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In the past decade, the substantial achievements of therapeutic cancer vaccines have
shed a new light on cancer immunotherapy. The major challenge for designing potent
therapeutic cancer vaccines is to identify neoantigens capable of inducing sufficient
immune responses, especially involving major histocompatibility complex (MHC)-II
epitopes. However, most previous studies on T-cell epitopes were focused on either
ligand binding or antigen presentation by MHC rather than the immunogenicity of T-cell
epitopes. In order to better facilitate a therapeutic vaccine design, in this study, we
propose a revolutionary new tool: a convolutional neural network model named FIONA
(Flexible Immunogenicity Optimization Neural-network Architecture) trained on IEDB
datasets. FIONA could accurately predict the epitopes presented by the given specific
MHC-II subtypes, as well as their immunogenicity. By leveraging the human leukocyte
antigen allele hierarchical encoding model together with peptide dense embedding fusion
encoding, FIONA (with AUC = 0.94) outperforms several other tools in predicting epitopes
presented by MHC-II subtypes in head-to-head comparison; moreover, FIONA has
unprecedentedly incorporated the capacity to predict the immunogenicity of epitopes
with MHC-II subtype specificity. Therefore, we developed a reliable pipeline to effectively
predict CD4+ T-cell immune responses against cancer and infectious diseases.

Keywords: neoantigen, cancer vaccine, deep learning, IEDB, CD4+ T cell, MHC-II
1 INTRODUCTION

Therapeutic cancer vaccines (1–3) are regarded as the most promising cancer immunotherapies (4–
8). The primary therapeutic mechanism of cancer vaccines is to “educate” the immune system to
recognize and eliminate tumor cells as foreign substances. From the rationale above, the key of a
vaccine design is to identify valuable antigens that can distinguish tumor cells from normal cells.
Therefore, previous studies on therapeutic cancer vaccines have involved tumor-associated antigens
(TAAs) (9–12) and tumor-specific antigens (TSAs), that is, neoantigens (13–16).
Abbreviations: APC, antigen-presenting cell; MHC, major histocompatibility complex; HLA, human leukocyte antigen; CNN,
convolutional neural network; CRC, colorectal cancer; TAA, tumor-associated antigens; TSA, tumor-specific antigens; AML,
acute myeloid leukemia; DC, dendritic cell; TCR, T-cell receptor; ROC curve, receiver operating characteristic curve; AUC,
area under the curve; PR curve, precision and recall curve.
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In the past decade, therapeutic cancer vaccines have achieved
excellent clinical study results (17–24). For instance, in patients
with anti-PD1-refractory/relapsed unresectable Stage III or IV
melanoma, BioNTech’s therapeutic cancer vaccine candidate
BNT111 combined with cemiplimab elicited durable objective
responses (23), which received Food and Drug Administration
(FDA) Fast Track Designation in 2021. In another study,
treatment with dendritic cell vaccine primed with WT1 mRNA
could prevent or delay relapse in 43% of patients with AML in
remission after chemotherapy in a Phase II trial (25). These two
clinical studies utilized therapeutic vaccines based on TAA.

Therapeutic vaccines based on personalized neoantigens also
made remarkable progress. In a clinical trial on melanoma
patients conducted by Otto et al., a synthetic long peptide
vaccine consisting of multiple epitopes established tumor-
specific T-cell responses and demonstrated effectiveness over
five years (20, 22, 26). In end-stage colorectal cancer (CRC)
patients (3rd line or more advanced), Gritstone’s GRANITE
personalized immunotherapy showed a 44% molecular response
rate (4/9) by circulating tumor DNA analysis that can be
considered as a surrogate endpoint [NCT03639714].

Theoretically, neoantigens are superior to TAA as targets for
therapeutic cancer vaccine: although TAAs have relatively higher
expression levels in tumor cells, they may still be present in
particular types of normal cells at low levels; Her2 and survivin
would be good examples (27–30). In contrast, neoantigens
originate from mutations and aberrant translations of tumor
RNA transcriptome. Consequently, they are “absolutely” specific
to tumor cells as normal cells do not have such mutations and
aberrant translations. Such “absolute” specificity means that T-
cell responses against neoantigens are unlikely to elicit an off-
target effect on normal cells. Thus, the safety concern of
neoantigen-based personalized vaccines would be minimal.

Despite its theoretical superiority on safety, neoantigen-based
personalized vaccines still need to face a technical bottleneck:
how to identify T-cell epitopes with sufficient immunogenicity
from neoantigens for vaccine design. Especially, MHC-II
epitopes are believed to be more necessary than MHC-I
epitopes for preventing the immune escape of tumor cells (31,
32, 34). The insufficient capability of predicting MHC-II epitopes
has obviously limited the development of neoantigen-based
personalized vaccines, resulting in scarcely reported clinical
studies involving MHC-II epitopes. Therefore, our research
aims to break this bottleneck and provide a powerful tool for
developing a neoantigen-based personalized vaccine.

Generally speaking, the conversion of aberrant peptides
generated by genomic variations in tumor cells into epitopes
eliciting in vivo T-cell immune responses is a complex process
involving multiple hierarchical levels. Therefore, the prediction
and identification of T-cell epitopes should preferably involve
multiple levels to reflect complex biological processes. Such a
“funnel-like” procedure (35–37) that would eliminate most T-
cell epitope candidates would necessarily involve several
major steps:

1. Mutation identification
2. Peptide–MHC binding prediction
Frontiers in Oncology | www.frontiersin.org 2
3. Peptide–MHC presentation prediction
4. Peptide–MHC immunogenicity prediction

Plenty of previous work has been accomplished by various
research groups in the relevant field and thereafter generated
several well-known software implements:

• The latest version of NetMHCIIpan uses binding and elution
datasets deconvoluted by NNalign_MA (38) to predict
peptide ligands that can be presented by MHC-I and MHC-
II on the cell surface (39, 40).

• MHCflurry improves the pan-allele prediction of MHC-I-
presented peptide ligands by incorporating antigen
processing and MHC ligandome elution (41).

• ForestMHC applied the deconvolution of polyallelic datasets
trained by MixMHCpred based on position weight matrices
(PWMs) and MHC-I-presented peptide ligands (42).

• MARIA adopts a multimodal recurrent neural network that
summarizes in vitro binding measurements, mRNA
abundance, and protease cleavage signatures to predict
MHC-II-presented peptide ligands (43).

However, the well-known tools listed above never touched the
4th step of the funnel: immunogenicity. Considering the negative
selection of T cells during thymus development (44, 45), the vast
majority of self-derived peptides will not trigger a downstream
immune response even if presented by APC such as DC (46, 47),
and such peptides account for 90% of all presented peptides.
Obviously, the current antigen presentation prediction tools are
NOT the ultimate solutions for the design of neoantigen-based
personalized vaccines because even the peptide ligands presented
by MHC-I or MHC-II may not be immunogenic at all.

Recently, several emerging studies have taken MHC-I
immunogenicity prediction into consideration. For example,
deepHLApan incorporated both peptide–MHC complex binding
affinity and immunogenicity to predict the T-cell epitope (48).
DeepNetBim extracted the attributes of the network as new
features from peptide–MHC binding and immunogenic models
as a pan-specific MHC-I epitope prediction tool (49).

Nevertheless, there remains an unfilled gap in identifying
MHC-II epitopes with sufficient immunogenicity, as
neoantigen-driven B-cell and CD4+ T-helper cell collaboration
promotes anti-tumor CD8 T-cell responses (50). In this work, we
developed an overarching framework to predict MHC-II epitopes:
our convolutional neural network (CNN) model predicts the
probability of a peptide to be presented to the cell surface by a
designated MHC subtype, as well as its immunogenicity to
activate immune T cells. The overall research consists of the
following parts:

(1) The datasets of peptide presentation and immunogenicity are
obtained from an open database (IEDB) (51) and then
processed with rigorous organization and cleaning.

(2) We constructed a semiotic-based human leukocyte antigen
(HLA)-encoding method with three levels to associate the
information of the HLA allele nomenclature, which better
represents the characteristics of different MHC subtypes that
are not entirely independent or discrete.
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(3) The encoded MHC subtypes and peptides are integrated into
the deep learning model based on a specially designed CNN.

(4) Independent validation datasets are used to evaluate the
model’s prediction performance.
2 MATERIALS AND METHODS

2.1 Eluted Ligandome and Immunogenicity
Data
The Eluted Ligandome date corresponding to various MHC-II
subtypes is downloaded from the IEDB database; T-cell assay
data reflecting the immunogenicity of peptides are extracted
from the IEDB database. Python scripts are used to resolve raw
XML data filtered with the following criteria:

(1) MHC-II alleles include HLA-DP, DQ, and DR b chains,
whereas a chains are reasonably omitted as they contribute
little to ligand specificity.

(2) Only MHC-II subtypes with explicit 2 fields in the HLA
nomenclature such as HLA-DPB1*01:03 are retained.

(3) The peptide length is in the range of 9~25 amino acids,
representing 98% of total peptides

(4) Peptide–MHC pairs with controversial assay results are
excluded.

(5) MHC-II subtypes with fewer than 10 corresponding peptides
are excluded as the data size is too small to train our model,
which leads to 65 available MHC-II subtypes.

(6) T-cell assay data are based on wet-lab assays rather than
predictions in original dataset’s column named Assay Type.
2.2 Negative Elution Training Data
Generation
We generate the negative datasets corresponding to elution data
treated as positive data from the global maximum dissimilarity
scoring matrix based on sequence dissimilarity with an
additional NetMHCIIpan binding filter:

(1) Full protein length F is extracted according to its accession ID
(GenBank ID) given an eluted sequence P.

(2) We use a window with the same length of P to slide on the
full-length sequence F to get a list of candidates from which
10 negative sequences with the lowest sequence similarity
compared to the entire positive dataset and the lowest
possibi l i ty to be eluted sequences calculated by
NetMHCIIpan 4.0 as a filter.

In total, we obtained 273,102 non-redundant eluted ligands
(as positive data) and corresponding to 61 MHC-II subtypes
(Supplementary Table 1), amino acids frequency of most
prevalence length of top 5 most corresponding restricted
peptides of MHC-II subtypes is shown in Supplementary pdf;
16,384 (10,131 positive and 6,253 negative) non-redundant T-
cell assay data corresponding to 53 MHC-II subtypes
(Supplementary Table 2).
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2.3 MHC-II Subtype Encoding Based on
Hierarchical Relationship
Antigen presentation and immunogenicity are both closely
associated with MHC-II subtypes because peptide ligands are
finally presented on the cell surface by MHC-II to T-cell
receptors. In order to develop useful tools to predict MHC-II
epitopes, we need to “teach” computer programs how to
distinguish various MHC-II subtypes. Therefore, setting a
reasonable coding method for MHC-II subtypes is an
inevitable question. In quite a number of earlier studies, MHC-
II subtypes are converted into orthogonal vectors using one-hot
encoding. Although a one-hot coding approach is feasible and
straightforward, it apparently does not fully reflect biological
mechanisms. One-hot coding treats each MHC-II subtype as a
unique dimension: for example, in the perspective of one-hot
coding, HLA-DRB1*01:01 and HLA-DRB1*01:09 are assumed to
have no relation at all, neither are their corresponding
ligandomes. However, such an assumption conflicts with real-
world biological mechanisms: the evolution of various MHC
subtypes can be reflected in phylogenetic trees, and some MHC-
II supertypes consisting of multiple subtypes have been
characterized by a partially shared ligandome in previous studies.

As an imperfect approach, one-hot coding for MHC-II
subtypes may waste lots of training data as it does not
recognize the overlapping ligands of closely related MHC-II
subtypes. Moreover, one-hot coding would cause the MHC-II
subtypes without abundant training data (e.g., fewer than 10
corresponding peptides) to be neglected, as the segregated data
amount may not be sufficient for training the model. In order to
develop more powerful tools for predicting MHC-II epitopes, we
propose a novel coding system that could quantitatively reflect
the relation among various MHC-II subtypes. Our goal is to use
training data in a more scientific way with maximal utilization
and also enable epitope prediction for the MHC-II subtypes
without many available data.

The nomenclature rationale of each HLA allele is like a leaf
node based on a tree, which enriches the hierarchical
information and truly reflects the categories and associations of
different HLA alleles. We creatively propose a new HLA coding
method named hierarchical relationship–based HLA encoding,
as shown in Figure 1. In this model, we regard the HLA gene
(HLA-DRB1, DPB1 and DQB1) as layer 0, the first field number
(e.g., ‘01’ of DRB1*01) as layer 1, and the second field number
(e.g., ‘02’ of DRB1*01:02) as layer 2. We encode each single layer
according to an [99×128] embedding table to get an E ∈ R1×128

vector that represents each layer so that on the single layer, the
same symbols have the same biological means while different
symbols are discrete and orthogonal to each other
mathematically. Afterwards, a transition matrix is adopted to
transform the concatenated three-layer encoding matrix [3×128]
into a one-dimensional vector [1×128] for later model training.

embedding = concat embedding0 : embedding1 : embedding2ð Þ
Equation 1. embedding0, embedding1, embedding2, represents

the coding information of each layer, respectively; in each layer,
the coding container size is [99×128].
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e  =  s (o
3

i=0
EiWi)

Equation 2. Convolution of feature extraction, Wi is the
transfer matrix representing the weight of each layer. Ei is the
information coding of each layer; e is the integrated HLA
embedding value.
2.4 Normalization of HLA Embedding
Value
The obtained HLA embedding value needs to be normalized
before feeding to the deep learning model. Batch normalization
(BN), a commonly used method, is used to normalize the whole
batch of the dataset to a standard Gaussian distribution (52) so
that differences in distinct data distribution from different
samples can be normalized according to Equation 3:

BN Xð Þ  =  
x − υð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 + u2

p

Equation 3. Batch normalization. v and s2 are the per-
dimension mean and variance, respectively. Arbitrarily, the
constant u is added in the denominator for numerical stability.

On the contrary, layer normalization (LN) normalizes all features
of each sample in the sample scale (53) according to Equation4:

LN xð Þ  =  
x − υl
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2l + u2

p

Equation 4. Layer normalization v and s2 are the per-
dimension mean and variance, respectively. Arbitrarily,
constant u is added in the denominator for numerical stability
for each single layer l.

Both batch normalization and layer normalization could be
used to avoid gradient disappearance or gradient explosion
caused by excessive fluctuation of the input value, so as to
simplify subsequent model training. However, they still have
substantial differences: batch normalization depends more on the
Frontiers in Oncology | www.frontiersin.org 4
statistical parameters between different samples; thus, feature
extraction and normalization calculation within a single sample
are insufficient, whereas layer normalization eliminates the
characteristic relationship between different samples in a batch
and only normalizes different eigenvalues in the same sample.
Because of the reasons described above, both methods are not
very suitable for current HLA embedding normalization. Because
we need to consider not only the characteristics of the same layer
but also the impact of differences at different layers, we developed
a new method of HLA normalization (HLAN):

ml
c  =  

1
CHo

c=3

1
o
H

1
xlci

s l
l  =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
CHo

3

1
o
H

1
xlci − ml

c

� �2

s

HLAN xð Þ  =  
xlci − ml

c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s l
c  + 2

p
ϵ
� a + b

Equation 5. HLA normalization equation µ is the mean value
based on different levels, s is the level variance, x is the input
value C is the layer according to the HLA-named system, and H
is the length of the input value.

After normalization, the features are integrated through a
convolution layer, and the final output results that are used as the
input of the subsequent deep learning model are as follows:

hx = conv HLAN xð Þð Þ
Equation 6. Convolution layer to integrate an HLAN result.

2.5 HLA-Encoding Fusion Layer
We tested two different coding fusion layer schemas to fuse
hierarchical representations from different layers representing an
MHC-II subtype nomenclature in Figures 2A, B. Considering
that the numbers representing MHC-II subtypes are sparse in
FIGURE 1 | Schema of the MHC-II subtype hierarchical relationship encoding. Each layer representing one field of HLA name is converted into a [1×128] vector and
concatenated into a [3×128] matrix, which is normalized and convoluted to get a [1×128] vector for later calculation.
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some datasets, inadequate training may occur during model
training, we merged the embedding table at each level as
shown in Figure 2C; shared parameters are calculated as the
same embedding table called HLA_Norm.

2.6 Variable Length Peptide Encoding
We first built a 21-character vocab, which uses J as the initial
letter for the completion of the lengths of peptides, which are less
than 25, plus 20 single-letter symbols of amino acids:

vocab = [“J”,“A”,“C”,“D”,“E”,“F”,“G”,“H”,“I”,“K”,“L”,“M”,
“N”,“P”,“Q”,“R”,“S”,“T”,“V”,“W”,“Y”]

A [21×128] size embedding table based on random normal
distribution is developed according to the vocab shown in
Supplementary Table 5.
Frontiers in Oncology | www.frontiersin.org 5
For each input peptide sequence, we completed its length to
25 with the letter “J” and then converted each letter into a
[1×128] vector according to its position in vocab to tokenize the
whole sequence and finally get a [25×128] matrix presenting the
input peptide.

2.7 HLA Subtype and Peptide Sequence
Fusion Encoding
The MHC-II subtype and peptide sequence are paired,
concatenated (Figure 3), and sent to our model for further
training and testing.

To characterize an HLA-peptide sequence after pairing, we
need a unified model that can extract the paired information.
Compared with the recurrent neural network, a full CNN can
A B C

FIGURE 2 | Schema of HLA-encoding fusion layer. (A) integrates sequence information by means of direct addition; (B) integrates the sequence information by means of
concatenation; (C) shows that the sequence information is integrated by concatenation after the weight is processed by using the shared index embedding table.
FIGURE 3 | Schema of HLA–peptide fusion encoding. The orange HLA_head is the result generated in Figure 2C. HLA_head is loaded on top of peptide sequence
in concatenation mode to form a new constituent sequence containing HLA_head and peptide.
June 2022 | Volume 12 | Article 888556
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better model the information of adjacent positions. A one-
dimensional CNN can be expressed as follows:

p xð Þ  =  f ∗X  =o
N

1
f c ∗ xs

Equation 7. f is the convolution kernel, * is the convolution
operator, and X is the input value. fc is a one-dimensional
convolution kernel of c dimension, and xs is the input value
decomposed according to its own dimension.

2.8 10-Fold Cross-Validation
Ten-fold cross-validation is applied to evaluate model
robustness. Before training, the dataset is randomly partitioned
into 10 non-overlapping subsets. The cross-validation process is
repeated 10 times, with each subset used as a validation set while
the remaining subsets are utilized as the training set. The results
of the cross-validation sets are averaged to obtain the final result.
One hundred epochs are executed, and the model is saved if the
validation accuracy is better than previous epochs.
3 RESULTS

3.1 The Architecture of FIONA
We used the matrix p(x) obtained by matrix transformation in
Equation 6 that converts a one-dimensional vector sequence of
the MHC-II subtype and peptide into a [26×128] matrix as input
for the model to predict whether a peptide will be presented to
Frontiers in Oncology | www.frontiersin.org 6
the cell surface (FIONA-P) or trigger immunogenicity (FIONA-
I) given a specific MHC subtype. In order to implement the
above 2 predictive functions, we constructed two models with
different training datasets (presentation and immunogenicity)
explained in Section 2.1 and Section 2.2 with the same
architecture shown in Figure 4. FIONA includes a CNN layer
for prediction, which focuses on integrating and extracting
overall features from MHC-II subtype–peptide pairs. In this
process, HLA embedding and peptide embedding are
integrated to play a synergistic role in improving the
prediction performance. Additionally, in order to improve the
prediction ability of our model, we added multiple pooling layers
in the convolution layer to extract and integrate features.

Our model accepts fused HLA_Peptide embedding as input.
Referring to Resnet’s design pattern shown in the left of Figure 4,
we created several aggregation modules in the form of blocks for
stacked layers, connected layers, and convolution layers
successively named BlockConv. The final convolution layer
aggregates the internal characteristics of each embedding into
a vector.

3.2 Ablation Experiment
We conducted ablation experiments to validate our HLA-
encoding schema and its impact on the overall results by
el iminating the HLA_Norm layer or replacing the
normalization layer with batch normalization and layer
normalization individually. We divided the comparison into
two parts: the first part is based on HLA_ Embedding using
different encoding and normalization methods, and the second
FIGURE 4 | Architecture of FIONA. The dataset is downloaded from the IEDB database according to Section 2.1. The first dotted box contains an HLA_head and
peptide, which are encoded separately and then integrated for feature transformation. The middle part contains an HLA_head, and peptide_Embedding represents
sequence feature information. The right dotted box is our CNN model for training and prediction.
June 2022 | Volume 12 | Article 888556

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Predicting MHC-II Epitopes With Immunogenicity
part partially modifies the architecture of our model to find out
the impacts of these modifications on the performance of
our model.

As shown in Table 1, the ablation test shows that our MHC
subtype hierarchical relationship–encoding method greatly
outperforms the traditional one-hot method regardless of
subsequent normalization methods on both presentation data
and immunogenicity data. In addition, the HLA_Norm method
has the best performance on both presentation and
immunogenicity datasets compared to the Batch Norm and
Layer Norm. Meanwhile, the final architecture consisting of
con_ANA and BlockConv has the best performance among all
tests including eliminating the HLA coding content, which leads
to a dramatic decrease of ROC and PR values.

3.3 FIONA-P Favors Balanced Positive and
Negative MHC-II Peptide Presentation
Data
In a natural environment, the proportion of presented antigens
compared to non-presented peptides degraded by protease is
relatively low; therefore, the unbalanced data amount should
theoretically and more faithfully reflect the actual situation.
However, the unbalanced data amount of positive and negative
samples is a great challenge to the construction and optimization
of the deep learning model. Here, we selected a specific number
of samples from multiple negative samples generated by the
method mentioned in Section 2.2 to build 2 datasets with
relatively balanced and unbalanced positive and negative ratios
(positive data to negative data = 1:1 and 1:5, respectively) to
compare the influence to our model FIONA-P. As shown in
Figure 5, FIONA-P has a better performance for balanced
datasets, especially in terms of the performance of PR, which
has a pronounced degradation if unbalanced data are used.

Similarly, we also compared the performance of natively
uneven immunogenicity data from the IEDB and artificial
synthetic datasets after randomly reducing a portion of the
positive data (positive data to negative data = 1.62:1 and 1:1,
respectively) to test the performance of the FIONA-I model under
such circumstances. The test results show only minor changes in
terms of ROC and PR.
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3.4 FIONA-P Achieves Comparable
Performance
The IEDB benchmark dataset is often used to compare the
performance of different binding prediction tools. However, these
datasets are usually intracellular binding data rather than elution
data. To test the ability of the presentation prediction of several
existing MHC-II epitope tools [Maria, NetMHCIIpan4.0,
BERTMHC (54), and MixMHC2pred (55)], we used an
independent dataset from the University of Tübingen (56) that
contains 142,625 naturally eluted ligands from 29 tissues across 42
MHC-II subtypes (33 MHC-II subtypes in total after omitting the
a chains of MHC, Supplementary Table 3). The independent
dataset is deduplicated by sequence and the corresponding MHC-
II subtypes compared with the training dataset. All the supported
MHC-II subtypes that overlap the MHC-II subtypes of the
independent dataset are tested. For all tools, our FIONA-P
model achieved the best performance for 25 out of the 33 MHC-
II subtypes, especially in subtypes with higher corresponding eluted
peptides as shown in Figure 6. Our model has shown a bit of
advancement compared with MixMHC2 and great improvement
compared with other tools. However, MixMHC2 only supports 38
MHC-II subtypes; thus, 3 of unsupported MHC-II subtypes have
no available results in this comparison. Our model not only
supports 65 MHC-II subtypes by direct training but is also able
to predict the peptide presentation of corresponding untrained
MHC-II subtypes by our new breakthrough HLA hierarchical
encoding method. Since the number of supported MHC-II
subtypes is also very important in epitope prediction, our model
has greatly broadened the scope of available MHC-II subtypes.

3.5 FIONA-I Improves Positive Prediction
Value of True Neoantigen Through
Validation of Curated Neoantigen Dataset
As previously discussed, only a small proportion of peptides
presented by APC can trigger the downstream immunogenicity
of T cells, resulting in a fairly low false-positive rate (FPR), which
is presumably one of the main reasons that cancer vaccines do
not have enough clinical benefits since these vaccines cannot load
sufficient epitopes to inhibit the immune escape of cancer cells
given such high FPR.
TABLE 1 | Results of the ablation experiment. MSE (mean-squared error), AUC (area under the curve), and PR (precision rate) are evaluation indicators.

Method MHC-II presentation MHC-II immunogenicity

MSE (test) AUC (test) PR (test) MSE (test) AUC (test) PR (test)

PE+HLA_Norm+con_ANA+BLOCKConv 0.0421 0.9391 0.9513 0.1819 0.8876 0.9344
PE+Batch_Norm+con_ANA+BLOCKConv 0.0534 0.9242 0.9442 0.2049 0.8433 0.8839
PE+Layer_Norm+con_ANA+BLOCKConv 0.0610 0.9197 0.9328 0.2031 0.8340 0.8581
PE+HLA_Norm+add_ANA+BLOCKConv 0.0781 0.9038 0.9291 0.2274 0.8014 0.8230
PE+HLA_onehot+con_ANA+BLOCKConv 0.1042 0.8467 0.8835 0.2625 0.7637 0.7784
PE+BLOCKConv 0.2427 0.8046 0.8476 0.4691 0.5745 0.5872
PE+HLA_Norm+con_ANA+Conv 0.0578 0.8656 0.9103 0.2128 0.7877 0.8237
June 2022
 | Volume 12 | Artic
PE refers to the general peptide embedding, Batch_Norm, Layer_Norm, and HLA_Norm refer to the different HLA normalization methods described in section 2.4, while con_ANA is used
to refer to the concatenate peptide_Embedding and HLA_Embedding header to get a [26×128] matrix for the following step calculation, add_ANA refers to peptide_Embedding, and
HLA_Embedding is processed by direct addition, which is mentioned in Section 2.5.
Bold means highlight superiority of our model.
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FIGURE 6 | Comparison of FIONA-P and other prediction tools on the presentation data of all available MHC-II subtypes. The black ones indicate that those MHC-II
subtypes are not supported.
A B

DC

FIGURE 5 | Influence of balanced and unbalanced data ratios on FIONA-P. (A, B) are the ROC (receiver operating characteristic) curve and PR (precision and recall)
curve of unbalanced data (AUC=0.90, PR=0.90), respectively, while (C, D) are the ROC curve and PR curve of balanced data (AUC=0.94, PR=0.95), respectively.
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We used a fully manually annotated neoantigen database,
NEPdb (57), newly published in 2021 to demonstrate that our
FIONA-I model substantially improves the positive predictive
value (PPV) of neoantigen prediction compared to the antigen
presentation model. All MHC-II neoantigen data entries
containing DP, DQ, and DR alleles were retrieved from the
NEPdb, which contains 182 positive and 3,508 negative epitopes
across 31 different MHC-II subtypes (Supplementary Table 4).
FIONA-I, FIONA-P, and other MHC-II epitope tools (Maria,
NetMHCIIpan4.0, BERTMHC, and MixMHC2pred) are used to
calculate the PPV with a default parameter setting. Maria/
BERTMHC directly returns ‘0’ for negative and ‘1’ for positive,
NetMHCIIpan4.0 and MixMHC2pred take top 10% peptides as
positive; all the MHC-II subtypes that are not supported by these
tools are neglected. As shown in Table 2, FIONA-I raises the
PPV from 22.51% (mean PPV of FIONA-P, Maria,
NetMHCIIpan4.0, BERTMHC, and MixMHC2pred) to
40.27%, obtaining a near doubling of the increasement. The
results showed that FIONA-I could improve the PPV
significantly and retain the sensitivity at 0.89, indicating that
the immunogenicity model could greatly contribute to high-
confidence neoantigen identification.

3.6 Web Service
We developed a user-friendly web interface (http://therarna.cn/
fiona.html), allowing visitors to quickly query whether peptides
would be presented or able to trigger an immune reaction given
the specific MHC-II subtypes.
4 DISCUSSION

Since 2018, a couple of useful tools for antigen presentation
prediction have been reported. For example, Gritstone has
published its proprietary software for predicting the MHC-I
epitopes presented on the cell surface; similarly, MARIA is
capable of predicting the MHC-II epitopes presented on the
cell surface. Both tools use the same underlying hypothesis:
antigen processing by proteases, antigen abundance, and
peptide–MHC interaction are 3 important factors that
participate in antigen presentation. Therefore, both tools
involved these 3 factors into the algorithm training and by far
outperformed early versions of NetMHCIIpan and MHCFlurry.
Frontiers in Oncology | www.frontiersin.org 9
The 3-factor theory of antigen presentation actually makes
good scientific sense: short peptides need to be cleaved from long
peptides by proteases to enable their binding to MHC-I or MHC-
II; antigen abundance measured by the mRNA level determines
the amount of MHC ligands displayed on the cell surface to be
recognized by a T-cell receptor, whereas peptide–MHC
interaction would tell which ligands are more favorable to be
displayed by MHC. However, there might be better ways to
integrate these 3 factors into antigen presentation prediction. For
instance, in the algorithm structure of MARIA, antigen
presentation is simplified to a cleavage score, peptide–MHC
interaction is simplified to an HLA-DR binding score, and
antigen abundance is standardized as mRNA TPM (transcript
per million); afterwards, the 3 types of data from different
dimensions were put into the algorithm training. We are not
saying “that approach is not right,” but we seriously want to
discuss what a better model should be. Biologically, long peptide
cleavage by proteases occurs before short peptides interact with
MHC. Therefore, it is more reasonable to develop a tool to
enumerate all short peptides generated from a long peptide by
protease cleavage, and the pool of short peptides would be the
input of the next-step antigen presentation prediction. Moreover,
in the antigen presentation process, antigen abundance would no
longer be a limiting factor once it exceeds a reasonable level,
which has been proven in the neoantigen meta-analysis of
TESLA (58). Therefore, we may use TPM>35 proposed by
TESLA as a cut-off point of antigen abundance. In other
words, the antigens whose expression levels are above the cut-
off point should be regarded as “abundant” to be presented.
Furthermore, in a natural infection caused by an exogenous virus
or bacteria, all pathogen-related antigens should be regarded as
“abundant,” even though their expression levels could hardly be
standardized as TPM.

Based on the mechanistic analysis above, antigen processing
had better been analyzed with a separate upstream tool, whereas
antigen abundance could be reasonably simplified to a criterion
of TPM >35. Therefore, our antigen presentation prediction tool
focuses more on peptide–MHC interaction. We would not
recommend MARIA’s approach of oversimplifying the
peptide–MHC interaction to a binding score because the
amino sequences of peptide ligands as well as MHC complex
may reveal important information relevant to the antigen
presentation process. For example, previous studies confirmed
TABLE 2 | Results of immunogenicity prediction of MHC-II-restricted epitopes in terms of sensitivity, specificity, and positive predictive value (PPV).

Tools MHC-II Immunogenicity

PPV Sensitivity Specificity

FIONA-I 0.4027 0.8846 0.9319
FIONA-P 0.2188 0.7340 0.8640
NetMHCIIpan 4.0 0.1295 0.9271 0.6767
BERTMHC 0.1683 0.8093 0.7925
Maria 0.3279 0.7846 0.9166
MixMHC2pred 0.2812 0.7425 0.9032
June 2022 | Volume 12 | Art
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that peptide-MHC binding affinity reflected as IC50 (nM) does
not accurately reflect the stability of the peptide–MHC complex.
Thus, the sequences of peptide ligands would provide
information in more than one dimension. Taking all the
foresaid into account, our antigen presentation prediction tool
involves the sequences of peptide ligands and MHC into deep
learning and therefore avoids the issue of oversimplification.
This could be a possible explanation that our model outperforms
the well-known tools.

Compared to antigen presentation, predicting the
immunogenicity of MHC ligands is more challenging due to
the lack of powerful theories. As previously discussed, there is a
scientifically sound 3-factor theory that explains the mechanism
of antigen presentation, and this theory effectively guided the
development of multiple prediction tools. In contrast, the root
cause of immunogenicity is more difficult to interpret.

Immunogenicity is shaped by a T-cell-negative selection; thus,
the real challenge of immunogenicity prediction is the limited
understanding of the mechanism of a T-cell-negative selection. A
T-cell-negative selection process in thymus removes T cells
reactive to self-antigens from the T-cell repertoire and therefore
provides protection against unwanted T-cell responses. A T-cell-
negative selection determines which MHC ligands will NOT elicit
an immune response, whereas other MHC ligands may still
encounter the corresponding TCR in the T-cell repertoire.

So far, the T-cell-negative selection process is still a “black-
box,” and there is no powerful theory that clearly interprets its
delicate mechanism. Especially, no theory could define what
factors constitute the “sufficient condition” to trigger a T-cell-
negative selection. At least, self-antigen alone does not constitute
the “sufficient condition.” A T-cell-negative selection does NOT
remove all T cells that recognize the MHC ligands derived from
self-antigens, and such complexity is endorsed by 2 facts in
clinical studies:

1. Self-reactive T cells are present in patients with autoimmune
diseases (59).

2. A peptide vaccine could elicit T-cell responses against TAA in
cancer patients (2).

The lack of a robust theory to interpret a T-cell-negative
selection makes it challenging to predict immunogenicity. All
software tools for predicting immunogenicity, including ours, are
based on an empirical approach: the tools are trained with T-cell
assay data that distinguish immunogenic peptides from non-
immunogenic ones, matched with MHC subtypes. Of course,
even an empirical approach could solve many problems. For
example, our trained software could achieve PPV at 40.27% on an
independent dataset. Nevertheless, the limitation of the empirical
approach should not be forgotten: such methodology requires
Frontiers in Oncology | www.frontiersin.org 10
tremendous T-cell assay data to train a functional model. For
those MHC subtypes that do not have many corresponding T-cell
assay results, the empirical approach cannot be used. Based on
our discussion above, a more accurate immunogenicity prediction
tool would rely on the emergence of a more robust theory that
interprets the mechanism of the T-cell- negative selection
mechanism. By then, it might be possible to deduce the
immunogenicity of peptide ligands based on the host’s MHC
genotype and proteome information.

Our study proposed a systematic workflow that could identify
MHC-II restricted epitopes that can be presented on the cell
surface and elicit immune responses. This tool could be of great
usefulness for identifying potential epitopes from cancer
neoantigens and paving the way of designing effective cancer
therapeutic vaccines.
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