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Abstract: Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high
mortality after diagnosis and remains a global public health problem. Despite advances and break-
throughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods
for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect,
expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent
need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a
central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance.
Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly
attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related
knowledge about the regulatory mechanism and potential therapies in the process of pulmonary
fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxida-
tive stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition
(EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1,
Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a
therapeutic target for pulmonary fibrosis.

Keywords: nuclear factor erythroid 2-related factor 2; pulmonary fibrosis; inflammation; oxidative
stress; signaling pathways

1. Introduction

Pulmonary fibrosis (PF) describes a heterogeneous group of chronic, progressive,
and incurable interstitial lung disorders characterized by induced scar formation and ir-
reversible destruction of the lung parenchyma [1–4]. Based on etiological factors, fibrotic
lung diseases are mainly classified into idiopathic pulmonary fibrosis (IPF), allergic asthma,
cystic lung disease, scleroderma, granulomatous lung disease, sarcoidosis, and chronic
obstructive pulmonary disease (COPD) [5]. Among these, IPF is the most notable and
common type of idiopathic interstitial pneumonia, lacking an identifiable etiology and with
high mortality [1,6]. It is characterized by aberrantly activated lung epithelial cells, inflam-
matory infiltrate, activation of lung fibroblasts, and excessive accumulation of extracellular
matrix (ECM) in lung tissues that ultimately lead to respiratory failure, and eventually
death if left untreated [7,8]. An array of triggers, including environmental pollutants, herbi-
cides, drug side effects, particles, genetic abnormalities, autoimmune disorders, chronic
infection, and cigarette smoking may cause IPF [9–12]. Nearly 200,000 people in the United
States and over 5 million people worldwide are affected by IPF, and approximately 82–83%
of deaths, incident cases, and prevalent cases occur in patients over 70 years old, imposing
a great economic burden on the country as well as individuals [13–15]. A recent study from
Germany showed that most patients with IPF did not receive medication [13], but previous
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research has demonstrated that patients who develop IPF without being treated have a
median survival of only 3–5 years after diagnosis [3]. Consequently, there remains a major
medical need for effective, safe, and well-tolerated treatments for IPF.

Unfortunately, there is currently no effective treatment for curing or reversing the
progression of PF. Immunosuppressants (e.g., cyclophosphamide) and corticosteroids (e.g.,
dexamethasone) have been used to treat acute exacerbation of IPF, aiming at reducing
symptoms and the underlying inflammation, but limited efficacy and potential side ef-
fects have restricted their application [16,17]. The FDA approved the anti-fibrotic drugs
nintedanib and pirfenidone for the treatment of PF in 2014 because they were shown to
delay the progression of PF [18,19]. However, while they show a clinical benefit, they
cannot improve survival [20]. Currently, lung transplantation is the only life-sustaining
intervention for end-stage IPF [21], but chronic lung transplant dysfunction, infection, and
extrapulmonary complications lead to a poor postoperative long-term survival rate [22].
The high cost of operation and the scarcity of lung donors are two specific challenges
that require consideration. Even though the pathogenic mechanisms of IPF having been
studied extensively (Figure 1), few therapeutics have been successfully used in the clinic,
and potential treatment methods to improve patients’ quality of life are lacking [23].
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Figure 1. Pathogenesis of pulmonary fibrosis. Various exogenous and endogenous factors, such
as autoimmune diseases, viral infections, cigarette smoke, inhalation of toxic substances, and free
radicals, can lead to damage to the alveolar epithelial cells (AECs), aberrant activation of immune
cells (neutrophils, alveolar macrophages, lymphocytes, and eosinophils), and fibroblasts. These lung
cells secrete multiple pro-inflammatory and pro-fibrotic factors which can accelerate the EMT process,
induce the transition of AECs to lung fibroblasts, trigger the activation of quiescent fibroblasts, and
promote the differentiation of fibroblasts to myofibroblasts. Myofibroblasts can further release a
large amount of collagen and ECM, resulting in hyperproliferation of fibroblasts and accelerates the
progression of pulmonary fibrosis.



Antioxidants 2022, 11, 1685 3 of 22

Therefore, clarifying the underlying molecular mechanism in PF and discovering
efficient prevention and treatment approaches that could increase life expectancy are
urgent future research directions.

2. Nrf2

Extensive studies have demonstrated that the nuclear factor erythroid 2-related factor 2
(Nrf2) is a critical transcription factor that coordinates the expression of more than 500
cytoprotective and metabolic genes [24], particularly classic antioxidant and detoxification
enzymes, to restore internal cellular homeostasis, redox balance, and the response to diverse
stresses [25–27]. It is now widely recognized that Nrf2 plays a protective role in many
diseases in multiple organ systems, such as osteoporosis [28], Alzheimer’s disease [29], lung
fibrosis [30], kidney [31], and cardiovascular system disease [32], in which oxidative stress
and inflammation are thought to participate in the underlying pathological mechanisms.

2.1. Structure of Nrf2 and Keap1

Nrf2, first isolated and characterized by Moi et al. in 1994, is encoded by the Nuclear
Factor, Erythroid 2 Like 2 (NFE2) gene and belongs to the Cap“n” Collar (CNC) subfamily of
basic leucine zipper (bZIP) transcription factors [33]. Nrf2 contains seven highly conserved
Nrf2 ECH homology (Neh) domains, each with a distinct function, known as Neh1–Neh7
(Figure 2A) [34]. Among these, the Neh2 domain, which is located in the N-terminus of
Nrf2, plays a major regulatory role. Neh2 harbors two separate sequences, the DLG element
and the ETGE tetrapeptide, mediating the process of gathering a ubiquitin ligase to the
fusion protein and the redox-sensitive recruitment of Nrf2 to Kelch-like ECH-associated
protein 1 (Keap1), respectively [35–37]. Notably, the ETGE motif is the Keap1-binding
site. Neh1 contains the DNA binding motif and the Cap“n” collar basic leucine zipper
domain that dimerizes with small Maf proteins on the promoters of target genes. It has
been reported to regulate the stability of Nrf2 by forming a nuclear complex with UbcM2,
a ubiquitin-conjugating enzyme [38]. Neh3, Neh4, and Neh5 are transactivation domains
that interact with coactivators [39,40]. Neh6 is a Keap1-independent degron of Nrf2. It
harbors a group of serine residues phosphorylated by glycogen synthase kinase 3 (GSK-3),
resulting in the facilitation of Nrf2 degradation and regulating the stability of Nrf2 [41,42].
Previous evidence has shown that Neh7 binds with retinoic X receptor alpha (RXRα) to
weaken the cytoprotective effect of Nrf2 [43].
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Figure 2. Structures of Nrf2 and Keap1. (A) The Nrf2 protein comprises seven Neh domains, known
as Neh1–Neh7. The Neh1 domain is responsible for DNA binding and dimerization with the sMaf
proteins; the Neh2 domain mediates the interaction with Keap1 through the ETGE motifs and gathers
a ubiquitin ligase to the fusion protein through the DLG element; the Neh3, Neh4, and Neh5 domains
are transactivation domains; the Neh6 domain regulates Nrf2 stability; and the Neh7 domain binds
with RXRα to weaken the cytoprotective effect of Nrf2. (B) Keap1 possesses three functional domains.
The BTB domain mediates Keap1 homodimerization and associates with Cul3; the DC directly
associates with Nrf2 Neh2 domain; IVR domain contains critical cysteine residues and connects the
BTB domain with DC domain.

2.2. Nrf2 Activation

Under a normal physiologic state, Nrf2 is anchored in the cytoplasm by binding to the
E3 ubiquitin ligase Keap1 or phosphorylated by glycogen synthase kinase 3β (GSK-3β),
targeting Nrf2 for its ubiquitination and proteasomal degradation [44,45]. Keap1 is a
component of a ubiquitin E3 ligase [46], acting as a cysteine thiol-rich sensor of redox
insults [47]. In 1999, Keap1 was identified by analyzing differential Nrf2 activity mani-
fested in a transfected cell line [36]. Keap1 possesses three functional domains, a broad
complex/tram track/bric-a-brac (BTB), an intervening region (IVR), and a double glycine
repeat (DGR) and COOH-terminal region (CTR) domain (DC domain) (Figure 2B). Keap1
associates with CUL3 through its BTB domain, which is required for Keap1 dimeriza-
tion [48], and part of its intervening region (IVR) domain [49,50]. The Nrf2 Neh2 domain
directly interacts with the Keap1 DC domain [51]. Keap1, Cul3, and Rbx1 assemble into
an efficient E3 ubiquitin ligase, which negatively regulates Nrf2 protein levels [52]. Nrf2
is ubiquitously expressed in all cell types, but its expression is usually maintained at a
low level under basal conditions because the Nrf2 protein is synthesized but constantly
degraded. However, upon exposure to oxidative and xenobiotic stresses, cysteine residues
on Keap1, which have high redox sensitivity, can easily be covalently modified or oxi-
dized, resulting in a conformational change and the dissociation of Nrf2 [49]. Another
Keap1-independent mechanism is to escape GSK-3β-mediated degradation [44,53]. Nrf2
is phosphorylated by GSK-3β, making it identifiable by β-transducin repeat-containing
protein (β-TRCP), which later marks Nrf2 for ubiquitination and degradation through the
proteasome [54,55]. Meanwhile, several investigators have found that Nrf2 signaling can
be activated through the PI3K-AKT signaling pathway [56,57], because GSK-3β can be
inhibited by AKT-mediated phosphorylation. Subsequently, Nrf2 degradation is stagnated,
leading to a rapid accumulation of Nrf2 in the cytoplasm and translocation to the nucleus.
In the nucleus, Nrf2 heterodimerizes with small v-maf avian musculoaponeurotic fibrosar-
coma oncogene homolog (sMaf) proteins to activate stress-dependent expression of a cluster
of cytoprotective genes involved in the regulation of metabolism, detoxication, and redox
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balance via cis-acting antioxidant/electrophile response elements (AREs) (Figure 3) [58–60].
Rapamycin1 has been reported to attenuate the paraquat (PQ)-induced PF by promoting
Nrf2 translocation to the nucleus and enhancing the expression of Nrf2 [61]. Vitamin
U ameliorates lung toxicity by binding to the ETGE motif to promote Nrf2 dissociation
from the Nrf2/Keap1 complex and translocation to the nucleus [62]. Notably, some small
molecules can interfere with Keap1-mediated Nrf2 ubiquitination and degradation, causing
the accumulation of Nrf2. For example, in the process of inhibiting PF, tanshinone IIA2 [63]
and pterostilbene3 [64] regulate redox homeostasis by impairing the binding of Keap1 with
Nrf2 and maintaining Nrf2 stability.

Currently, the downstream genes of Nrf2 can be divided into three categories according
to their functions: cellular antioxidants, such as glutathione peroxidase (GPx), thioredoxin
(Trx), thioredoxin reductase (TrxR), peroxiredoxin (Prx), and heme oxygenase-1 (HO−1);
phase II detoxifying enzymes, including glutathione S-transferase (GST), NAD(P)H quinone
oxidoreductase 1 (NQO1), superoxide dismutase (SOD), and CAT [65,66]; and transporters,
such as multidrug resistance-associated protein (MRP) [67]. The above gene expression
products can effectively regulate intracellular levels of reactive oxygen species (ROS),
protect macromolecules from oxidative and xenobiotic damage, and reduce the toxicity of
exogenous substances. Hence, the critical role of Nrf2 manifests in regulating oxidative
stress and suppressing the inflammatory response. Researchers have therefore set their
sights on Nrf2 and attempted to unravel its complex role in PF.
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Figure 3. Mechanism of Nrf2 activation. Under normal physiological conditions, Nrf2 is sequestered
in the cytoplasm by its physical interaction with Keap1 and is degraded by the ubiquitin-proteasome
in the Keap1-dependent manner or the Keap1-independent manner (GSK-3β pathway). In the stress
conditions, Keap1 is inactivated while Nrf2 is stabilized. The stabilized Nrf2 performs nuclear
translocation and heterodimerizes with sMaf to activate target genes for cell protection through ARE.
Nrf2 target genes include GPx, Trx, TrxR, Prx, HO−1, GST, NQO1, SOD, and CAT which defend lungs
from further damages. Furthermore, Nrf2 also can be directly phosphorylated by GSK-3β, enabling
its recognition by β-TRCP, which later marks Nrf2 for ubiquitination and degradation through
the proteasome. However, PI3K/AKT signaling pathway can suppress GSK-3β by AKT-mediated
phosphorylation and causing Nrf2 accumulation in the cytoplasm. The accumulation of Nrf2 further
activates transcription of a number of cytoprotective genes and protection against pulmonary fibrosis.



Antioxidants 2022, 11, 1685 6 of 22

3. Nrf2 and Inflammation in Pulmonary Fibrosis

Endogenous and exogenous poisons, such as free radicals, air pollutants, and chemi-
cals, attack the lungs, causing multiple inflammatory events due to their unique anatomical
location. There is interplay between various cell types, including alveolar epithelial cells,
fibroblasts, endothelial cells, and inflammatory cells (e.g., neutrophils, macrophages, lym-
phocytes, and eosinophils), whose injury recruits a fibrotic response, implicating that the oc-
currence and development of PF is a dynamic process [4]. Neutrophils and eosinophils are
mainly involved in the acute phase of lung injury, whereas lymphocytes and macrophages
govern chronic inflammation [68,69]. In the early stage of PF, many inflammatory cells in-
filtrate in the alveoli, releasing pro-inflammatory proteins and pro-inflammatory cytokines,
such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, which are considered
the primary cause of lung tissue scarring [70,71]. Etiologically, sustained inflammatory
responses produce several significant ROS, resulting in direct or indirect injury to alveolar
epithelial cells [72]. Damaged bronchial and alveolar epithelial cells and other resident cells
further exacerbate various inflammatory mediators, proteases, and ROS release, which
boost the recruitment of inflammatory cells and aggravate collagen accumulation in the
lung tissue [73]. Alveolar epithelial cells are composed of alveolar type I (AT1), through
which gas exchange takes place, and AT2 cells, which generate a large amount of surfac-
tant. AT2 cells, which are considered as alveolar stem cells and can differentiate into AT1
cells [74], represent underlying initiating mechanisms responsible for PF in response to
repetitive lung damage [75]. The functional impairment of AT2 cells and the development
of a pro-fibrotic phenotype play critical roles in driving IPF. A recent study showed that
loss of Cdc42 function in AT2 cells exposed to elevated mechanical tension promoted
periphery-to-center progressive lung fibrosis [76], providing support for this hypothesis.
EMT in alveolar epithelial cells, a key step in PF, will be discussed in detail later.

Indeed, innate immune cells, alveolar macrophages, and principally monocyte-derived
alveolar macrophages play an important role in the formation of PF. When harmful agents
attack the lungs, alveolar macrophages are the first line of defense to initiate inflamma-
tory reactions and boost the infiltration of neutrophils [77,78]. Studies have shown that
two distinct subsets of macrophages can be found in the lungs, tissue-resident alveolar
macrophages and monocyte-derived alveolar macrophages, in a mouse model of bleomycin
(BLM)-induced PF [79]. They also causally implicated that specific deletion of monocyte-
derived alveolar macrophages reduced asbestos-induced fibrosis severity [80].

The transcription factor Nrf2 is known to attenuate inflammatory reactions [81,82].
Cho et al. reported that Nrf2−/− mice were more vulnerable to BLM-induced inflam-
mation and PF than wild-type mice and ascertained the protective effects of Nrf2 [83].
In mice lacking Nrf2, the resolution of lung injury and inflammation is compromised [84].
In irradiated Nrf2 null mice, AT2 cell loss and the corresponding development of PF were
potentiated [85]. Nrf2 is believed to be required for alveolar macrophage-mediated apoptotic
neutrophil clearance [86]. A single exposure of mouse lungs to zinc oxide nanoparticles
increased the number of total cells, including macrophages, lymphocytes, neutrophils, and
eosinophils, in bronchoalveolar lavage fluid (BALF) both in wild-type mice and Nrf2−/− mice,
but Nrf2−/− mice expressed a greater increase [87]. In addition, when exposed to multiwalled
carbon nanotubes, Nrf2 knockout (KO) mice displayed apparent pulmonary infiltration of
granulocytes, macrophages, and B and T lymphocytes [88].

Several cellular and molecular mechanisms related to Nrf2 have been proven to be
involved in the advancement and resolution of lung inflammation (Figure 4).
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activate TAK1-TAB1 kinase complex, resulting in IKK complex-meditated release of NF-κB dimers and
phosphorylation of IκB. Phosphorylated IκB frees NF-κB dimers and permits NF-κB dimers translocated
into the nucleus. However, activation of Nrf2 can inhibit IκB phosphorylation in the canonical NF-κB
pathway, thereby reducing the nuclear accumulation of NF-κB dimers and inhibiting its downstream
immune response genes expression, such as IL-6, TNF-α, IL-1β, iNOS, and COX-2. Moreover, elevated
expression of HO−1 mediated by Nrf2 also demonstrated significant anti-inflammatory and inhibition
of apoptosis effects in the progression of PF.

3.1. TLRs/NF-κB Pathway

Nuclear factor-κB (NF-κB) is a dimeric multifunctional nuclear transcription factor
composed of p50 and p65 subunits, which are transferred from the cytoplasm to the
nucleus when activated. Extensive biological activities, including the transcription of
various cytokines (IL-6, TNF-α, and iNOS), adhesion molecules (COX-2), and chemokines,
can be promoted by NF-κB, which is considered a prototypical pro-inflammatory signaling
pathway [89]. It has been reported that Nrf2-Keap1 attenuates IκBα phosphorylation in
the canonical NF-κB activation pathway, thereby reducing the nuclear accumulation of
NF-κB [90]. During canonical NF-κB signaling, the release of canonical NF-κB dimers is
controlled by the inhibitor of kappa B kinase (IKK) complex, which consists of IKK1 (IKK α),
IKK2 (IKK β), and NEMO (IKK γ) [91]. Transcriptional activation of NF-κB occurs when the
IKK complex is activated by transforming growth factor (TGF)-β1-activated kinase 1 and
the TAK1-binding protein 1 (TAK1-TAB1) kinase complex, resulting in phosphorylated IkB
and its later degradation [92,93]. Phosphorylation of IκBα frees NF-κB and permits NF-kB
dimers to enter the nucleus [94]. Hence, Nrf2-mediated inhibition of IκBα phosphorylation
and NF-κB translocation to the nucleus might be effective treatment options. Treatment
with pirfenidone suppressed chronic intermittent hypoxia-augmented lung fibrosis in BLM-
treated mice by upregulating Nrf2 and downregulating NF-κB [95]. Another study showed
that, through inhibition of apoptosis and induction of Nrf2/HO−1-mediated antioxidant
enzymes by means of suppressing NF-κB signaling, sinapic acid4 ameliorates BLM-induced
lung fibrosis in rats [96].
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3.2. Nrf2/HO−1 Pathway

Heme oxygenase-1 (HO−1) is the inducible, rate-limiting enzyme in the catabolism
of heme, catalyzing the breakdown of heme into iron, biliverdin, and carbon monox-
ide [97]. HO−1 is one of the classic genes controlled by Nrf2 [98]. Elevated expression
of HO−1 mediated by Nrf2 demonstrated significant anti-inflammatory and inhibition
of apoptosis effects in the progression of PF. The latest research shows that cardamonin
provokes the Nrf2/HO−1 axis in alveolar macrophages and exhibits anti-inflammatory
and antioxidative effects on phorbol 12-myristate 13-acetate-induced pulmonary inflam-
mation [71]. Thymoquinone5 targeting the Nrf2/HO−1 signaling pathway abrogates the
inflammatory response in BLM-induced PF in rats [99]. Additionally, dihydroartemisinin6

regulated the oxidative stress process through the Nrf2/HO−1 signaling pathway in BLM-
induced PF model [100]. Atractylenolide III7 attenuates BLM-induced experimental PF
through the Nrf2/NQO1/HO−1 pathway [101]. The polysaccharide FMP-1 has been
noted to attenuate cellular oxidative stress and protect alveolar epithelial cells through
the PI3K/AKT/Nrf2/HO−1 pathway [102]. These observations indicate that Nrf2 is es-
sential for the control of inflammation. Previously, it was generally believed that Nrf2
suppresses inflammation by controlling redox levels. More recent research has shown
that Nrf2 also plays a part in controlling the expression of inflammatory cytokines. Nrf2
disturbs LPS-induced transcriptional upregulation of pro-inflammatory cytokines, such as
IL-6 and IL-1β [103]. Nrf2 has also been reported to attenuate inflammation by suppressing
Toll-like receptor (TLR)4 and Akt signaling [104].

4. Nrf2 and Oxidative Stress in Pulmonary Fibrosis

The triggering process of PF is multifactorial, and accumulating evidence indicates
that oxidative stress is still a key player in the pathogenesis of PF [105,106]. Given the
high level of oxygen to which the lungs are exposed, the lungs are more sensitive to
oxidative stress than other tissues [107]. Oxidative stress stimulates an imbalance between
oxidants/antioxidants, which significantly contributes to lung fibrosis [108]. Exogenous (air
pollution, cigarette smoke, silica particles) and endogenous oxidants (mitochondrial ROS,
hydrogen peroxide, superoxide anions, and NO) attack alveolar epithelial cells, pulmonary
vascular endothelial cells and lung macrophages and induce the formation of ROS and
reactive nitrogen species (RNS) [10,12,61,109]. ROS are important oxidative stress markers,
and oxidative stress usually arises from the overproduction of ROS. ROS may damage
cellular macromolecules, including DNA, lipids, and lesioned proteins, which perturb
normal cell signaling pathways and cause irreversible dysfunction and apoptosis [110]. It
is well known that silica can effectively increase the production of ROS in airway epithelial
cells and lead to PF [111]. In recent years, a link between the inhalation of crystal-line
silica and PF has been reported [112]. Tanshinone IIA has been reported attenuate silica-
induced PF via activation of the Nrf2/Trx/TrxR axis and Nrf2-mediated inhibition of
NOX4 expression, EMT, and TGF-β1/Smad signaling [113–115]. These findings indicate
that Nrf2 plays an important role in protecting against silica-mediated oxidative stress
and PF. Moreover, the inflammatory state is possibly elevated by oxidative stress via the
activation of NF-kB, subsequently activating and recruiting immune cells (macrophages and
T-cells) [116]. These inflammatory cells further irritate free radical production, including
hydroxyl radicals and superoxide radicals [117], resulting in a decrease in classic antioxidant
enzymes, including superoxide dismutase (SOD), catalase, and glutathione.

4.1. Nrf2 Downstream Antioxidant Products

Previous evidence has shown that the Keap1-Nrf2 pathway regulates ROS produc-
tion through mitochondria and NADPH oxidase [118]. Nrf2 and its target genes (e.g.,
HO−1 and NQO1) can protect normal cells from oxidative stress and readily eliminate
ROS. Melatonin has been reported to activate the Nrf2 signal transduction key antioxidant
target genes HO−1 and NQO1 by increasing Sirtuin1 (SIRT1) expression and peroxisome
proliferator-activated receptor coactivator-1α (Pgc-1α) deacetylation, defending against
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Cr(VI)-induced pulmonary injury [119]. Nrf2 regulates classical antioxidant enzymes, in-
cluding SODs, catalase, GPx, and GSH reductase, directly inactivating ROS and preventing
ROS-initiated reactions, while the phase 2 detoxifying enzymes GSTs and NQO1 play an
indirect role by promoting the excretion of oxidative and active secondary metabolites
and the biosynthesis/cycling of thiols [120]. For instance, Nrf2 directly enhanced the
expression of the antioxidant proteins Trx and TrxR, promoted by sodium tanshinone
IIA sulfonate (STS), and has been proven to attenuate silica-induced PF [113]. Rosavin8

activates the Nrf2 pathway to inhibit the occurrence of oxidative stress and enhance MDA,
SOD, and GSH-Px expression [121]. The therapeutic roles of vitamin D3

9 in the treatment
of particle-associated PF also by activating Nrf2 signaling and promoting the expression of
its downstream antioxidant products [122].

4.2. Nrf2/NOX4 Pathway

Mitochondria are suspected to be the main site of intracellular ROS generation, and
NADPH oxidase (NOX), especially NADPH oxidase-4 (NOX4)-mediated superoxide pro-
duction, is the main nonmitochondrial source of ROS accumulation [123–125]. In the NOX
family (NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2) [126], most NOX enzymes can
catalyze the reduction of molecular oxygen to superoxide (O2

−), but NOX4 catalyzes the
reduction of molecular oxygen to H2O2 [127]. NOX4 also potentiates myofibroblast activa-
tion in response to TGF-β1, which seems to be a key factor in promoting fibrosis [128,129].
Therefore, therapeutic targeting of the Nrf2/NOX4 pathway to alleviate oxidative stress
appears to be an effective option. Research has shown that polydatin protects against
ROS-induced PF and reverses TGF-β1-induced pulmonary epithelial cell EMT in asthma
by promoting Nrf2-mediated expression of HO−1 and NQO1 and inhibiting NOX1 and
NOX4 expression [130]. S-Allylmercaptocysteine10 [131] and a gallic acid derivative11 [132]
exhibited antioxidative capacity by influencing the TGF–β1/Smad and NOX4/Nrf2 path-
ways and increasing the expression of antioxidants, such as HO−1, GSH, and SOD. Ethyl
acetate extract of salvia miltiorrhiza12 (EASM) [133] and tanshinone IIA [115] have been
reported to upregulate Nrf2, and downregulating NOX4 positively alleviated oxidative
stress in mice.

In addition, it has been reported that the intrinsic mechanism by which itaconate
facilitates the transition of the macrophage phenotype from M1 to M2 presumably covers
the activation of the Nrf2-Keap1 pathway and the deterrent of ROS [134]. In general, due to
the central role Nrf2 plays in ROS detoxification (Figure 5), Nrf2 is an attractive therapeutic
candidate for the pharmacological protection of PF.
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Figure 5. Nrf2 downstream antioxidant products and Nrf2/NOX4 pathway. Various Nrf2 activators
can effectively promote Nrf2 entry into the nucleus and lead to increased expression of its downstream
antioxidant products, such asHO−1and SOD, which can further eliminate potential damage to DNA,
RNA, proteins, and lipid peroxidation caused by mitochondrial-derived and NOX4-derived ROS.
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5. Nrf2 and Fibroblasts in Pulmonary Fibrosis—TGF-β1/Smad Pathway

Aberrant activation and proliferation of myofibroblasts appear to be positively related
to the pathogenesis of PF (Figure 6) [135,136], which can synthesize pro-fibrotic proteins
including α-smooth muscle actin (α-SMA), collagen I and III, and fibronectin, finally
resulting in excessive secretion and accumulation of ECM [137,138].
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Figure 6. Nrf2 and TGF-β1/Smad pathway. Under pathological conditions, TGF-β1 can be produced
by a wide variety of cell types, including alveolar macrophages, neutrophils, alveolar epithelial cells,
endothelial cells, fibroblasts, and myofibroblasts. Abnormally activated TGF-β1/Smad pathway
induced disturbances of the homeostatic microenvironment are critical to promote FMD and EMT
processes. However, some compounds, such as rosavin and itaconate can specifically block these two
processes by activating Nrf2 and provide protection against pulmonary fibrosis.

5.1. Fibroblast–Myofibroblast Differentiation

TGF-β1 has been identified as a major pro-fibrogenic cytokine in IPF patients and can
be produced by a variety of cells, such as alveolar macrophages, alveolar epithelial cells,
and myofibroblasts [139,140]. Recently, a growing number of studies have suggested that
fibroblast–myofibroblast differentiation (FMD) is a critical cellular phenotype during the
occurrence and deterioration of PF [141–143]. FMD can increase with an elevated level
of ROS in fibroblasts under oxidative stress. Moreover, FMD is known as the primary
source of myofibroblast accumulation [144,145]. Under pathological conditions, lung fi-
broblasts are irritated by TGF-β1 and stress, triggering differentiation into myofibroblasts
and eventually leading to PF [146]. Consequently, FMD is an important therapeutic target
for PF. Studies have shown that Nrf2 has a protective effect during PF and can inhibit the
FMD process. Compared with Nrf2 knockdown, Nrf2 activation increased antioxidant
capacity and myofibroblast dedifferentiation in IPF fibroblasts [147]. The activation of Nrf2
by dimethyl itaconate13 can protect against TGF-β1-induced FMD via the ROS/TXNIP
signaling pathway and inhibit TXNIP-mediated FMD in PF [141]. Tanshinone IIA in-
hibited myofibroblast activation, rebalanced Nrf2-NOX4, and limited glutaminolysis in
myofibroblast proliferation by activating the Nrf2/GSH signaling pathway [63].
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5.2. Epithelial–Mesenchymal Transition

The antifibrotic function of Nrf2 is also embodied in the suppression of EMT and
TGF-β1/Smad signaling [109,130,148]. EMT is considered to be a convertible process in
the evolution of PF, during which epithelial cells gradually acquire mesenchymal features,
such as the mesenchymal marker α-smooth muscle actin (α-SMA), and lose the epithelial
adhesion protein E-cadherin (E-cad) [30,149]. The dysregulation between the alveolar
epithelium and its associated mesenchyme lead to unchecked proliferation of extracellular
matrix-producing cells [150]. It is widely recognized that EMT is another major source of
myofibroblasts [151]. The TGF-β1/Smad signaling pathway promotes EMT and regulates
the expression and irreversible deposition of ECM proteins, such as collagen I, fibronectin,
and α-SMA [152,153]. Previous evidence has shown that Nrf2 alleviates PF by blocking
EMT progression [154]. In addition, Nrf2 attenuated TGF-β1-induced EMT with downreg-
ulation of high-mobility group box 1 (HMGB1), a transcription factor-like protein and novel
mediator of EMT [30]. Nrf2-mediated Tan IIA copes with silica-induced oxidative stress,
EMT, and TGF-β1/Smad pathway inhibition [114]. Through the phosphoinositide 3-kinase
(PI3K)/GSK-3β axis activating the Nrf2-dependent antioxidant pathway, melatonin at-
tenuated LPS-induced EMT [155]. Similarly, activating the Nrf2-dependent antioxidant
pathway successfully alleviated the evolution of EMT by regulating the aberrant expression
of Numb, a phosphotyrosine-binding domain (PTB) protein, implicated in EMT [148].

6. Potential Therapies and Nrf2 Activators

In general, recurrent damage to susceptible individuals’ lungs will promote pro-oxidant,
pro-inflammatory, and pro-fibrotic process microenvironments [156]; these regulatory pro-
cesses do not operate independently but commonly interfere with each other. Oxidative stress
and ROS production are related to the activation and production of many of inflammatory
cytokines and pro-fibrotic growth factors [157], such as TGF-β1, in turn, promote ROS forma-
tion primarily by inducing the expression and activity of NOX4 in various cell types [158].
Evidence has clearly shown that oxidative stress and inflammation are the driving forces of
myofibroblast activation [159]. Mechanistically, the Nrf2 signaling pathway plays a crucial
role in these processes; thus, Nrf2-dependent antifibrosis therapies are vital for the treatment
of PF. Three different mechanisms, as mentioned above, have been demonstrated to account
for the activation of Nrf2: Keap1-dependent, Keap1-independent, and other regulators. Hence,
targeting Nrf2 activators to find feasible future treatment options for PF patients has been a
proven perspective in recent studies. Scientists have discovered many natural or synthetic
Nrf2 agonists that may be effective in treating PF (Table 1).

Itaconate, an endogenous metabolite from the tricarboxylic acid cycle, was recently
reported to have notable anti-inflammatory and immune-regulated effects [160]. It has
been demonstrated that itaconate directly modifies 151, 257, 288, 273, and 297 on the
protein Keap1 via alkylation of cysteine residues enabling Nrf2 to increase the expression
of downstream antioxidant and anti-inflammatory genes [161]. Dimethyl itaconate (DMI),
a cell-permeable itaconate derivative synthesized in vitro, was reported to protect against
PF via activating Nrf2 and inhibiting thioredoxin-interacting protein (TXNIP) expression,
thereby restraining TXNIP-mediated FMD [141]. Collectively, itaconate is a crucial anti-
inflammatory metabolite that acts via Nrf2 to limit inflammation and control the severity
of PF [161–163].

Rapamycin (sirolimus) is a potent inhibitor of the mammalian target of rapamycin
(mTOR) which has been increasingly used to help organ transplant recipients prevent graft
rejection [164]. The potential value of rapamycin in PQ-induced and TGF-α–induced PF has
been proved [165,166]. Studies have shown that rapamycin protects against PQ-induced PF
by activating the Nrf2 signaling pathway and inhibiting the EMT process [167]. A recent
report also supports this notion by showing that rapamycin could inhibit PQ-induced
oxidant stress and enhance the expression of Nrf2 [61]. However, the exact mechanism of
rapamycin regulating the expression of Nrf2 needs further study.
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Sulforaphane14 (SFN), a Brassica oleracea extract, is a well-studied potent activator of
Nrf2 which has been previously reported to prevent BLM-induced PF in mice via Nrf2
activation [168]. The anti-fibrotic function of SFN was largely dependent on LOC344887,
a long noncoding RNA, which presents a novel therapeutic axis for the prevention and
intervention of PF [8]. Other natural products, such as Bletilla Striata15 [10], Sarcodon
aspratus16 [169], Arenaria kansuensis17 [170], quercetin18 [171], chelerythrine19 [172], and
bergenin20 [173] can all protect against PF through the Nrf2-dependent mechanism. Except
for a single botanical drug, Chinese herbal formulas including Jinshui Huanxian formula21

(JHF) which is composed of 11 medicinal herbs also exhibit protective effects on PF [174].
In addition, dimethyl fumarate22 which has been approved for the first-line treatment

of relapsing-remitting multiple sclerosis [175]; dihydroartemisinin which is traditionally
used to treat malaria [100]; chloroquine23 which has been used for malaria treatment [176];
and proton pump inhibitors such as esomeprazole24 [156] have all been shown to inhibit
the progression of PF by Nrf2 signaling. Thus, there is great potential for translating these
drugs rapidly into clinical practice for treatment of PF.

In order to overcome the physiological barriers and prolong the treatment time of drug
in the lungs, local drug administration, such as inhalation, can provide drugs directly to
lung lesions and reduce the accumulation of drugs in other organs and improve therapeutic
efficacy. However, inhaled particles can be swept out of the lung by cilia in the trachea
and bronchi or phagocytosed by tissue-resident alveolar macrophages, which significantly
affects their therapeutic effect. Recent evidence suggests that the application of nanotech-
nology is expected to solve these problems. Liu et al. designed a dimethyl fumarate-loaded
ROS responsive liposome as an inhaled drug which presented enhanced antifibrotic ef-
fect, compared with direct dimethyl fumarate instillation [175]. This ROS-responsoftenive
liposome is clinically promising as an ideal delivery system for inhaled drug delivery.
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Table 1. Potential therapies and Nrf2 activators for the treatment of pulmonary fibrosis.

Compound Model Target Function and Detection Index Refs

Rapamycin1 PQ-treated male rats and LFs Nrf2 activating Suppressed PQ-induced oxidant stress, cell death and apoptosis, fibrosis-related factors,
reversed PQ-induced FMD and PF induced by PQ. [61]

Tanshinone IIA2 Silica-treated silicosis rat and
NIH-3T3 cells

TGFβ1/Smad
Nrf2/ NOX4
Nrf2/GSH

Reduced the levels of collagen deposition, TGF-β1, α-SMA, Col-I, Col-III, NOX4, ROS;
increased the levels of Nrf2, HO−1, NQO1, Gclc, Gclm, and GSH; regulated myofibroblast
activation, protected Nrf2 from protein ubiquitination, promoted Keap1 degradation.

[113–115]

Pterostilbene3 Lps-treated female BALB/C mice Nrf2 activating Decreased lung injury and fibrosis scores; reduced levels of Col-I, TGF-β1, HYP, IL-1β, IL-6,
TNF-α; increased the levels of Nrf2, HO−1, NQO1, GSH, SOD. [64]

Sinapic acid4 BLM-treated SD rats Nrf2/HO−1
NF-κB

Increased the levels of Nrf2, inflammatory cell population, GPx, CAT, Bcl-2; reduced the
levels of MDA, TNF-α, IL-1β, MPO, MMP-7, HYP, TGF-β1, NF-κB; restore the antioxidant
system, inflammatory or fibrotic alterations.

[96]

Thymoquinone5 BLM-treated Wistar rats Nrf2/HO−1

Decreased levels of HYP, LDH, total and differential leukocytes, MDA, TNF-α, IL-1β, MPO,
MMP-7, caspase-3, Bax, NF-κB; upregulate Nrf2, HO−1, Bcl2; ameliorated severe
hemorrhage, thickening of alveolar septa, emphysema, infiltration of leukocytes in walls
alveoli and fibroplasia, inflammation, and PF.

[99]

Dihydroartemisinin6 BLM-treated SD rats and AECs Nrf2/HO−1
Reduced the levels of α-SMA, MDA; increased the levels of E-cadherin, Nrf2, HO−1, SOD,
and GSH; mitigated alveolitis severity, relieved fibrosis scores, inhibited the increase in the
myofibroblasts–like processes of the AECs.

[100]

Atractylenolide III7 BLM-treated SD rats Nrf2/NQO1/HO−1
Reduced the expression of Caspase-3 and Caspase-9, IL-6, iNOS, TNF-α, MDA, LDH;
upregulated the levels of Nrf2, NQO1, HO−1, SOD, GSH, IL-10; improved lung function
alleviated PF and oxidative stress.

[101]

Rosavin8 BLM-treated Kunming mice Nrf2/NF-κB
TGF-β1

Inhibited inflammatory cells, MDA, HYP, NF-κB-p65, α-SMA TGF-β1 levels; improved Nrf2,
SOD, GSH-Px levels; ameliorated PF, alveolar inflammatory cell contents. [121]

Vitamin D3
9 Particles-treated Nrf2+/+ and Nrf2−/−

C57BL/6 mice, HFLIII cells
Nrf2 activating Reduced the levels of α-SMA, FN, E-cadherin; increased the levels of N-cadherin, Nrf2, VDR;

limited fibroblast cells’ migration, FDM, ECM. [122]

S-Allylmercaptocysteine10 BLM-treated C57/BL6 mice Nrf2/NOX4
TGF-β1/Smad

Increased antioxidants such as HO−1, GSH, and SOD; decreased HYP, SMA; ameliorated the
pathological structure, and decrease inflammatory cell infiltration and pro-inflammatory
cytokines in BALF.

[131]

Gallic acid derivative (GAD)11 BLM-treated C57/BL6 mice Nrf2/NOX4
TGF-β1/Smad

Reduced the levels of α-SMA, HYP, collagen type I/III, IL-6, TGF-β1, NOX4; increase the
levels of SOD and GSH; increased body weight, survival rate, and alleviated alveolar
structure, alveolar inflammation, and the degree of PF.

[132]

Salvia miltiorrhiza12 BLM-treated C57/BL6 mice and
NIH-3T3 cells

Nrf2/GSH
Nrf2/Keap1
Nrf2/Nox4

Reduced the levels of TGF-β1, α-SMA, ECM, COL-1, NOX4, ROS, PKC-δ, Smad3; increase
the levels of Nrf2, NQO1, HO−1; protected Nrf2 from protein ubiquitination, PF; regulated
myofibroblasts activation, Increased the sensitivity of fibroblasts to the loss of GSH.

[133]

Dimethyl itaconate13 TGF-β1-induced FMD in vitro and
BLM-treated mouse Nrf2 activating Nrf2 decreased TXNIP expression and alleviated FMD in PF; Nrf2 inhibited TGF-β1-induced

FMD and the increase of ROS. [141]
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Table 1. Cont.

Compound Model Target Function and Detection Index Refs

Sulforaphane14 BLM-treated C57/BL6 mice Nrf2 activating
Reduced the levels of caspase-3, IL-1β, TNF-α, TGF-β, HYP, 3-NT, and 4-HNE; increased the
levels of Nrf2, HO−1, NQO1, SOD1, and CAT; alleviated BLM-induced alveolar epithelial
cell apoptosis, alveolitis, collagen accumulation, lung oxidative stress, and lung fibrosis.

[168]

Bletilla striata15 SiO2-treated C57BL/6 mice
and A549 cells line Nrf2/HO−1/γ-GCSc Reduced the levels of MDA, ROS; increased the levels of γ-GCSc, Nrf2, SOD, HO−1;

protective effect of lung injury, lung cell viability, apoptosis, and ROS accumulation. [10]

Sarcodon aspratus16 BLM-treated Kunming mice
and A549 cells

MAPK/Nrf2/HO−1
TGF-β1/MAPK
TLR4/NF-κB

Reduced the levels of ROS, MDA, TNF-α, IL-1β, IL-6, CTGF, MMP-2, HYP, α-SMA, ECM,
TLR4, MyD88, NF-κB-p65; increased the levels of GSH-Px, SOD, Nrf2, HO−1, CAT, Smad7;
inhibited H2O2-induced cell apoptosis, oxidative stress, fibrosis, phosphorylation of JNK,
ERK and P38, weight loss.

[169]

Arenaria kansuensis17 PQ-treated C57BL mice
TGF-β1/Smad
NF-κB-p65
Nrf2/NOX4

Downregulated α-SMA, TGF-β1, TNF-α, IL-6, IL-1β1, HYP, ROS, collagen deposition, NOX4;
upregulate Nrf2, SOD, and GSH; improved mice survival rate, body weight, lung
pathological lesion, and the lung index.

[170]

Quercetin18 BLM-treated BEAS-2B cells Nrf2 activating Reduced the expression levels of ROS, TNF-α, and IL-8; increased Nrf2-ARE binding, HO−1,
and γ-GCS; restored the disturbed redox balance and reduce inflammation. [171]

Chelerythrine19 BLM-treated C57/BL6 mice Nrf2/ARE
Reduced the expression levels of fibronectin, α-SMA, TGF-β, 4-HNE, and HYP; upregulated
the levels of SOD, GSH, Nrf2, HO−1, and NQO1; alleviates collagen deposition, oxidative
stress, and PF.

[172]

Bergenin20 BLM-treated C57/BL6 mice and
NIH3T3 cells p62/Nrf2 Decreased content of α-SMA, COL-1, HYP, ROS, MDA; increased the levels and activity of Nrf2,

GSH, SOD, HO−1, NQO1; inhibited the TGF-β1 induced FDM, oxidative stress, and PF. [173]

Jinshui Huanxian formula21 BLM-treated SD rats, MRC-5 cells and
NIH-3T3 cells

Nrf2/NOX4
TGF-β1

Reduced the levels of TGF-β1, collagen deposition, HYP, α-SMA, COL-I, COL-III, MDA,
MPO, NOX4, FN1; increased the levels of Nrf2, GSH, SOD, CAT, NQO1, HO−1; suppressed
the increases of lung coefficient, TGF-β1-induced FDM, ROS production

[174]

Dimethyl fumarate22 BLM-treated C57/BL6 mice; RAW264.7
and NIH-3T3 cells coculture Nrf2 activating

Attenuated macrophage activity and fibrosis in mice; promoted Nrf2 and HO−1 expression
and suppress TGF-β and ROS production; reduced fibroblast-to-myofibroblast transition and
collagen production by NIH-3T3 cells.

[175]

Chloroquine23 PQ-treated male C57BL/6 mice Nrf2/NQO1/HO−1
TGF-β

Reduced the levels of TNF-α, IL-1β, IL-6, NO, iNOS, MDA, α-SMA, TGF-β; increased the
levels of SOD, NQO1, Nrf2, HO−1; attenuated lung injury, oxidative stress, decreases
protein, inflammatory cells.

[176]

Esomeprazole24 BLM- or TGF-β-treated PHLE cells
and fibroblasts

MAPK/Nrf2/HO−1
DDAH/iNOS

Reduced the levels of DDAH, iNOS, IL-1β, IL-6, TNF-α, COL-I, COL-III, COL-V; increased
the levels of HO−1, NQO1, Nrf2; downregulates pro-inflammatory and profibrotic
molecules, collagen expression; activates MAPK via phosphorylation.

[156]

The superscript number in the upper right corner of the compounds is numbered according to the order in which the compounds first appeared in the main text.
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7. Conclusions and Perspectives

PF is an intractable disease that has long plagued humans. Research continues to face
challenges, as the exact mechanistic aspects of PF are not well understood. The pathogen-
esis and molecular mechanisms associated with PF include pathological inflammation,
imbalanced oxidative stress responses, and abnormal activation of myofibroblasts. The
key pathological processes include FMD, EMT, and ECM deposition. Alveolar epithelial
cells, fibroblasts, endothelial cells, neutrophils, macrophages, lymphocytes, and eosinophils
are involved in this process. Given the complex biological pathogenesis of PF, which is
regulated by multiple signaling pathways and cytokines, targeting a single mechanism to
address unmet clinical needs in PF seems unlikely to reverse the disease. The transcription
factor Nrf2 coordinates the expression of more than 500 cytoprotective and metabolic
genes in response to various stresses to restore cellular homeostasis [25]. Alterations in
Nrf2 regulatory genes play fundamental roles in the pathogenesis of PF, and the signal-
ing pathways include TLRs/NF-κB, MAPK/Nrf2/HO−1/NQO1, p62/Nrf2, Nrf2/NOX4,
Nrf2/GSH, and TGF-β1/Smad. Due to this wide range of functions, it may be effective
to consider Nrf2 activators in combination with currently available treatment options in
the clinic. These natural products come from a wide range of sources and act on multiple
pathways to exert their pathological effects, which are appropriate for the multisystem,
multitarget pathogenesis of PF [177]. Moreover, most Nrf2 activators are natural products
with extraordinary therapeutic effects and can be easily applied to the daily diet, reducing
the high physical and psychological burden on patients and enhancing quality of life.

Recently, considering the challenges associated with conventional oral and intravenous
routes of drug administration, local delivery of drugs via nanoparticle carriers to the lungs
is an emerging area of interest. Nanotechnology-based inhalation drug delivery methods
possess numerous advantages including (1) uniform distribution of the inhaled drug
among the alveoli, (2) better solubilization of the drug, (3) reduced drug accumulation
in other organs, (4) long-term drug release, (5) lesser side effects, and (6) improved drug
internalization to the lung cells [178–180]. In addition, some natural products, such as
bergenin [173] and tanshinone IIA [63] whose anti-fibrotic effects have been reported by
using human lung fibroblasts (HFL-1) cells and human fetal lung fibroblast (MRC-5) cells,
respectively. These natural products may have significant potential for clinical translation,
but the preclinical studies or tests are needed.

PF is known to result in irreversible loss of lung function, and future research should
focus on prevention rather than cure. Continued investigations of Nrf2-mediated cellular
defense mechanisms and preventive effects may provide insights to cure PF.
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