
A Deep Learning Approach for Meibomian
Gland Appearance Evaluation

Kasandra Swiderska, PhD,1 Caroline A. Blackie, OD, PhD,2 Carole Maldonado-Codina, PhD,1

Philip B. Morgan, PhD,1 Michael L. Read, PhD,1 Martin Fergie, PhD3

Purpose: To develop and evaluate a deep learning algorithm for Meibomian gland characteristics calculation.
Design: Evaluation of diagnostic technology.
Subjects: A total of 1616 meibography images of both the upper (697) and lower (919) eyelids from a total of

282 individuals.
Methods: Images were collected using the LipiView II device. All the provided data were split into 3 sets: the

training, validation, and test sets. Data partitions used proportions of 70/10/20% and included data from 2
optometry settings. Each set was separately partitioned with these proportions, resulting in a balanced distri-
bution of data from both settings. The images were divided based on patient identifiers, such that all images
collected for one participant could end up only in one set. The labeled images were used to train a deep learning
model, which was subsequently used for Meibomian gland segmentation. The model was then applied to
calculate individual Meibomian gland metrics. Interreader agreement and agreement between manual and
automated methods for Meibomian gland segmentation were also carried out to assess the accuracy of the
automated approach.

Main Outcome Measures: Meibomian gland metrics, including length ratio, area, tortuosity, intensity, and
width, were measured. Additionally, the performance of the automated algorithms was evaluated using the
aggregated Jaccard index.

Results: The proposed semantic segmentationebased approach achieved average aggregated Jaccard
index of mean 0.4718 (95% confidence interval [CI], 0.4680e0.4771) for the ‘gland’ class and a mean of 0.8470
(95% CI, 0.8432e0.8508) for the ‘eyelid’ class. The result for object detectionebased approach was a mean of
0.4476 (95% CI, 0.4426e0.4533). Both artificial intelligenceebased algorithms underestimated area, length ratio,
tortuosity, widthmean, widthmedian, width10th, and width90th. Meibomian gland intensity was overestimated by both
algorithms compared with the manual approach. The object detectionebased algorithm seems to be as reliable
as the manual approach only for Meibomian gland width10th calculation.

Conclusions: The proposed approach can successfully segment Meibomian glands; however, to overcome
problems with gland overlap and lack of image sharpness, the proposed method requires further development.
The study presents another approach to utilizing automated, artificial intelligenceebased methods in Meibomian
gland health assessment that may assist clinicians in the diagnosis, treatment, and management of Meibomian
gland dysfunction.
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Application of artificial intelligence (AI) is one of the most
promising areas of health innovation, particularly in medical
imaging. Artificial intelligenceebased techniques are
advancing rapidly and can improve medical imaging for
disease screening, progression, and management.1e4 A
considerable amount of literature has been published on
utility of AI in meibography.5,6,7e15 Deep learning models
can be trained using large data sets of labeled meibography
images to automatically identify and segment the Meibo-
mian glands. This enables the calculation of various Mei-
bomian gland metrics such as length, area, tortuosity,
ª 2023 by the American Academy of Ophthalmology
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intensity, or width, providing more quantitative and objec-
tive measures for diagnosis and monitoring of Meibomian
gland dysfunction (MGD). In addition, deep learning
models can also be used to predict the severity of MGD and
the likelihood of developing related ocular surface diseases,
based on the extracted Meibomian gland features. This can
help clinicians make more informed decisions about treat-
ment and management strategies for their patients. The
aforementioned studies have proposed various approaches
to quantify visible Meibomian gland structure, which have
successfully replaced other conventional approaches such as
1https://doi.org/10.1016/j.xops.2023.100334
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thresholding, edge detection, region growing, and
clustering.16e26 These approaches rely on predefined rules
and heuristics to identify and segment different regions of an
image. In contrast, deep learning methods use neural net-
works to learn representations of features directly from the
image data, without the need for manual feature engineer-
ing. This allows for more accurate and robust segmentation
performance, especially when dealing with complex and
variable image features. The analysis of morphometric pa-
rameters of the Meibomian glands can improve the diag-
nosis of MGD in several ways. First, quantitative
measurements of Meibomian gland metrics such as length,
area, tortuosity, intensity, and width, obtained through im-
age analysis techniques like deep learning, provide more
objective and accurate measures of the gland structure and
function. This can help clinicians identify and track changes
in Meibomian gland morphology over time and better
distinguish between normal and abnormal gland structures.
Second, the analysis of Meibomian gland morphometric
parameters can aid in the grading and classification of MGD
severity, helping clinicians to differentiate between mild,
moderate, and severe cases of the disease. This is particu-
larly important because MGD is a multifactorial condition
that can present with a range of symptoms and signs,
making diagnosis challenging. Finally, the analysis of
Meibomian gland metrics can also be used to monitor the
efficacy of MGD treatments over time. By tracking changes
in Meibomian gland morphology before and after treatment,
clinicians can determine the effectiveness of different ther-
apies and adjust treatment plans accordingly. Overall, the
analysis of morphometric parameters of the Meibomian
glands provides valuable quantitative information that can
improve the accuracy, objectivity, and efficiency of MGD
diagnosis, grading, and treatment monitoring. Many objec-
tive methods and metrics have been proposed to quantify
Meibomian gland morphology15,18e22,24e27; specifically,
metrics such as length, width, tortuosity, area of loss,
contrast, and density have been proposed to describe indi-
vidual Meibomian gland characteristics.9,20,22,24,28,29 Dai
et al14 have recently found that AI-based calculations of
Meibomian gland length, width, and area ratio were
significantly correlated with subjective symptoms, tear
break up time, lid margin abnormalities, and Meibomian
gland expressibility. Prabhu et al6 demonstrated that healthy
patients have higher numbers and longer and fewer tortuous
Meibomian gland structures than those with disease when
metrics are calculated using a deep learning approach.
Furthermore, Wang et al9 showed that low Meibomian
gland contrast was the primary indicator for AI-based
ghost Meibomian gland (glands that have a faint appear-
ance in meibography) identification.

Proper assessment of Meibomian glands can help to di-
agnose MGD and other conditions that affect the health of
the eyes. This can involve various techniques, such as
meibography, which is a noninvasive imaging technique
that allows clinicians to visualize the structure and function
of the glands. By accurately diagnosing MGD and other
conditions that affect the Meibomian glands, clinicians can
develop targeted treatment plans that address the underlying
2

causes of the condition. This may involve the use of med-
ications, warm compresses, lid hygiene, or other in-
terventions designed to improve gland function and reduce
symptoms.

The LipiView II system (Johnson & Johnson Vision),
formally termed the LipiView II Ocular Surface Interfer-
ometer with Dynamic Meibomian Imaging, can be used to
perform noncontact meibography, measure lipid layer
thickness, analyze blink dynamics, and take a photograph of
the external ocular surface. The device works under 3
different imaging modes: dynamic illumination (Fig 1A),
adaptive transillumination (Fig 1B), and dual-mode Dy-
namic Meibomian imaging (Fig 1C), which combines
dynamic illumination and adaptive transillumination.30

The dynamic illumination offers a more accurate
estimation of gland morphology as it reduces the amount
of glare and backscatter from the Meibomian glands by
emitting light from various locations. The adaptive
transillumination imaging automatically compensates for
lid thickness variations, thanks to 3 independently
controlled light sources for each part of the eyelid. The
dual mode captures 2 separate images, 1/30 second apart,
and then combines them into a single image to increase
the amount of visible detail and image contrast. It has
been shown that glands that seemed truncated or absent
with standard noncontact infrared meibography were more
defined and visible with dual mode.31

In this study, 2 approaches for objective Meibomian
gland structure analysis are compared: a semantic
segmentationebased approach and an object
detectionebased approach. In addition, the performance of
both approaches was compared against manual annotations
of Meibomian glands by an independent reader. The inter-
reader agreement was also evaluated. In the long term, the
proposed methods could be a useful tool in assisting clini-
cians with MGD diagnosis, treatment, and management.
Methods

Data set and Preprocessing

A total of 1616 meibography images of both upper (697) and lower
eyelids (919) were collected using the LipiView II Ocular Surface
Interferometer at 2 optometry settings in the United Kingdom
(Eurolens Research at the University of Manchester and BBR
Optometry Ltd) between 2017 and 2022. For this study, only im-
ages acquired using dynamic illumination mode were included.
This mode corresponds to the direct illumination method of Mei-
bomian gland imaging and is one of the imaging modes available
in LipiView, which also offers transillumination. In dynamic illu-
mination mode, surface lighting is generated from multiple light
sources to minimize reflection. This study was approved by the
University Research Ethics Committee of The University of
Manchester before data extraction. All procedures adhered to the
tenets of the Declaration of Helsinki, and all participants provided
written informed consent before data extraction. Consent was ob-
tained retrospectively from all participants for their anonymized
images to be analyzed for the purpose of deep learningemodel
development. Multiple images from 282 individuals for both eyes
were used in the study. The images were sourced from a diverse



Figure 1. Different imaging techniques showing Meibomian glands captured with LipiView II. Images captured with dynamic illumination, adaptive
transillumination, and dual mode, respectively. (A) Direct illumination. (B) Transillumination. (C) Dual mode.
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range of patients, including both healthy individuals and those with
varying degrees of Meibomian gland dropout, who were predom-
inantly from standard optometry practice and spanned a wide age
range. The images were received and processed as JPG files. The
first preprocessing step involved center-cropping to 640 � 900
pixels to focus on the relevant area. For the semantic
3
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segmentationebased approach, the following image augmentation
methods were applied: random left/right reflection and random X/
Y translation of �10 pixels.

Data Annotations

All images were manually annotated using an interactive tool, the
Image Labeler app, provided by MATLAB R2022a (The Math-
Works, Inc). Deeplabv3þ model in the study was trained on a
labeled data set of meibography images captured with direct illu-
mination using LipiView II, with 3 distinct classes: ‘gland,’
‘eyelid,’ and ‘background.’ In contrast, the Mask R-CNN model
was trained only on the gland class. The ‘gland’ class refers to the
long, hyperreflective structures that correspond to the Meibomian
glands. These structures are typically located within the tarsal plate
of the eyelid and have a distinct appearance compared with other
structures within the image. The ‘eyelid’ class refers to regions of
the image that correspond to the skin and soft tissue surrounding
the eye but do not contain the Meibomian gland structures. The
‘background’ class refers to any other region of the image that is
not part of the gland or eyelid structures. This can include areas of
the image that contain artifacts, noise, or other structures that are
not relevant to the analysis of the Meibomian glands. The Smart
Polygon tool was used to estimate the shape of an object of interest
within a drawn polygon. The Smart Polygon tool identifies an
object of interest using regional graph-based segmentation
(‘GrabCut’).32 Estimated regions of interest were further corrected
with the Brush tool to make sure that gland labels were as precise
as possible. A single label was assigned to each individual
Meibomian gland in every image to provide ground truth data
for instance-wise level network evaluation (see Video 1
[available at www.ophthalmologyscience.org]).

Data Partitioning

All the provided data were partitioned into 3 sets: the training set,
which was used to create a model; the validation set, which was
used for hyperparameter optimization; and the test set, which was
used to obtain an unbiased assessment of model performance. The
proportions of these partitions were 70/10/20%, with each set
comprising data from 2 optometry settings. In other words, the 70/
10/20% proportions were applied to each set separately, resulting
in a balanced distribution of data from both optometry settings.
This resulted in 1162 images being used for training, 153 being
used for validation, and 301 being used for testing. The images
were split based on patient identifier, as such all images collected
from one participant could be included in one set only.

Architectural Details

Image segmentation is the process of grouping image pixels based
on their content to process it for tasks such as image classification
and object detection. Recent image segmentation methods can be
classified into semantic and instance segmentation. In this work 2
state-of-the-art deep learning convolutional neural network (CNN)
architectures were used: Deeplabv3þ33 for semantic segmentation
and Mask R-CNN34 for instance segmentation. Transfer learning
was used to overcome the issue with relatively small data sets.
Pretrained Inception-ResNet-v2 was selected as a base network
for Deeplabv3þ. It is a CNN that is trained on more than a million
images from the ImageNet database35; as such, it reduces training
time and, more importantly, the number of required images.
Inception-ResNet-v2 was selected as the backbone for Deep-
labv3þ due to limited choices available in the software package
and also because it has shown strong performance in various
computer vision tasks including medical image segmentation, as
reported in the literature.36,37e40 Additionally, the architecture has
4

also been used successfully in other ocular image segmentation
tasks, such as the segmentation of the optic disc and cup in glau-
coma diagnosis,41,42 retinal detachment detection and diabetic
retinopathy.43,44 A pretrained Mask R-CNN object detector was
trained on the Common Objects in Context data set with a
ResNet-50 network as the feature extractor. ResNet-101 was also
considered, but it did not improve the model performance.

Evaluation Metrics

There are various ways to evaluate machine learning model per-
formance. It is particularly important to evaluate how well a ma-
chine learning model generalizes to new, previously unseen data.
As such, the model was evaluated on a test data set (20% of all
images) on both pixel and object level. To quantify model per-
formance, the following metrics were calculated: the Dice score,
Intersection-Over-Union, Precision, Recall, and aggregated Jaccard
index.45 Aggregated Jaccard Index was the primary metric of
interest as it penalizes false positive and false negative gland
detections. A receiver operating characteristic curve and a
precision-recall curve were also plotted to give a more informa-
tive picture of the algorithm’s performance.

Meibomian Gland Metrics Calculation

The following Meibomian gland metrics were introduced to
quantify changes over time: Meibomian gland length, length ratio,
area, intensity, tortuosity, and width. Meibomian gland length was
defined as the pixel-wise length of gland topological skeleton.15

The length ratio was the length of the gland with respect to
eyelid height at the position of the gland, measured along the
orientation of the gland (see Fig 2). Length ratio was introduced
to overcome problems with inconsistency of eyelid eversion and
head position.20 The individual Meibomian gland area was
defined as the number of pixels within each region of interest.
The mean gray level of each labeled gland (the brightness of all
pixels within a single gland, range 0e255) was defined as
Meibomian gland intensity. Tortuosity was defined as the ratio of
the arc-length of the gland (length of the curve or length of
gland topological skeleton) to the distance between the end
points.15 Meibomian gland width was calculated as the average of
all widths of the gland along all points on the gland central line,
similar to the definition of Xiao et al.21 The gland width was
measured as the distance between the gland mask edges along
the line perpendicular to the topological skeleton to compensate
for gland curvature so that the width was calculated as the actual
distance between gland contour. The perpendicular direction was
calculated for each point of the gland’s topological skeleton
using principal component analysis of 8 neighboring points (see
Video 2 [available at www.ophthalmologyscience.org]).
Meibomian gland width was further divided into mean
(widthmean), median (widthmedian), and 10th (width10th) and 90th
(width90th) percentile of all widths. Median was proposed to deal
with potential outliers, and the 10th and 90th percentiles were
introduced to detect a potential change in the thinnest and
thickest region, respectively. The 10th percentile of Meibomian
gland width refers to the width value below which 10% of all
measured widths fall. This provides insight into the thinnest
regions of the gland, which may be particularly susceptible to
dysfunction or damage. Similarly, the 90th percentile of
Meibomian gland width refers to the width value above which
90% of all measured widths fall. This provides information about
the thickest regions of the gland, which may be important for
understanding gland structure and function. By including both
the 10th and 90th percentile widths, the analysis is able to

http://www.ophthalmologyscience.org
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Figure 2. Meibomian gland ratio calculation. The blue color represents
the eyelid, orange the height of the eyelid at the position of the gland, and
yellow corresponds to the gland of interest. This image represents a rotated
object after performing principal component analysis (PCA) on the data.
Principal component 1 (PC1) and PC2 are the 2 most important axes of
the rotated object, with PC1 representing the direction of greatest vari-
ability in the data and PC2 representing the direction of second-greatest
variability. The values along PC1 and PC2 can be used to describe the
object’s shape and orientation.
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provide a more comprehensive picture of the Meibomian gland
structure, which can aid in diagnosis and monitoring of MGD.

Semantic segmentationebased approach. Score thresholding
was performed on predictions from a semantic segmentation
network to filter out pixels that are less likely to be part of the
desired class. This helps to reduce false positives and improve the
accuracy of the segmentation results. The score threshold, selected
on the validation set, was set to 0.75. The selection of the score was
based on an analysis of the model’s performance on the indepen-
dent validation set. We chose the threshold that resulted in the best
average aggregated Jaccard index (aAJI) (Fig S3, available at
www.ophthalmologyscience.org). Thresholded binary masks of
Meibomian glands predicted by Deeplabv3þ were further
processed to separate merged glands. The fragmentation
algorithm has been developed based on work described by Xiao
et al21 and Llorens-Quintana et al.20 Figure 4 shows the
difference before and after application of fragmentation algorithm
on selected Meibomian glands.

Object detectionebased approach. The detection threshold
was set to 0.75. To further reduce false positive detections by Mask
R-CNN the area of interest was limited by the area of the eyelid
detected by the Deeplabv3þ network. Mask R-CNN was also
trained to detect the eyelid; however, the results were not satis-
factory; thus, Deeplabv3þ was used instead. We found that the
performance of Mask R-CNN in detecting the eyelid region was
not satisfactory, despite our best efforts to fine-tune the model and
adjust the training parameters. It is possible that Mask R-CNN’s
instance segmentation approach, which is designed to detect mul-
tiple objects in an image, may have been better suited for detecting
the gland structures, which are typically more complex and have a
greater variety of shapes and sizes compared with the eyelid region.
On the other hand, the eyelid region is a relatively simple structure
that can be accurately detected using a semantic segmentation
approach, which is what Deeplabv3þ uses. Multiple detections for
one eyelid were common with Mask R-CNN. Additionally, it is
possible that the training data for the eyelid region was not diverse
enough or did not contain enough examples to allow Mask R-CNN
to effectively learn to detect this specific structure.

Inter-reader Agreement

To measure the level of agreement between 2 annotators (K.S. and
M.L.R.), who manually labeled 20 random images from the test set
aAJI,45,46 Dice similarity coefficient,47 Cohen’s Kappa
coefficient,48 and interclass correlation coefficient49 were
calculated for each model. A similar approach has been proposed
by Setu et al7 for testeretest reliability. In addition, the agree-
ment between each annotator and each algorithm was assessed
using the same metrics.

Statistical Analysis

BlandeAltman50 analysis was used to assess agreement between
manual and automated methods for Meibomian gland metrics
calculation. The same analysis was carried out for Meibomian
gland metrics calculated on manual annotations performed by 2
readers.

The 95% confidence interval (CI) of the means for each inter-
reader agreement metric and metric for model performance
assessment were calculated by performing bootstrap resampling.51

Bias corrected and accelerated percentile methods were used to
correct for bias and skewness in the distribution of bootstrap
estimates. Statistical analysis was performed using MATLAB
R2022a with Statistics and Machine Learning Toolbox (The
MathWorks, Inc).
Results

Network Training Details

Both models were trained on a High Performance
Computing cluster utilizing 1 GPU (NVIDIA A100 80GB)
for 300 (Deeplabv3þ) and 100 (Mask R-CNN) epochs. The
training process of Deeplabv3þ network lasted 44 hours 52
minutes, whereas Mask R-CNN lasted 34 hours and 56
minutes. Stochastic gradient descent with momentum opti-
mizer was used to optimize both models. Momentum was
set to 0.5 and 0.9 for Deeplabv3þ and Mask R-CNN,
respectively. The exploratory analysis on the validation set
found that results were not sensitive to the number of epochs
for dropping the learning rate and the dropping factor; as
such, they were set to default values. The learning rate was
updated every 10 (Deeplabv3þ) and 50 (Mask R-CNN)
epochs by multiplying by a factor of 0.3. Mini-batch size
was set to 8 for both models. The training data were shuffled
before each training epoch.

Network Performance

The aAJI on the test set was a mean of 0.4718 (95% CI,
0.4680e0.4771) for the ‘gland’ class and a mean of 0.8470
(95% CI, 0.8432e0.8508) for the ‘eyelid’ class for semantic
segmentationebased approach. The aAJI for object
detection-based approach was a mean of 0.4476 (95% CI,
0.4426e0.4533). Figure 5 shows example images with aAJI
results for each model. Figure 6 demonstrates examples of
5
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Figure 4. The fragmentation algorithm. The input to the algorithm is a binary mask of a glandular structure. The algorithm begins by filling any holes in the
input mask and labeling each connected region of pixels as a separate gland. For each gland, the algorithm applies a rotation to align the major axis of the
gland with the horizontal axis. The algorithm then computes the number of segments in each row of the rotated gland, and, if this number exceeds a specified
threshold, the gland is fragmented into smaller subglands. To fragment the gland, the algorithm first erodes the gland until it consists of multiple
disconnected regions. It then applies an external gradient to each of these regions, followed by filling any holes in the gradient, and, finally, subtracts an
internal gradient from the filled gradient to obtain a fragmented subgland. If the number of segments in a row of the rotated gland does not exceed the
threshold, the gland is not fragmented and is returned as is. The output of the algorithm is a binary mask of the fragmented gland structure. (A) Original
image with a few glands close to each other. (B) Semantic segmentation before application of fragmentation algorithm. (C) Semantic segmentation after
application of fragmentation algorithm.
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software failures. In general, both models performed better
on the lower eyelid images.

Meibomian Gland Metrics Calculation

To quantify Meibomian gland structure, Meibomian gland
area, length ratio, tortuosity, intensity, and width were
calculated. The results were compared with the manual al-
gorithm in which glands were annotated by a single masked
6

reader. Columns 2 and 3 of Figure 7 show the
BlandeAltman analysis for all metrics. Both AI-based al-
gorithms underestimated area, length ratio, tortuosity,
widthmean, widthmedian, width10th, and width90th. Meibomian
gland intensity was overestimated by both algorithms
compared with the manual approach. The object
detectionebased algorithm seems to be as reliable as the
manual approach only for the Meibomian gland width10th
calculation.



Swiderska et al � Deep Learning for Meibomian Gland Evaluation
Interreader Agreement

Column 1 of Figure 7 shows the BlandeAltman analysis for
all metrics when Meibomian glands were annotated by 2
independent and masked readers. The results show that there
is no bias between 2 readers for most metrics except for
Meibomian gland tortuosity. Table 1 and 2 show interreader
reliability. Both tables show the same values for interreader
reliability to facilitate easy comparison between reader and
algorithm agreement for each approach.
Discussion

This study compared 2 popular deep learning neural
network architectures for object segmentation. Both se-
mantic segmentation and object detectionebased ap-
proaches provided biased results when compared with a
manual approach. Both approaches underestimated most
gland metrics except for intensity, which is overestimated by
AI-based approaches. In this work, we evaluated whether
AI-based algorithms can give a more consistent perfor-
mance than manual assessment. The discrepancy between
manual and fully automated approaches are rather small for
most metrics. In particular, Meibomian gland width has
been a metric for which the bias does not seem to be clin-
ically significant. In this study, the bias between manual and
AI-based measurements of Meibomian gland width was
found to be in the range of 0.17 to 4.75 pixels, which is
relatively small. Although a bias of this magnitude may be
noticeable when analyzing subtle changes in gland structure
over time or in response to treatment, it is unlikely to have a
clinically significant impact when assessing Meibomian
glands en masse. This is because the variations in gland
width that are observed in healthy individuals and those
with MGD are typically larger than the range of bias
observed in this study, as reported in previous
research.15,17,21 Therefore, even if there is a slight
underestimation or overestimation of Meibomian gland
width by AI-based approaches, it is unlikely to signifi-
cantly affect the overall assessment of Meibomian gland
structure and function in a clinical setting. It should be noted
that after incorporating a calibration factor, a change of 1
pixel in the image corresponds to a change of 0.028 mm in
the gland width. Therefore, the observed bias of 0.17 to 4.75
pixels translates to a bias of 0.005 to 0.134 mm, which is
still relatively small. The calibration factor was only used to
provide a more intuitive interpretation of the measurements
in a physical context. The limits of agreement for this data
set ranged between �11.15 and 16.12 in pixels, which is a
relatively small range of variation compared with the
observed variations in gland width in healthy individuals
and those with dry eye disease.15,17,21 These findings
suggest that the deep learning model had good
performance in calculating the width of Meibomian
glands. However, it should be noted that some studies
have reported variations in gland width depending on the
stage of MGD. For instance, in the initial stages of
atrophy, the width of glands may start to increase as the
glands fade out, leading to more variation in early-stage
cases.15 Additionally, another study reported that gland
thickness increases in intermediate MGD but decreases in
severe MGD.21 Finally, a study found that the diameter
deformation index, which is the standard deviation of the
local gland widths within a single gland, is more common
in early-stage MGD.17 These variations should be taken
into account when interpreting the results of the deep
learning model.

Of the many recently published works on the utility of AI
in meibography, only a few focused on quantifying indi-
vidual Meibomian gland structure.7,9,14,15 The recurring
Meibomian gland metrics are length, width, and tortuosity.
In addition, some other individual gland parameters were
proposed: the number of glands,7,15 local contrast,9 and
the number of ghost glands.9 In this study, we also
proposed a single Meibomian gland area, intensity, and
detailed width calculation. All of the aforementioned
studies trained their models on images captured with
Keratograph 5M (OCULUS). In contrast, this study
analyzed images captured with the LipiView II device. So
far, only one other study trained a deep learning model on
a similar type of images.10 However, they did not focus
on individual Meibomian gland characteristics, rather
focusing on overall gland area, which was then used for
automated meiboscore evaluation.10 Comparison of model
performance described in this study with previously
published works is not simple due to the lack of a
universal metric agreement when it comes to deep
learningemodel performance evaluation. In this study,
aAJI was used to evaluate the segmentation performance
to prioritize accurate instance segmentation, as opposed to
mere semantic segmentation. The results of our models
indicate that interreader agreement is not much different
from algorithm versus ground truth, indicating that
automated Meibomian gland segmentation may be highly
dependent on the subjective ground truth data and,
furthermore, AI-based algorithms are as reliable as the
manual approach.

Both models performed better on the lower eyelid im-
ages. One possible reason is that the lower eyelid may
have had more clear and distinguishable gland structures
compared with the upper eyelid, allowing the deep
learning model to better detect and classify the gland re-
gions. Additionally, the image features and characteristics
of the lower eyelid may have been more consistent and
easier to learn for the deep learning model, leading to
improved performance. Finally, it is possible that the
lower eyelid simply had more training examples in the
data set compared with the upper eyelid, which could have
improved the model’s ability to generalize and make ac-
curate predictions.

With regard to the research methods, some limitations
need to be acknowledged. Although both models performed
well on good quality images, they failed to successfully
segment Meibomian glands on poor quality images,
particularly those out of focus, as can be seen in Figure 6.
However, many clinical images are far from ideal, which
could justify the discrepancy between manual and
automatic approaches. In this study, real, imperfect,
clinical images were used for model training. To
7



Figure 5. Examples of model performance on images from the test set. The average aggregated Jaccard indexes (aAJIs) for the model based on Deeplabv3þ
were 0.6925 and 0.6493 for the upper and lower eyelid, respectively. The Mask R-CNN-based approach achieved aAJIs of 0.5027 and 0.6743 for the upper
and lower eyelid, respectively.

Ophthalmology Science Volume 3, Number 4, December 2023
overcome this limitation, either more images could have
been used for training or improved training and quality
control procedures to ensure that the optometrist was
performing meibography in the best possible way. As
Figure 6. Examples of model failures. The first row shows examples of failures
shows examples of failures with the object detectionebased approach. (A) M
glands. (E) Merged and missing glands (arrows). (F) Poor performance on an i

8

previously discussed,52 there are many ways to optimize
image capture, for example, performing appropriate eyelid
eversion or using a better tool for eyelid eversion,
appropriate eye gaze, and head position.52
with the semantic segmentationebased approach, whereas the second row
erged glands. (B) Misdetection. (C) Oversegmentation. (D) Overlapping
mage out of focus.



Figure 7. BlandeAltman analysis of Meibomian gland metrics between 2 readers (interreader) between ground truth (GT) and object detection-based
approach (artificial intelligence [AI]) (Reader1-Deeplabv3þ) and between GT and semantic segmentationebased approach (Reader1-Mack R-CNN).
Analysis was performed on 20 images of the lower eyelids.
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Figure 7. (continued).

Ophthalmology Science Volume 3, Number 4, December 2023
In many recently published studies on deep
learningebased Meibomian gland segmentation, good
quality images were preselected, meaning that it is likely
that the developed algorithm performance would suffer
when used in a standard optometric practice. The proposed
10
approaches in this paper are not good for detection of fine
details. Both semantic segmentation and object
detectionebased approaches fail to segment every indi-
vidual gland seen in the image. This can happen when
glands are too close to each other or if they appear in the
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peripheral region that is usually out of focus (Fig 6).
However, the current analysis of Meibomian gland
visible structure is limited to either the overall area of
the gland region or to individual parameters of central
glands, so the mentioned algorithm failures may not play
a significant role in the current gland assessment.
Perhaps future models will focus on all the glands’
individual characteristics. Another limitation of this
study is that only images captured with the LipiView II
were included to train the model, meaning that the
algorithm is likely to need further optimization to
process images from another device, such as the
Keratograph 5M.

The relatively small size of the data set may be another
reason why both models failed to detect all Meibomian
glands in the image. Meibography is not typically part of a
standard eye examination, so it is difficult to build a large
database of images required for deep learning tasks, and no
databases of meibography images are publicly available to
our knowledge. Further data collection is required to
determine exactly how data set size affects model perfor-
mance. The strengths of the study include the in-depth
analysis of interreader agreement. Previous studies of the
application of deep learning in meibography suffer from
methodologic limitations.8,9,11e15,53 Most of these studies
have not investigated the interreader and intrareader
reliability. Only some looked closer at these relationships
and confirmed the poor interreader5,10 and intrareader
reliability.7 Another strength of this study is the data
partitioning that was based on the patient identifier. Most
previous studies performed a random split of the data into
training and evaluation sets without clearly stating if they
have included multiple images from a single patient,
which could lead to potential bias in the stated model
performance.5,7,9,11e14 In this study, all images for each
patient could end up only in one set; as such, there was no
risk that model performance would be biased. A key
strength of the present study was the in-depth calculation of
Meibomian gland width that considers all widths along the
gland; as such, comprehensive analysis of possible changes
in the thickest and thinnest part of the gland could be
possible (e.g., when analyzing longitudinal changes that
could happen as a response to treatment).

Despite its limitations, the study certainly contributes to
the development of AI-based approaches in meibography.
The use of deep learning models for the analysis of mei-
bography images has the potential to improve the accuracy
and efficiency of Meibomian gland assessment in clinical
practice. There is still the need for a proper and universal
evaluation method that would allow comparison between
different approaches. Currently, different studies use
different evaluation metrics, making it difficult to compare
the performance of different AI-based approaches. More-
over, the use of different instruments for image capture can
also affect the accuracy and reliability of the measurements.
Further research should be undertaken to explore how cli-
nicians could benefit from individual gland analysis and
how to overcome the issues with the current approaches that
still face some difficulties with distinguishing single glands
seen in each image.
11



Table 2. Interreader Agreement of Manual Annotations and ReadereAlgorithm Agreement for Object Detection-Based Algorithm.

Metric

Interreader Reader 1: Algorithm Reader 2: Algorithm

‘gland’ ‘eyelid’ ‘gland’ ‘eyelid’ ‘gland’ ‘eyelid’

aAJI 0.5487 (0.5310,0.5620) 0.8774 (0.8688,0.8834) 0.4294 (0.4132,0.4545) d 0.4102 (0.3912,0.4372) d
DSC 0.6230 (0.6033,0.6404) 0.9340 (0.9302,0.9384) 0.5860 (0.5694,0.6041) d 0.5516 (0.5268,0.5687) d
Kappa 0.6224 (0.6033,0.6404) 0.9228 (0.9182,0.9286) 0.5848 (0.5662,0.5998) d 0.5503 (0.5309,0.5716) d
ICC 0.7264 (0.7123,0.7343) 0.9240 (0.9195,0.9291) 0.5943 (0.5793,0.6154) d 0.5613 (0.5368,0.5787) d

Each value represents 2-sided mean with 95% confidence interval.
aAJI ¼ average aggregated Jaccard index; DSC ¼ Dice similarity coefficient; ICC ¼ interclass correlation coefficient; Kappa ¼ Cohen’s Kappa coefficient.

Ophthalmology Science Volume 3, Number 4, December 2023
In conclusion, this study demonstrates another approach
for automated, AI-based Meibomian gland analysis focusing
on individual Meibomian gland characteristics. Given its
accuracy and efficiency, the proposed methods could be
successfully utilized in clinical settings for aggregate
Meibomian gland assessment. Further development is
required to solve the issues with overlapping and out of
focus glands.
12
Acknowledgments

The authors acknowledge the assistance given by Research IT and
the use of the Computational Shared Facility at The University of
Manchester. The authors acknowledge the assistance of the clin-
ical, logistical, and administrative colleagues at Eurolens Research
in the acquisition of data for this study and Emily Willerton of
BBR Optometry Ltd for her work in seeking participant consent for
use of images for the project.
Footnotes and Disclosures
Originally received: April 5, 2023.
Final revision: May 9, 2023.
Accepted: May 16, 2023.
Available online: May 22, 2023. Manuscript no. XOPS-D-23-00072R1.
1 Eurolens Research, Division of Pharmacy and Optometry, Faculty of
Biology, Medicine and Health, The University of Manchester, Manchester,
United Kingdom.
2 Johnson & Johnson Vision, Inc, Jacksonville, Florida.
3 Division of Informatics, Imaging and Data Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Manchester, United
Kingdom.

Disclosures:

All authors have completed and submitted the ICMJE disclosures form.

The authors made the following disclosures: C.A.B.: Employment e

Johnson & Johnson Vision Inc. C.MC.: Research grants/support e Alcon,
CooperVision Inc, Johnson & Johnson Vision Care Inc. Menicon, Visco
Vision.

P.B.M.: Research grants/support e Alcon, CooperVision Inc, Menicon,
Visco Vision; Honoraria e Alcon, CooperVision Inc, Johnson & Johnson
Vision.

M.L.R.: Research grants/support e Alcon Inc, CooperVision Inc, Johnson
& Johnson Vision Inc, Menicon Co Ltd, Visco Vision Inc; Travel expenses
e CooperVision Inc; Patents e Compositions and uses and methods
relating thereto US11253452B2.

M.F.: Research grants/support e InnovateUK, NIHR; Consultant eMarion
Surgical Ltd; Honoraria e UCB; Board membership e Spotlight Pathology
Ltd, Sentira XR (VR-Evo Ltd); Shares e Spotlight Pathology Ltd, Sentira
XR (VREvo Ltd), Fixtuur (Shortbite Ltd).

Supported by Johnson & Johnson Vision, Inc.
HUMAN SUBJECTS: Human subjects were included in this study. This
study was approved by the University Research Ethics Committee of The
University of Manchester before data extraction. All procedures adhered to
the tenets of the Declaration of Helsinki, and all participants provided
written informed consent before data extraction. Consent was obtained
retrospectively from all participants for their anonymized images to be
analyzed for the purpose of deep learning model development.

No animal subjects were used in this study.

Author Contributions:

Conception and design: Swiderska, Blackie, Maldonado-Codina, Morgan,
Read, Fergie

Data collection: Swiderska

Analysis and interpretation: Swiderska, Blackie, Maldonado-Codina,
Morgan, Read, Fergie

Obtained funding: Blackie, Maldonado-Codina, Morgan, Read

Overall responsibility: Morgan

Abbreviations and Acronyms:
aAJI ¼ average aggregated Jaccard index; AI ¼ artificial intelligence;
CI ¼ confidence interval; CNN ¼ convolutional neural network;
MGD ¼ Meibomian gland dysfunction.

Key Words:
Artificial intelligence, Deep learning, Image processing, Meibography,
Meibomian gland imaging, Meibomian glands, Meibomian gland structure.

Correspondence:
Kasandra Swiderska, PhD, Eurolens Research, The University of Man-
chester, Carys Bannister Building, Dover Street, Manchester, M13 9PL,
UK. E-mail: kasandra.swiderska@postgrad.manchester.ac.uk.
References
1. Becker AS, Marcon M, Ghafoor S, et al. Deep learning in
mammography: diagnostic accuracy of a multipurpose image
analysis software in the detection of breast cancer. Invest
Radiol. 2017;52:434e440.

mailto:kasandra.swiderska@postgrad.manchester.ac.uk
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref1
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref1
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref1
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref1
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref1


Swiderska et al � Deep Learning for Meibomian Gland Evaluation
2. Kim HE, Kim HH, Han BK, et al. Changes in cancer detection
and false-positive recall in mammography using artificial in-
telligence: a retrospective, multireader study. Lancet Digit
Health. 2020;2:e138ee148.

3. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al.
Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:
1e29.

4. Sharif MS, Qahwaji R, Ipson S, Brahma A. Medical image
classification based on artificial intelligence approaches: a
practical study on normal and abnormal confocal corneal im-
ages. Appl Soft Comput. 2015;36:269e282.

5. Wang J, Yeh TN, Chakraborty R, et al. A deep learning
approach for Meibomian gland atrophy evaluation in mei-
bography images. Transl Vis Sci Technol. 2019;8:37.

6. Prabhu SM, Chakiat A, S S, Vunnava KP, Shetty R. Deep
learning segmentation and quantification of Meibomian
glands. Biomed Signal Process Control. 2020;57:101776.

7. Setu MAK, Horstmann J, Schmidt S, et al. Deep learning-
based automatic meibomian gland segmentation and
morphology assessment in infrared meibography. Sci Rep.
2021;11:7649.

8. Khan ZK, Umar AI, Shirazi SH, Rasheed A, Qadir A, Gul S.
Image based analysis of meibomian gland dysfunction using
conditional generative adversarial neural network. BMJ Open
Ophthalmol. 2021;6:e000436.

9. Wang J, Li S, Yeh TN, et al. Quantifying Meibomian gland
morphology using artificial intelligence. Optom Vis Sci.
2021;98(9):1094e1103.

10. Saha RK, Chowdhury AMM, Na KS, et al. Automated
quantification of meibomian gland dropout in infrared
meibography using deep learning. Ocul Surf. 2022;26:
283e294.

11. Yu Y, Zhou Y, Tian M, et al. Automatic identification of
meibomian gland dysfunction with meibography images using
deep learning. Int Ophthalmol. 2022;42:3275e3284.

12. Zhang Z, Lin X, Yu X, et al. Meibomian gland density: an
effective evaluation index of Meibomian gland dysfunction
based on deep learning and transfer learning. J Clin Med.
2022;11:2396.

13. Wang J, Graham AD, Yu SX, Lin MC. Predicting de-
mographics from meibography using deep learning. Sci Rep.
2022;12:15701.

14. Dai Q, Liu X, Lin X, et al. A novel Meibomian gland
morphology analytic system based on a convolutional neural
network. IEEE Access. 2021;9:23083e23094.

15. Setu MAK, Horstmann J, Stern ME, Steven P. Automated
analysis of meibography images: comparison between in-
tensity, region growing and deep learning-based methods
[abstract]. Ophthalmologe. 2019;116:25e218.

16. Cie _zar K, Pochylski M. 2nd short-time Fourier transform for
local morphological analysis of meibomian gland images.
PLOS ONE. 2022;17:e0270473.

17. Deng Y, Wang Q, Luo Z, et al. Quantitative analysis of
morphological and functional features in meibography for
Meibomian gland dysfunction: diagnosis and grading. ECli-
nicalmedicine. 2021;40:101132.

18. Cie _zar K, Pochylski M. 2D fourier transform for global anal-
ysis and classification of meibomian gland images. Ocular
Surf. 2020;18:865e870.

19. Llorens-Quintana C, Rico-Del-Viejo L, Syga P, et al. Meibo-
mian gland morphology: the influence of structural variations
on gland function and ocular surface parameters. Cornea.
2019;38:1506e1512.
20. Llorens-Quintana C, Rico Del Viejo L, Syga P, et al. A novel
automated approach for infrared-based assessment of
meibomian gland morphology. Transl Vis Sci Technol. 2019;8:
17.

21. Xiao P, Luo Z, Deng Y, et al. An automated and multi-
parametric algorithm for objective analysis of meibography
images. Quant Imaging Med Surg. 2021;11:1586e1599.

22. Lin X, Fu Y, Li L, et al. A novel quantitative index of Mei-
bomian gland dysfunction, the Meibomian gland tortuosity.
Transl Vis Sci Technol. 2020;9:34.

23. Koprowski R, Wilczy�nski S, Olczyk P, et al. A quantitative
method for assessing the quality of meibomian glands. Comput
Biol Med. 2016;75:130e138.

24. Arita R, Suehiro J, Haraguchi T, et al. Objective image anal-
ysis of the meibomian gland area. Br J Ophthalmol.
2014;98(6):746e755.

25. Koh YW, Celik T, Lee HK, et al. Detection of meibomian
glands and classification of meibography images. J Biomed
Opt. 2012;17(8):086008.

26. Celik T, Lee HK, Petznick A, Tong L. BioImage informatics
approach to automated meibomian gland analysis in infrared
images of meibography. J Optom. 2013;6:194e204.

27. Daniel E, Maguire MG, Pistilli M, et al. Grading and base-
line characteristics of meibomian glands in meibography
images and their clinical associations in the Dry Eye
Assessment and Management (DREAM) study. Ocul Surf.
2019;17:491e501.

28. Yeh TN, Lin MC. Repeatability of Meibomian gland contrast,
a potential indicator of Meibomian gland function. Cornea.
2019;38:256e261.

29. García-Marqués JV, García-Lázaro S, Martínez-Albert N,
Cerviño A. Meibomian glands visibility assessment through a
new quantitative method. Graefes Arch Clin Exp Ophthalmol.
2021;259:1323e1331.

30. Grenon SM, Korb DR, Grenon J, et al. Eyelid illumination
systems and methods for imaging meibomian glands for
meibomian gland analysis. 2014. TearScience Inc. Patent No.
US 2014/0330129 A1, Filed May 5, 2014, Issued November
6, 2014.

31. Grenon S, Liddle S, Grenon J, et al. A novel meibographer
with dual mode standard noncontact surface infrared illumi-
nation and infrared transillumination. Invest Ophthalmol Vis
Sci. 2014;55:26.

32. Rother C, Kolmogorov V, Blake A. “Grabcut”: interactive
foreground extraction using iterated graph cuts. ACM Trans
Graph. 2004;23:309e314.

33. Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with
atrous separable convolution for semantic image segmentation.
In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, eds. Vision
e ECCV. Springer; 2018:833e851.

34. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. IEEE
International Conference on Computer Vision [ICCV], 2017:
2980e2988.

35. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4,
inceptionresnet and the impact of residual connections on
learning. arXiv:1602.07261.

36. Al-Masni MA, Kim DH, Kim TS. Multiple skin lesions di-
agnostics via integrated deep convolutional networks for seg-
mentation and classification. Comput Methods Programs
Biomed. 2020;190:105351.

37. Siciarz P, McCurdy B. U-net architecture with embedded
Inception-ResNet-v2 image encoding modules for automatic
segmentation of organs-at-risk in head and neck cancer
13

http://refhub.elsevier.com/S2666-9145(23)00066-0/sref2
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref2
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref2
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref2
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref2
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref3
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref3
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref3
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref3
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref4
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref4
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref4
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref4
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref4
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref5
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref5
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref5
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref6
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref6
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref6
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref8
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref8
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref8
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref8
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref9
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref9
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref9
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref9
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref10
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref10
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref10
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref10
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref11
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref11
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref11
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref11
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref11
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref12
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref12
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref12
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref12
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref13
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref13
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref13
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref13
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref14
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref14
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref14
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref15
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref15
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref15
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref15
http://refhub.elsevier.com/S2666-9145(23)00066-0/optwreLJZGEbE
http://refhub.elsevier.com/S2666-9145(23)00066-0/optwreLJZGEbE
http://refhub.elsevier.com/S2666-9145(23)00066-0/optwreLJZGEbE
http://refhub.elsevier.com/S2666-9145(23)00066-0/optwreLJZGEbE
http://refhub.elsevier.com/S2666-9145(23)00066-0/optwreLJZGEbE
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref16
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref16
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref16
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref16
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref17
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref17
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref17
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref17
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref18
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref18
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref18
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref18
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref18
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref19
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref19
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref19
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref19
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref19
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref20
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref20
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref20
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref20
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref21
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref21
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref21
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref21
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref22
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref22
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref22
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref23
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref23
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref23
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref23
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref23
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref24
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref24
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref24
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref24
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref25
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref25
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref25
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref26
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref26
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref26
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref26
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref27
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref27
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref27
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref27
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref27
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref27
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref28
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref28
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref28
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref28
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref29
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref29
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref29
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref29
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref29
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref31
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref31
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref31
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref31
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref32
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref32
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref32
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref32
http://refhub.elsevier.com/S2666-9145(23)00066-0/optIVLAq4vixw
http://refhub.elsevier.com/S2666-9145(23)00066-0/optIVLAq4vixw
http://refhub.elsevier.com/S2666-9145(23)00066-0/optIVLAq4vixw
http://refhub.elsevier.com/S2666-9145(23)00066-0/optIVLAq4vixw
http://refhub.elsevier.com/S2666-9145(23)00066-0/optIVLAq4vixw
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref33
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref33
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref33
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref33
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref34
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref34
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref34


Ophthalmology Science Volume 3, Number 4, December 2023
radiation therapy based on computed tomography scans. Phys
Med Biol. 2022;67:115007.

38. Bose SR, Kumar VS. Efficient inception v2 based deep con-
volutional neural network for real-time hand action recogni-
tion. IET Image Process. 2020;14:688e696.

39. Alruwaili M, Shehab A, Abd El-Ghany S. COVID-19
diagnosis using an enhanced Inception-ResNetV2 deep
learning model in CXR images. J Healthc Eng. 2021;2021:
6658058.

40. Zhou Y, Kang X, Ren F. Employing Inception-ResNet-v2 and
Bi-LSTM for medical domain visual question
answeringCappellato L, Ferro N, Nie JY, Soulier L, eds.
Conference and Labs of the Evaluation Forum.
2018;2125(107).

41. Singh H, Saini SS, Lakshminarayanan V. Rapid classification
of glaucomatous fundus images. J Opt Soc Am A Opt Image
Sci Vis. 2021;38:765e774.

42. Nguyen TD, Jung K, Bui PN, et al. Retinal disease early
detection using deep learning on ultra-wide-field fundus im-
ages. medRxiv. 2023.03.09.23287058.

43. Zhou WD, Dong L, Zhang K, et al. Deep learning for auto-
matic detection of recurrent retinal detachment after surgery
using ultra-widefield fundus images: a single-center study. Adv
Intell Syst. 2022;4:2200067.

44. Jiang H, Yang K, Gao M, et al. An interpretable ensemble
deep learning model for diabetic retinopathy disease classifi-
cation. In: 41st Annual International Conference of the IEEE
14
Engineering in Medicine and Biology Society [EMBC]. 2019:
2045e2048.

45. Kumar N, Verma R, Sharma S, et al. A dataset and a technique
for generalized nuclear segmentation for computational pa-
thology. IEEE Trans Med Imaging. 2017;36(7):1550e1560.

46. Kumar N, Verma R, Anand D, et al. A multi-organ nucleus
segmentation challenge. IEEE Trans Med Imaging. 2020;39:
1380e1391.

47. Zou KH, Warfield SK, Bharatha A, et al. Statistical validation
of image segmentation quality based on a spatial overlap in-
dex1. Acad Radiol. 2004;11:178e189.

48. McHugh ML. Interrater reliability: the kappa statistic. Biochem
Med (Zagreb). 2012;22:276e282.

49. Koo TK, Li MY. A guideline of selecting and reporting
intraclass correlation coefficients for reliability research.
J Chiropr Med. 2016;15:155e163.

50. Bland JM, Altman DG. Statistical methods for assessing
agreement between two methods of clinical measurement.
Lancet. 1986;327:307e310.

51. DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statist
Sci. 1996;11:189e228.

52. Swiderska K, Read ML, Blackie CA, Maldonado-Codina C,
Morgan PB. Latest developments in meibography: a review.
Ocular Surf. 2022;25:119e128.

53. Yeh CH, Yu SX, Lin MC. Meibography phenotyping and
classification from unsupervised discriminative feature
learning. Transl Vis Sci Technol. 2021;10:4.

http://refhub.elsevier.com/S2666-9145(23)00066-0/sref34
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref34
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref35
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref35
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref35
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref35
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref36
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref36
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref36
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref36
http://refhub.elsevier.com/S2666-9145(23)00066-0/optnTaD4jBMcN
http://refhub.elsevier.com/S2666-9145(23)00066-0/optnTaD4jBMcN
http://refhub.elsevier.com/S2666-9145(23)00066-0/optnTaD4jBMcN
http://refhub.elsevier.com/S2666-9145(23)00066-0/optnTaD4jBMcN
http://refhub.elsevier.com/S2666-9145(23)00066-0/optnTaD4jBMcN
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref37
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref37
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref37
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref37
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref38
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref38
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref38
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref38
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref39
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref39
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref39
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref39
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref40
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref40
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref40
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref40
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref41
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref41
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref41
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref41
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref42
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref42
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref42
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref43
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref43
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref43
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref43
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref44
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref44
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref44
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref44
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref45
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref45
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref45
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref46
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref46
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref46
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref46
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref7
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref7
http://refhub.elsevier.com/S2666-9145(23)00066-0/sref7

	A Deep Learning Approach for Meibomian Gland Appearance Evaluation
	Methods
	Data set and Preprocessing
	Data Annotations
	Data Partitioning
	Architectural Details
	Evaluation Metrics
	Meibomian Gland Metrics Calculation
	Semantic segmentation–based approach
	Object detection–based approach

	Inter-reader Agreement
	Statistical Analysis

	Results
	Network Training Details
	Network Performance
	Meibomian Gland Metrics Calculation
	Interreader Agreement

	Discussion
	Acknowledgments
	References


