both the controls and PRV-infected swine 
was verified clinically. We propose a model of the relation-
ship between TBLN gene expression profiles and infection 
pathology (Fig. 7). Upon infection of the host, in keeping with 
replication and dissemination by PRV, at 1 dpi we observe 
induction of the host innate immune response, including 
the upregulation of interferon responsive genes, inflamma-
tory response genes, and cytokine–cytokine receptor interac-
tion, but downregulation of histone deacetylases and multiple 
signaling motifs. Expression of proinflammatory cytokines, 
chemokines, adhesion molecules, inflammatory enzymes and 
receptors, and adaptive immune response conform to the fever 
and pneumonia observed during 1 to 6 dpi.

At 6 dpi, there is a significant shift toward downregulation 
of transcripts, and no transcripts are significantly upregulated in 
the control (Fig. 6C), including interferon responsive genes and 
inflammatory response genes that had been upregulated at 1 dpi. 
By 14 dpi, the pigs have seroconverted to have PRV gB antibody, 
and we begin to see recovery: lesions are less pronounced. There 
is a significant differential expression of the greatest number of 
genes of all the time points at 14 dpi most of which are featured 

figure 5. hive plot coordinates to facilitate the visualization of changes in 
the transcriptome. a three-axis coordinate system was chosen, with two 
axes representing the swine autosomes stacked from the center of the figure 
radially outward from chromosomes 1–19, X, y, and mt (mitochondrion), 
with the axis extending to the right being associated with gene set 
associations at the top of the experimental gene list (generally speaking, 
over dE with respect to control) and the left axis associated with the bottom 
of the gene lists (generally speaking, under dE with respect to control). Each 
gene set from categories c2–c5 in the molecular signatures database is 
represented by a position on the center axis. the gene sets were positioned 
on the axis relative to each other within a given category; those gene sets 
with more genes were placed above gene sets with fewer genes.

with known swine pathways (C2) and gene ontology (C5) 
decreased, with the swine motifs (C3) decreasing in expres-
sion most significantly at 1 dpi a temporary interval of quiet 
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in the computation cancer gene sets and most likely involved in 
cell death signaling, while cell regrowth and renewal are upregu-
lated with cell cycle mitotic signaling gene sets.

A previous study compared the viral regulation of host 
cell gene expression during the productive infection by her-
pes simplex virus-1 (HSV-1) and PRV.23 Although the two 
viruses have distinct natural hosts and low DNA sequence 

figure 6. hive plots of dE genes associated with gsEa gene sets expressed in tBln of PrV-infected pigs at 1 (a), 3 (B), 6 (C), and 14 dpi (D). hive 
plots identified regions of the swine genome that encompassed all chromosomes (1–18, X, Y) and the mitochondrial genome, which were DE either 
negatively or positively and associated with the gsEa gene set, indicated by colored lines, where the color is proportional to the fold change with respect 
to uninfected controls.

PRV replication and
dissemination

Fever

Moderate to severe pneumonia
Infiltration of inflammatory cells
Increase in B-cell population

Cell death and tissue damage

Clinical symptoms
Fever, anorexia, sneezing, increased respiration rates and dyspnea

Necrosis and apoptosis

14 dpi

6 dpi

3 dpi

1 dpi Interferon responsive genes
Inflammatory response
Cytokine-cytokine receptor interaction

Oxidative phosphorylation
RIG-I-like receptor signaling pathway
Toll-like receptor signaling pathway

Cell cycle mitotic signal
EGFR-driven tumorigenesis

Induction of host innate immune response, lipid metabolism, inducing
apoptotic and inflammatory state

Expression of pro-inflammatory cytokines, chemokines, adhesion molecules,
inflammatory enzymes and receptors, and adaptive immune response

Toll-like receptor signaling pathway

Histone deacetylases (HDACs) repress transcription
Neuronal growth signaling motifs

Interferon responsive genes
Inflammatory response
Histone deacetylases (HDACs) repress transcription

PRV

figure 7. Model of the relationship between TBLN gene expression profiles and PRV infection pathology.

homology, they display a high degree of similarity in their 
viral replication cycles, virion structures, gene organizations, 
and gene functions.24 Rat embryonic fibroblasts were used 
as a common permissive cell type for both viruses. While 
rats are not a natural host for either PRV or HSV-1, both 
viruses exhibit similar virulence and pathogenic effects in 
rodents as in their natural hosts, which may reflect common 
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molecular interfaces of host and viral gene products during 
infection. Surprisingly, only 32% (498 out of 1,549) of cel-
lular transcripts, representing diverse host functions, were 
similarly affected by viral infection of HSV-1 and PRV. Most 
of the alterations in cellular transcript levels occurred late in 
infection and were unlikely to derive from a general stress 
response, since more than a third of these late changes are 
virus specific. Commonly affected genes included oxidative-
stress response genes, heat shock genes, and genes involved 
in the phosphatidylinositol 3-kinase/Akt signaling pathway. 
Interferon- and interleukin-related genes were altered after 
HSV-1 but not PRV infection. Further comparison with 
array data from the transcriptional response of human cells 
to HSV-1 infection shows only 29 HSV-1-responsive genes 
shared by rat and human cells, of which only 12 are similarly 
affected by PRV.

GSEA identifies gene sets consisting of coregulated 
genes; GO gene sets are based on ontologies and do not nec-
essarily comprise coregulated genes. PRV has been shown to 
be a pertinent model for the time course transcriptomic study 
of herpesviruses and its mode of interaction with the host.25–27 
Anselmo et al found miRNAs as well as other small regula-
tory molecules to be DE between PRV-infected and mock-
infected porcine dendritic cells28 and noted that infection 
caused an intense downregulation of miRNAs, which were 
well expressed in the mock-infected condition. Similarly, Flori 
et al found differential expression levels between PRV-infected 
and mock-infected PK15 cells eight hours PI. The down-
regulated miR-29b and miR-29a are together or individually 
connected to the upregulated SMARCE1, HBO1, NKX6-1, 
HOXA10, HBP1, OTUD4 genes, with highly significant 
functions in the development and function of the nervous sys-
tem and in infectious mechanisms. Huang et al detected DE 
miRNAs in PK-15 cells after PRV infection and found that 
miR-21 was extremely upregulated and further suggested that 
the replication of PRV in PK-15 cells could be inhibited by 
chemokine (C-X-C motif) ligand 10 (CXCL10), also known 
as interferon-γ inducible protein-10 (IP-10), which was a novel 
target of miR-21.26 However, the posttranscriptional regula-
tion of these genes is unclear, and thus far, no data on host-
specific genes and regulation of the replication of virus in vivo 
have been reported.

Multidirectional cooperativity is the norm of signaling 
networks rather than oversimplistic canonical or noncanoni-
cal linear pathways; for example, in Wnt signaling.29 Recent 
genome-wide expression studies in several organisms, such as 
Drosophila, nematode, mouse, human, and Arabidopsis, have 
shown that genes with similar expression levels are nonran-
domly distributed within genomes and tend to cluster within 
genomic neighborhoods.30,31 This seems to be evidenced in our 
hive plot visualization. The hive plots revealed aspects of host 
response that could not be visualized previously. This dem-
onstrated that we cannot rely solely on canonical pathways to 
inform a transcriptome experiment.

conclusion
Here, we introduce a new approach for visualizing whole 
genome similarities and differences between different treat-
ments with hive plots. DE tags (with respect to control) at 
all time points were mapped to known metabolic, signaling, 
and other pathways/networks using GSEA. Gene activity was 
detected across the whole genome. Unfortunately, only 20% of 
DE tags can be associated with human gene symbols, but the 
picture will likely change dramatically as annotation improves. 
We identified groups of genes that are predicted to share the 
same regulatory elements that are knocked down in a coordi-
nated fashion early in viral infection. The finding of significant 
cytokine DE was corroborated by the changes in cytokine pro-
tein levels in serum and TBLN.1
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supplementary Materials
supplementary data 1. Differentially expressed tags com-

paring control to PRV infected for each time point. Sorted on 
increasing P-value of the Audic-Claverie (Control_v_Infect_
DayX) test for day X, comparing the control day vs infected 
day. Values closer to 0 indicate more likely differential expres-
sion. The tags on the top of the list indicate the most differential 
expression in most of the days, while the tags on the bottom of 
the list show the least differential expression for the least number 
of days. A secondary sort was done where the tags are arranged 
using Infect_Variation_Relative_To_Control from the larg-
est to the smallest. Infect_Variation_Relative_To_Control 
is Infect_Coeff_Var/Control_Coeff_Var, a measure of the 
variability in the infected tissue signal vs control tissue.

supplementary data 2. Leading edge analysis. The lead-
ing edge subsets in a gene set are those genes that appear in 
the ranked list at or before the point at which the running 
sum reaches its maximum deviation from zero. The leading 

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Miller et al

36 Bioinformatics and Biology insights 2015:9(s2)

edge subsets can be interpreted as the core that accounts for 
the gene set’s enrichment signal. After running the gene set 
enrichment analysis, leading edge analysis is used to examine 
the genes in the leading edge subsets of the enriched gene sets. 
A gene that is present in many of the leading edge subsets is 
more likely to be of interest than a gene present in only a few 
of the leading-edge subsets.

supplementary data 3. List of DE genes ranked from 
the Broad Institute’s GSEA application that compares the 
gene set supplied and ranked using user DE algorithms as 
input into the Broad Institute’s enrichment algorithm.
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