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Atp Depletion Via Mitochondrial F1F0 complex by Lethal Factor 
is an early event in B. Anthracis-Induced sudden cell Death
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Abstract: Bacillus anthracis’ primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF), lethal factor (LF) 
and protective antigen (PA). In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin-
dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein 
kinase kinases. Lethal toxin (LT: PA plus LF)-induced death of macrophages is primarily attributed to expression of the sensitive 
Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here 
we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The 
underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in 
mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 
polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell 
death and its prevention increases survival of toxin-sensitive cells.
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Introduction
Bacillus anthracis is a gram-positive, aerobic, 
nonmotile, catalase-positive, rod-shaped, spore-
forming bacterium that causes three forms of 
anthrax pathologies: cutaneous, inhalation, and 
gastrointestinal. Its major virulence factors are edema 
factor (EF), lethal factor (LF), and protective antigen 
(PA). In complex with receptor-binding moiety PA, 
EF and LF form toxins (edema toxin and lethal 
toxin, LT) that are internalized via receptor-mediated 
endocytosis.1,2 EF contains 767 amino acid residues 
and is a calmodulin-dependent adenylate cyclase 
that induces tissue edema. LF (776 amino acids) is a 
zinc-metalloprotease that cleaves mitogen-activated 
protein kinase kinases (MKKs).3

Recent data show that the susceptibility of murine 
macrophages to rapid LT killing is controlled by an 
extremely polymorphic gene, Nalp1b.4 Nalp1b (also 
known as NLRP1) is involved in the formation of a 
multimeric protein complex called inflammasome, 
which contains and activates caspase-1.5 Caspase-1 
mediates the processing of inflammatory cytokines 
including IL-1β and IL-18.6 While many details of 
caspase-1 activation have been described, including 
the regulatory role of proteasomes in this process,7,8 
it still remains to be shown how LT activates the 
inflammasomes and how caspase-1 activation leads 
to cell death. Macrophages, in which IL-1β and 
IL-18 had been deleted, display high susceptibility 
to caspase-1-mediated necrosis,9 indicating that these 
cytokines are associated with, but alone do not cause 
cell death.

LT-induced mitochondrial dysfunction is 
also a critical event in the cytolysis of murine 
macrophages.10 The rapid decline in mitochondrial 
function and changes in mitochondrial membrane 
potential in LT-treated cells indicate early damage 
to mitochondria.10 In support, two closely related 
mitochondrial proteins, Bcl-2/adenovirus E1B 
19-kDa interacting protein 3 (Bnip3) and Bnip3-like 
(Bnip3L), were shown to be required for rapid cell 
death.11

It has been shown that LT-induced cell death 
is associated with ATP depletion.10 Oxidized ATP 
protects mice and cultured cells from LT toxicity 
by preventing endosome acidification, which is 
required for translocation of LF to the cytosol.12 
This phenomenon appears to be associated with 

inhibition of endosome vacuolar H+-ATPase activity.12 
An independent study showed that oxidized ATP 
also binds irreversibly to both α and β subunits of 
mitochondrial F1 ATPase and decreases its activity.13 
Here we show that after internalization, LF localizes 
to mitochondria and interacts with F1F0 complex 
proteins including, subunits β and γ, resulting in 
increased ATPase activity and depletion of cellular 
ATP, which is a critical early event in LT-induced 
sudden (pyroptotic) cell death.

Materials and Methods
Cell cultures
Mouse alveolar macrophage (MH-S) cells (CRL-2019, 
American Type Culture Collection: ATCC; Manassas, 
VA) were cultured in RPMI 1640 medium. LA-4 
(CCL-196, ATCC) mouse lung epithelial cells were 
cultured in F-12 Kaigh’s modified medium. All media 
were supplemented with 2 mM L-glutamine, 1.0 mM 
sodium pyruvate, 10% fetal bovine serum (FBS, 
Atlanta Biological, Lawrenceville, GA), 100 units/
mL penicillin, and 100 µg/mL streptomycin. The 
cells were routinely subcultured using trypsin-EDTA 
and incubated under a humidified atmosphere of 95% 
air and 5% CO2 at 37 °C.

Establishment of respiration-deficient cells
Mitochondrial DNA-deficient cells were developed 
as we described previously.14 MH-S cells were 
maintained in the presence of 200 ng/ml ethidium 
bromide for 60 population doublings. Respiration-
deficient cells became pyrimidine auxotrophs and 
media were supplemented with uridine (50 µg/ml) 
and sodium pyruvate (120 µg/ml).15 Depletion 
of mitochondrial DNA (mtDNA) was confirmed 
by Southern blot hybridization.16 The DNA 
probe for hybridization was generated by PCR. 
The forward and reverse primer sequences were 
as follow: 5′-GCAGGAACAGGATGAACAGTCT-
3′ and 5′-GTATCGTGAAGCACGATGTCAAGG-
GATGTAT-3′, respectively. The 725-bp product 
recognized a 10.8-kb restriction fragment when 
hybridized to MH-S mtDNA digested with BamHI as 
described previously.14,16

Annexin V assay
Cell death assays were performed as we previously 
described.17 Briefly, cells were treated with LT for 
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0, 1, 1.5, 2, 2.5, 3, 4, and 6 h, then washed with 
phosphate buffered saline (PBS), resuspended 
in 1X binding buffer (0.1 M HEPES/NaOH, 
pH 7.4, 1.4 M NaCl, 25 mM CaCl2) stained for 
30 min with Annexin V-Phycoerythrin (PE) and 
7-Aminoactinomycin D (7-AAD) (Annexin V-PE 
Apoptosis Detection Kit I, Becton Dickinson, San 
Jose, CA). Changes in fluorescence were analyzed 
by flow-cytometry (BD FACSCantoTM Becton 
Dickinson). A minimum of 15,000 cells were 
collected and analyzed using BD FACSDiva™ 
software (Becton Dickinson).

Microscopic analysis  
of morphological changes
Cells on cover-slips were LT-exposed (250 ng/ml 
PA + 50 ng/ml LF), fixed in formaldehyde and stained 
to visualize mitochondria with MitoTracker red (MTr, 
50 nM, Molecular Probes Inc, Eugene, OR) and the 
DNA with SYBR green I (1:1,000 dilution, Molecular 
Probes). Confocal microscopy was performed using a 
Zeiss LSM510 META system [488 nm for excitation 
of SYBR green I (green) and 543 nm excitation of MTr 
(red)]. Images were superimposed using MetaMorph 
software Version 6.0r9.

Assessment of ATP levels
ATP levels were determined as described 
previously.18 Briefly, ATP from mock- and LT-treated 
cells was released by boiling in distilled water 
(for 3 min). The lysates were then centrifuged at 
12,000 × g for 5 min at 4 °C. ATP levels in supernatants 
were measured using the ATP Determination Kit 
(Molecular Probes). Luminescence was determined 
in a Veritas Microplate Luminometer (Turner 
Biosystems, Sunnyvale, CA).

Assessment of poly (ADP-ribose) 
polymerase-1 (PArP) activity
The cells (1 × 107) were centrifuged at 2,000 × g 
(Microcentrifuge 1236V, Centronix) for 5 min at 
room temperature. The pellet was then resuspended 
in 10 pellet volumes of 50 mM Tris, pH 8.0, 25 mM 
MgCl2, and 0.1 mM phenylmethanesulfonyl fluoride 
(PMSF). The suspensions were transferred to chilled 
microcentrifuge tubes and sonicated (Model GEX 
130, Ultrasonic Processor) 3-times for 10 s at a time. 
Subsequently, the disrupted cells were centrifuged 

at 3000 × g (Silent SPIN, Continental Lab Products) 
for 5 min at 4 °C to remove insoluble material. The 
protein concentration of the supernatant was then 
measured using the Bio-Rad Protein Assay. Twenty 
micrograms of protein were used to determine PARP 
activity using the Trevigen PARP assay kit (Trevigen, 
Helgerman CT) according to the manufacturer 
recommendations. The 3H-mediated radioactivities 
were determined in a liquid scintillation counter (LS 
6000IC, Beckman, Fullerton, CA).

Measurement of mitochondrial 
membrane potential (m∆Ψ)
Cells were loaded in culture medium with 5,5’,6, 
6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazol-
carbocyanine iodide (2 µM final concentration; JC-1; 
Invitrogen, Carlsbad, CA) for 15 min.14 The cells were 
then analyzed by flow cytometry (488 nm, 535/585 nm 
excitation and emission, respectively) using a BD 
FACSCantoTM Flow Cytometer. A minimum of 15,000 
cells per sample was analyzed using FACSDiva™ 
software. To depolarize the mitochondrial membrane, 
carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 
Invitrogen) was used at a final concentration of 
50 µM.

Assessment of Mitochondrial 
Permeability Transition Pore  
(MPTP) opening
Cells were loaded in culture medium with 1 µM 
acetoxymethyl ester of calcein (calcein AM, 
Molecular Probes) for 15 min at 37 °C19 and 50 nM 
MitoTraker Red (Molelcular Probes Inc) was added 
to co-stain mitochondria. The cytosolic calcein signal 
was quenched by CoCl2 (100 µM), as described 
previously.19 Fluorescence was visualized by 
microscopy (Zeiss LSM510 META System) at 488 
and 525 nm excitation and emission wavelengths, 
respectively.

Measurement of intracellular reactive 
Oxygen species (rOs) levels
2’,7’-dichlorodihydro-fluorescein  diacetate 
(H2DCF-DA; Molecular Probes) was used to 
determine changes in cellular ROS levels.17 
H2DCF-DA is a redox-sensitive cell-permeant dye, 
which is nonfluorescent until removal of the acetate 
groups by intracellular esterases and oxidation 
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occurs by reactive oxygen species. Briefly, cells 
were treated with increasing doses of LT [1000 ng/
ml (800 ng/ml PA + 200 ng/ml LF); 500 ng/ml 
(400 ng/ml PA + 100 ng/ml LF); 250 ng/ml (200 ng/
ml PA + 50 ng/ml LF); 125 ng/ml (100 ng/ml 
PA + 25 ng/ml LF)] and loaded with H2DCF-DA at 
5 µM final concentration for 15 min at 37 °C. After 
washing, changes in DCF fluorescence of cells were 
determined by FACSCantoTM at time points when 
cells showed 95% viability. The mean fluorescence 
of 15,000 cells was determined in independent 
experiments (n = 4–7). To confirm results, cells 
at 70% confluence were loaded with 50 µM 
H2DCF-DA on 24-well plates (Costar, Corning, NY). 
Changes in fluorescence intensity in mock-treated, 
LT-treated, and control cells were measured using 
an FL×800 Microplate Fluorescent Reader (Bio-Tek 
Instruments, Winooski, VE) at 488 nm excitation 
and 530 nm emission wavelengths.

Mitochondria isolation  
and complex activity assessment
Cell pellets were incubated in 10X volume of hypotonic 
buffer [10 mM KCl, 20 mM 4-morpholinopropanesulfonic 
acid  (MOPS),  and 1  mM ethylene glycol-bis 
(β-aminoethyl ether)-N,N,N’, N’-tetraacetic acid 
(EGTA)] for 20 min then Dounce-homogenized. 
The homogenate was clarified at 800 × g and the 
supernatants were centrifuged at 10,000 × g to collect 
mitochondria. Mitochondrial pellets were washed 
and resuspended in 10 mM KCl, 20 mM MOPS, and 
1 mM EGTA containing 200 mM sucrose and 50 mM 
mannitol. In selected experiments, fresh mitochondrial 
suspensions were purified on a continuous sucrose 
gradient (0.25 M to 1.5 M). The oxygen consumption 
rates of mitochondria were determined at 30 °C with 
a Clark-type oxygen electrode (Strathkelvin Oxygen 
System Model 782, Strathkelvin Instruments, United 
Kingdom) as we previously described.14 Respiratory 
complex (I, II, III and IV and complexes I + III) 
activity measurements were undertaken as described 
previously.14,20 Activities were normalized to succinate 
dehydrogenase (SDH) activity.14,21

isolation and fractionation  
of mitochondrial complex proteins
Blue native polyacrylamide gel electrophoresis 
(BN-PAGE, 4%–12%) was performed essentially 

as described previously.22 Electrophoresis was run 
at 250 V for the first 30 min at 4 °C and then at a 
constant current of 5 mA. Electrophoresis was stopped 
when the tracking line of Coomassie Brilliant Blue 
G-250 dye (Sigma Aldrich, St. Loins, MO) left the 
bottom of the gel.22 Mitochondrial complexes were 
excised from blue native gels and placed into wells of 
a 10% sodium dodecyl sulfate (SDS)-polyacrylamide 
gel for separation of individual complex proteins.

Far-Western Blot analysis
Proteins were separated by SDS-polyacrylamide gel 
electrophoresis (PAGE), transferred to a nitrocellulose 
membrane (Schleicher and Schuell BioScience, 
Keene, NH), treated with 6 M guanidine-HCl (in PBS), 
and then re-natured with successive dilutions of 
guanidine-HCl and 1 mM dithiothreitol (DTT), as we 
previously described.23 After blocking with 5% nonfat 
dry milk in blocking buffer (PBS, 0.5% Tween 20), 
the membranes were incubated with LF (250 ng/ml) 
or PA (250 ng/ml) in blocking buffer for 3 h at 4 °C. 
Binding of LF or PA was detected by anti-LF and 
anti-PA antibodies (Advanced ImmunoChemical, 
Inc., Long Beach, CA). After overnight incubation 
at 4 °C and extensive wash, detection was performed 
by enhanced chemiluminescence (GE Healthcare 
Bio-Sciences, Piscataway, NJ) and signals were 
visualized by autoradiography.

Protein sequencing
Automated Edman N-terminal microsequencing 
of excised stained bands was carried out with an 
Applied Biosystems cLC 494 Protein Sequencer 
(Foster City, CA), as we previously reported.24 
Proteins were identified using the BLAST search 
program and National Center for Biotechnology 
Information (NCBI) as well as Swiss-Prot databases. 
N-terminal-blocked proteins were identified by 
mass spectrometry. Briefly, after staining with 
Coomassie Blue, bands were excised and subjected 
to trypsin digestion. Mass spectra of peptide 
digests were obtained using a Model 4800 MALDI-
TOF-TOF MS (Applied Biosystems, Foster City, 
CA). Proteins were identified using the Swiss-Prot 
database and the Mascot algorithm as we reported 
previously.24 MS analyses and protein sequencing 
were conducted by the Biomolecular Resource 
Facility at UTMB.
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immunoprecipitation
Cells  were exposed to  LT (500 ng/ml PA and 
100 ng/ ml LF) for 30 min. Mitochondria were isolated, 
purified on a sucrose gradient (0.25 M to 1.5 M) and 
lysed in modified RIPA buffer (50 mM Tris-HCl, 
pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.25% sodium 
deoxycholate, 1% Nonidet P-40, 1 mM PMSF, 1 mM 
NaF, 1 mM Na3VO4, and 1 µg/ml each of aprotinin, 
leupeptin, and pepstatin).25 Extracts were pre-cleared 
with protein A-Sepharose 4B (Sigma) for 10 min at 
4 °C and the cleared lysate incubated with anti-LF or 
anti-PA antibody (Advanced ImmunoChemical, Inc.) 
for 3 h at 4 °C. Immune complexes were captured by 
adding 30 µl of protein A-Sepharose beads (Thermo 
Scientific Life Science Research, Rockford, IL) for 
3 h at 4 °C. Beads were washed three times with cold 
PBS. Immune complexes eluted by incubation in 
loading buffer were fractionated by 10% SDS- PAGE 
and then analyzed by Western blotting.

Western Blot analysis
Equal amounts of protein from cell lysates were 
electrophoresed on 10% SDS-PAGE.17 Fractionated 
proteins were transferred onto nitrocellulose 
membranes (Schleicher and Schuell BioScience, 
Keene, NH). The membranes were blocked with 5% 
nonfat dry milk in TBS-T (20 mM Tris-HCl, pH 8.0, 
125 mM NaCl with 0.025% Tween 20) overnight 
and then incubated with primary antibody to F1F0 α 
subunit (1:500; BD Biosciences, San Jose, CA), to 
β subunit (1:1000; Molecular Probes), to LF and to 
PA (Advanced ImmunoChemical, Inc.) for overnight 
at 4 °C. At the end of the incubation, the membrane 
was washed in TBS-T and subsequently incubated 
with horse radish-peroxidase-conjugated secondary 
antibody (GE Healthcare Bio-Sciences; 1:3000 
dilution) in TBS-T for 1 h. After washing, detection 
was performed by enhanced chemiluminescence (GE 
Healthcare Bio-Sciences).

Assessment of complex V  
(F1F0-ATPase) activity
Purified mitochondria were sonicated for a 
total of 3 × 30-s bursts on ice. One hundred µg 
of sub-mitochondrial particles in 50 mM 
HEPES-KOH (pH 8.0), 1 mM MgCl2, and 250 mM 
sucrose were added to a cuvette containing 25 U 
pyruvate kinase, 24 U lactate dehydrogenase, 20 µM 

rotenone (to inhibit complex I), 0.74 µM antimycin 
A (to inhibit complex III), 5 mM phosphoenolpyruvate, 
and 175 µM NADH. The reaction was initiated upon 
addition of 2 mM ATP (final concentration). The 
assays were performed in the presence or absence 
of the mitochondrial ATPase inhibitors (15 µM 
oligomycin or 60 µM aurovertin B) to estimate the 
percentage of ATPase activity that was related to 
the F1 or F0F1 complex in mitochondria.26 Changes 
in absorption at room temperature were measured 
spectrophotometrically (DU® 530 Life Science UV/
VIS spectrophotometer, Beckman).26

reagents
All reagents were purchased from Sigma-Aldrich 
unless otherwise stated.

statistical analysis
Results were analyzed for significant differences 
using analysis of variance (ANOVA) procedures and 
Student’s t-tests (Sigma Plot 6.0). Data are expressed 
as the mean ± SE. Results were considered significant 
at p  0.05. (*p  0.05, **p  0.01, ***p  0.001, 
****p  0.0001).

Results
Depletion of ATP from LT-treated cells
High or low doses of LT induced a simultaneous 
Annexin-V binding and loss of membrane integrity 
resembling a sudden type of cell death (pyroptosis) 
in murine macrophages (MH-S cells, low passage) 
(Figs. 1A, B and C). Next, we investigated the 
changes in intracellular ATP levels as possible early 
consequences of LT treatment.10 At 1 h there were no 
changes, while LT treatment decreased ATP levels 
by 80% at 1.5 h in MH-S cells (Fig. 2A). In cells 
exposed to lower concentrations of LT, intracellular 
ATP levels were depleted at a proportionally slower 
rate (data not shown). There were no changes in 
intracellular ATP levels in LT-resistant LA-4 cells 
after exposure to toxin (Fig. 2B). To exclude loss 
of ATP via cytoplasmic membrane, we show that 
there was no detectable ATP in the cell culture 
supernatant of LT-treated cells (Fig. 2A inset). In 
addition, we show that ouabain (1 mM; inhibits 
Na+/K+-ATPase)27 did not prevent or delay depletion 
of ATP from LT-treated cells (Fig. 2C). Our results 
also showed that in LT-treated cells, the activity of 
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poly(ADP-ribose) polymerase-1 (PARP-1), which 
can cause the depletion of cellular energy stores,28 
was not significantly changed (Fig. 2D).

The mitochondrial permeability transition pore 
(MPTP) opening plays a key role in cell death, 
impacting mitochondrial membrane potential (m∆Ψ) 
and ATP levels.29,30 We show that in LT-exposed MH-S 
cells (but not LT-treated LA-4 cells or MH-S cells 
treated with LF or PA alone) calcein-AM (2 µM, an 
indicator of MPTP opening)-mediated fluorescence 
co-localized with MitoTracker Red, indicating 
calcein uptake by mitochondria at 75 min after 
exposure (Fig. 3A). Inhibitors of MPTP opening, 
such as cyclosporin A (CsA; 5 µM) and bongkrekic 
acid (BA, 10 µM), decreased calcein-AM-derived 
fluorescence in mitochondria of LT-treated cells 

(Fig. 3B). However, CsA or BA did not protect cells 
from LT-mediated dissipation of m∆Ψ (Fig. 3B, 
inset) and ATP depletion as well as sudden cell death 
(data not shown). These results indicate that MPTP 
opening is a consequence of ATP depletion and it is 
not directly related to the death of LT-exposed cells.

LF interacts with mitochondrial proteins
Mitochondrial membrane potential is maintained by 
respiratory complexes and F1F0 complex, the latter 
utilizes large quantities of ATP.31,32 A representative 
set of flow-cytometry histograms showed that LT 
dissipated m∆Ψ in 90% of cells by 90 min of LT 
addition. In control experiments PA or LF alone had no 
effect, while CCCP, a mitochondrial membrane potential 
uncoupler, eliminated m∆Ψ (Fig. 4A). Intracellular 

Figure 1. sudden death of LT-treated Mh-s macrophages. A) Concentration-independent pyroptosis of Mh-s cells shown by Annexin V-Pe and 
7AAD-staining. Changes in cell-associated fluorescence intensities were determined by flow cytometry. LT: 1200 ng/ml (1000 ng/ml PA + 200 ng/ml LF); 
600 ng/ml (500 ng/ml PA + 100 ng/ml LF); 300 ng/ml (200 ng/ml PA + 50 ng/ml LF); 150 ng/ml (125 ng/ml PA + 25 ng/ml LF); 75 ng/ml (62.5 ng/ml 
PA + 12.5 ng/ml LF). B) Kinetic changes in Annexin V binding and 7-AAD uptake in Mh-s cells exposed to LT (250 ng/ml PA + 50 ng/ml LF). c) LT-induced 
morphological changes of Mh-s cells. Cells on cover-slips were LT-exposed and stained to visualize mitochondria with MitoTracker red (MTr) and 
the DnA with sYBr green i. A) and B) are superimpositions of MTr and sYBr green i-stained images of cells c) sYBr green i-stained image of b. 
Magnification: 134x.
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ROS levels either remained unaffected or decreased in 
response to LT exposure, which is consistent with the 
dissipation of m∆Ψ (Fig. 4B). A correlation between 
ATP depletion and loss of m∆Ψ shortly after LT 
treatment suggested a direct interaction between LF 
and mitochondrial inner membrane complexes.

To test this possibility, mitochondrial complexes 
from MH-S cells were separated by BN-PAGE and 
individual complexes were fractionated on SDS-PAGE 
(Figs. 5A, B). Using Far-Western blot approaches, we 
show interactions between LF and ATP synthase (F1F0 
complex), as well as respiratory complex proteins 
(Fig. 5C). LF-interacting proteins were identified 
as described in Materials and Methods. Results in 
Figure 5C (and those summarized in Table 1) show 
that LF interacts with the F1F0 complex γ polypeptide 
(H+ transporting mitochondrial F1 complex, Fig. 5C, 
band B), F1F0 complex subunit β (H+ transporting 
mitochondrial F1 complex, Fig. 5C, band A1), and 
another three precursors of the F1F0 complex (Fig. 5C, 
bands A2, C1, C2, Table 1). In addition, LF binds to 

precursors of ubiquinol-cytochrome b-c1 complex 
subunit 1, ubiquinol-cytochrome b-c1 complex 
subunit 2, structural proteins of complex III, as well 
as to a precursor form of NADH dehydrogenase 
(ubiquinone) flavoprotein 1 (NDUFV1) in complex I 
(NADH:ubiquinone oxidoreductase) (Fig. 5C, 
Table 1). There were additional interactions of LF 
with trifunctional enzyme subunit beta precursor, 
3-oxoacid CoA transferase, precursor protein of short-
chain specific acyl-CoA dehydrogenase (citric acid 
cycle) and HSP60 (Fig. 5C, Table 1). It is noteworthy 
that the precursor protein NDUFV1 (complex I) 
co-migrated with complex II. Similarly, citric 
acid cycle proteins were found to be associated 
with respiratory complexes II and IV (Fig. 5C, 
Table 1). These observations are not surprising since 
mitochondria were solubilized and complexes were 
separated under mild nonionic detergent conditions.22 
The association of respiratory complex proteins 
(supercomplexes; e.g. I + III, and I + III + IV) is well-
established in mammalian mitochondria.33
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The full-length (83 kD) (Fig. 5D) or truncated 
(63 kD) (data not shown) form of PA showed no 
reactivity with any of the respiratory or F1F0 complex 
proteins. The band seen on Figure 5D is a non-specific 
band as it was detected by the secondary antibody 
alone as well. Using Far-Western blot approaches, we 
observed similar interactions of LF between proteins 
of mitochondrial respiratory complexes and F1F0 
complex from LA-4 cells (data not shown).

To test whether LF can interact with mitochondrial 
proteins in vivo, cells were treated with LT for 90 min 
and mitochondria were isolated, purified and lysates 
were prepared. The protein-protein interactions were 
analyzed by immunoprecipitation using anti-LF 
antibody. The precipitated proteins were identified 
by Western blot analysis using specific antibodies 
to γ (Fig. 5E) and β (Fig. 5F) polypeptides of F1F0 
complex. Our result indicates that LF interacts with 
both β and γ subunits of F1F0 complex in MH-S cells. 

Because precursor proteins are not functional, we 
did not test them. Although we observed extensive 
interactions between LF and mitochondrial proteins 
of LA-4 cells in Far-Western analysis, we were 
not able to pull-down protein complexes with anti-
LF antibody (data not shown), suggesting that no 
interaction with γ and β polypeptides of F1F0 complex 
takes place in LA-4 cells.

increased ATPase activity in LT-treated cells
Our results revealed no changes in respiratory complex 
I, II, III, and IV or coupled activities of I and III, as well 
as II and III of mitochondria isolated from LT-exposed 
cells compared to unexposed controls (data not shown). 
These results suggest that proton pumping by respiratory 
complexes may not be impaired in LT-treated cells. 
Interactions between LF and β and γ polypeptides of 
F1F0 complex, rapid depletion of ATP, as well as the 
sudden cell death raised the possibility that LF increases 
ATPase activity. The ATPase activity of complex V was 
assessed using mitochondrial homogenates prepared at 
90 min after LT addition. Figure 6A shows that ATPase 
activity in mitochondrial homogenates from LT-treated 
MH-S cells was increased compared to the mock-
treated control. Oligomycin (10 µM), which binds to 
F0,

34,35 inhibited the ATPase activity of mitochondria 
from mock- and LT-treated cells by 52% and 45%, 
respectively (Fig. 6A). In support aurovertin (60 µM), 
which binds to catalytic β-subunits in the F1-ATPase,36,37 
decreased ATP hydrolysis more efficiently, 55% vs. 
79% in mitochondria from mock- and LT-treated cells, 
respectively (Fig. 6A).

Oligomycin treatment resulted in partial protection 
from LT-induced ATP depletion (Fig. 6B) and increased 
survival as well as the percentage of cells showing 
physiological m∆Ψ (Fig. 6B inset). For example, 
37% ± 7% of oligomycin (10 µM)-treated cells 
retained m∆Ψ (Fig. 6B, inset c) and ATP levels were 
decreased to 28 ± 4.8 nM from 53 ± 6.8 nM. Without 
oligomycin, 95% of cells lost their m∆Ψ (Fig. 6B, 
inset b) and ATP levels were 4.8 ± 2.6 nM (from 
53 ± 6.8 nM) determined at 1.5 h after LT addition. 
Cell viability determined at 2 h exposure correlated 
well with the decreased ATP levels (Fig. 6B, filled 
columns). Aurovertin B (even at 2.5 µM) severely 
affected survival of MH-S cells, and consequently we 
were unable to obtain meaningful results. Collectively, 
these results suggested that an increase in F1F0 ATPase 
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activity contributed to LT-mediated ATP depletion, 
thereby steering cells toward sudden cell death.

increased resistance of ρ0Mh-s cells to LT
Mitochondrial DNA (mtDNA) depleted (ρ0) cells 
lack mtDNA-encoded ATP synthase subunit F06 and 
subunit F08, and therefore they possess low ATPase 
activity.38,39 Using ρ0MH-S cells, we studied changes 
in m∆Ψ, ATP levels, ATPase activity, and lifespan 
after LT addition. As shown in Figure 7A, the m∆Ψ 
of ρ0MH-S was approximately 100-times lower than 
MH-S cells in accordance with the decreased proton 
pumping by respiratory complexes and lack of F06 
and F08 in complex V. In response to LT ρ0MH-S 
decreased mΔΨ, while MH-S cells lost it (Fig. 7A). 
In a representative experiment (shown in Fig. 7B) 
less then 10% of ρ0MH-S cells showed Annexin V 

reactivity, while ∼95% of corresponding MH-S cells 
were killed 120 min after LT addition. LT-treated 
ρ0MH-S cells showed a significant (p = 0.01) loss 
of viability from 300 min onwards. Importantly, 
MH-S cells were killed by a sudden type of cell death 
(Fig. 7B, inset b), while ρ0MH-S cells showed distinct 
populations of cells that only bind Annexin V and 
had loss of membrane integrity (bound Annexin V, 
incorporate 7-AAD; Fig. 7B, inset c).

ATP levels in ρ0MH-S cells were 77% ± 6.7% of the 
corresponding control MH-S cells (Fig. 7C).  At 90 min 
after LT addition, cellular ATP levels significantly 
decreased in MH-S cell cultures (Fig. 2A), while 
in ρ0MH-S cells ATP levels were intact (Fig. 7C). 
ATP levels showed a significant (p = 0.05) decrease 
from 240 min on in ρ0MH-S cultures (Fig. 7C). These 
observations may be explained by the absence of 

table 1. LF-interacting mitochondrial proteins.

Gel band ID  
(Fig. 6c)

1protein theoretical 
mass (kD)

swiss-prot ID score (bits)/
e value

sequence 
coverage 2Ms

A1 3Mitochodrial ATP synthase h+ 
transporting, F1 subunit beta

56.3 P56480 36.3/0.015 n.D.

A2 Mitochodrial ATP synthase subunit alpha 
(precursor)

59.7 Q03265 40.1/0.010 n.D.

B 3Mitochodrial ATP synthase h+ 
transporting F1 complex gamma 
polypeptide

30.3 Q8C2Q8 39.7/0.014 n.D.

C1 Mitochodrial ATP synthase subunit O 
(precursor)

23.4 Q9DB20 42.2/0.002 n.D.

C2 Mitochodrial ATP synthase h+ 
transporting F0 complex subunit b, 
isoform 1 (precursor)

28.9 Qsi0W0 35.8/0.200 n.D.

D Mitochodrial cytochrome bc-1 complex 
subunit core 1 (precursor)

52.8 Q9CZ13 39.2/0.019 n.D.

e Mitochodrial cytochrome bc-1 complex 
subunit core 2 (precursor)

48.2 Q9DB77 n.D. 4.3 × 10-46

F heat shock protein (60 kD, mitochondrial) 60.9 P63038 38.8/0.025 1.4 × 10-42

g Mitochondrial trifunctinal enzyme subunit 
beta (precursor)

51.6 Q99JY0 n.D. 1.7 × 10-25

h 3-oxoacid CoA transferase 56.0 Q3UK61 41.8/0.003 n.D.
i Mitochondrial nADh dehydrogenase 

flavoprotein 1 (precursor)
50.8 Q91YT0 14.6/0.18 n.D.

J Short-chain specific acyl-CoA 
dehydrogenase (precursor)

45.2 Q07417 n.D. 2.2 × 10-35

1Proteins were identified by N-terminal microsequence analyses using Applied Biosystems’ cLC 494 Protein Sequencer; 2n-terminal blocked proteins were 
identified by MALDI-TOF/TOF/MS (Applied Biosystems’ 4800); 3Confirmed by Western blot analyses (Materials and Methods) N.D, not done.
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mtDNA encoded F06 and F08 subunits of complex V. 
In support of these results, ATPase activity of ρ0MH-S 
cells was 17% ± 4.7% of the corresponding controls 
(Fig. 7D). Further, while LT-increased ATPase activity 
was 3-fold by 90 min in MH-S cells (Fig. 7D), we observed 
a ∼2-fold increase in ATPase activity at 240 min in 
ρ0MH-S. It is interesting to note that ATPase activity 
of ρ0MH-S cells can be inhibited only by aurovertin, 
while the corresponding MHS cells responded to both 
oligomycin and aurovertin (Fig. 7D).

Discussion
LT exposure of susceptible macrophages results in 
rapid cytolysis called pyroptosis,40 a cell death type 
sharing characteristics of apoptosis and oncosis/
necrosis.41 Due to the pivotal role of intracellular ATP 
level in the decision-making processes among types 
of cell death,42–45 we investigated its role in cytolysis 
of LT-treated susceptible macrophages. Here we 
show that death of LT-treated MH-S cells was tightly 
associated with ATP depletion caused by increased 

ATPase activity of F1F0 complex in mitochondria. The 
p0MH-S cells, in which mitochondrial ATPase activity 
is impaired, showed increased resistance to LT. These 
results suggest that inhibition of LF-triggered ATP 
depletion may protect macrophages from pyroptotic 
processes.

Opening of MPTP, dissipation of m∆Ψ, and 
depletion of ATP were observed as early processes in 
cell death of LT-exposed MH-S macrophages, but there 
were no changes in intracellular ROS levels. The early 
events were followed by rapid morphological changes 
including membrane vesicle formation, swelling and 
plasma membrane rupture. The phosphatidyl serine 
rearrangement (annexin V binding) and simultaneous 
loss of membrane integrity (7AAD uptake) appeared 
in every toxin-exposed cell culture and only the start 
points of the events depended on LT’s concentration.

NALP1 is primarily responsible for macrophage 
susceptibility to toxin via inflammasome formation 
and activation;4 however, recent data indicate that 
inflammasome formation is a contributing, but not 
initiating, event in LT-mediated cytotoxicity and 
that earlier LT-mediated events leading to ion fluxes 
are required for death.46 The exact mechanism by 
which LF activates NALP1 is unknown, although 
intracellular K+ efflux was shown to be an important 
and specific trigger for inflammasome activation.47 
A previous study reported an increase in membrane 
permeability to K+ together with a rapid conversion of 
ATP to ADP as early events after LT exposure.27 The 
authors concluded that K+ efflux would be expected 
to cause depletion of ATP via increased activity 
of Na+/K+ pumps. However, in our experiments 
ouabain, an inhibitor of Na+/K+-ATPase, did not 
prevent ATP loss and did not cause an increase in 
the lifespan of LT-treated cells. On the other hand, 
Na+/K+-ATPase is inhibited during hypoxia,48 
thus hypoxia-like intracellular redox conditions 
(sub-physiological ROS levels) after LT addition, 
further diminished the likelihood of activation of 
Na+/K+-ATPase. Importantly, ATP depletion after 
LT exposure was observed at times and doses where 
the plasma membrane was still intact. Based on our 
results, we suppose that K+ efflux is a consequence 
of metabolic stress in LT-treated cells. In support, 
depletion of cellular ATP stores stimulates release 
of K+ through opening of ion channels in the plasma 
membrane of many cell types.49–51 Regulated release of 
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K+ ions serves to minimize cellular injury during ATP 
depletion and protein kinase C is selectively involved 
in this mechanism.50 Indeed, activation of protein 
kinase C is required for mediating LT cytotoxicity.52 
It has been shown that a decrease in cellular ATP 
levels is directly linked to membrane perturbation, 
and high KCl concentration partially prevents this 
event and increases survival of LT-treated cells.10 
This effect of KCl could be associated with a block 
of membrane perturbation10 and also with inhibition 
of mitochondrial ATPase activity of macrophages.53 
In our system, there was no ATP released into the 
medium of LT-exposed cells and we did not observe 
PARP activation, an energetically very expensive 
process, which can lead to the depletion of cellular 
energy stores.28 These results suggest that the energy 
crisis was facilitated by some other means, which 
implicates mitochondria in the LT-mediated ATP 
depletion.

Using Far-Western analysis, we showed that LF 
interacts with proteins of the F1F0 complex (subunit γ 
and β polypeptides) in both susceptible and resistant 
cells in vitro. These results were confirmed by 
immunoprecipitation of mitochondrial lysates from 
LT-treated MH-S cells and LA-4 cells. Interactions 

between LF and F1F0 subunit γ and β polypeptides 
were found in mitochondrial lysates of MH-S cells, 
but not in those of LA-4 cells. These observations were 
consistent with the absence of ATP depletion in LA-4 
cells and raised the possibility that interactions of LF 
with F1F0 subunit proteins in susceptible cells lead 
to increased ATPase activity, which is the key event 
in LT’s cellular pathogenesis. Indeed, oligomycin, 
a nonselective F1F0-ATPase inhibitor,36,37,54 delayed 
ATP depletion and increased the survival of 
LT-treated cells.

F1F0 complex γ and β polypeptide chains are 
important components directing the flow of protons 
through the F1F0 complex for ATP synthesis. These 
polypeptides also regulate ATPase activity of the F1F0 
complex.31,32,55 The catalytic turnover rate (300 s-1) 
of ATP hydrolysis via the F1F0-ATPase is the greatest 
of any known ATPase.31,32 In theory, by interacting 
with γ and β polypeptides, LF may interfere with 
conformational changes and/or other steps in 
processes taking place in complex V during ATP 
synthesis thereby increasing its ATPase activity.31,32,55

Mitochondrial DNA-depleted (p0) cells lack F06 
and F08, which are required for ATPase activity of 
F1F0 complex.38,39,56 Indeed, p0MH-S cells showed 
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significantly lower ATPase activity and consequently 
less m∆Ψ. These results are consistent with previous 
observations showing that a functional adenine 
nucleotide carrier and ATP were essential to generate 
m∆Ψ in ρ0 cells.56 LT-induced ATP depletion in 
p0MH-S cells was significantly delayed, resulting in 
increased cellular lifespan.

Direct protein-protein interaction between 
LF and subunits of F1F0 complex detected by 
immunoprecipitation raises the question why LF 
does not perturb the F1F0 complex activity in bacterial 
cells. It is known that the sequence of eukaryotic 
subunit β is significantly longer and contains a shorter 
dimerization domain than that of the bacterial protein.31 
It was also shown that the dimerization domain of 
mitochondrial subunit β is necessary for interaction 
with other proteins.31,32 Thus, differences in amino 
acid sequences between mammalian and bacterial β 
polypeptides explain the lack of LF inhibitory action 
on bacterial F1F0 complex.

LF, as a highly specific zinc-dependent 
metalloprotease, cleaves a series of kinases of the 
MKK family. In a recent study, a phage display 
system was used to investigate the substrate 
specificity of LF.58 Those peptide substrates that were 
capable of effective binding to LF carried a certain 
motif containing the same basic amino acid residues 
(mostly arginines) at p5-p4 positions and a branched 
hydrophobic amino acid residue at position 3.58 
Searching the NCBI Protein database, we found that 
human mitochondrial F1F0 complex β (accession #: 
AAH16512) and γ (AAH20824) subunits, as well as 
mouse γ (NP_001106209) contain this motif close to 
their N termini. Taken together, it is possible that LF 
not only binds but also cleaves the polypeptides of 
F1F0 ATPase complex. We plan to analyze whether 
the protease activity of LF is relevant to its ability to 
increase F1F0 complex ATPase activity.

LT macrophage killing is an inflammasome-
mediated event, which requires NALP1-mediated 
caspase-1 activation. A basic question is how ATP 
depletion is involved in these processes. We 
hypothesized a model in which ATP depletion via 
increased mitochondrial F1F0-ATPase activity triggers 
intracellular K+ efflux, which activates late events 
including NALP1-inflammasome formation and 
caspase-1 activation to execute cell death. In support, 
p0MH-S cells, in which NALP1-caspase-1 system 

is intact but ATPase activity is low, show increased 
resistance to LT. However, further experiments are 
needed to confirm our proposed model.

The current principal treatment for various forms 
of anthrax infection is antibiotics.59 Because of the 
increased frequency and growing threat of antibiotic-
resistant strains, the need for new therapeutic agents 
other than antibiotics is vital. Our results offer the 
promise that pharmacological inhibition of LF’s 
mitochondrial targeting or interaction with the F1F0 
complex and/or inhibition of F1F0 ATPase could be 
effective. At the cellular level, such an intervention 
may increase the lifespan of macrophages in vivo, 
which could provide time for development of adaptive 
immunity to tackle the pathogen.
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