
lable at ScienceDirect

Contemporary Clinical Trials Communications 5 (2017) 107e115
Contents lists avai
Contemporary Clinical Trials Communications

journal homepage: www.elsevier .com/locate/conctc
Innovative methods for the identification of predictive biomarker
signatures in oncology: Application to bevacizumab

Paul Delmar a, *, Cornelia Irl b, Lu Tian c

a Department of Biostatistics, F. Hoffmann-La Roche Ltd., Basel, Switzerland
b Department of Biostatistics, Genentech Inc., South San Francisco, CA, USA
c Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, USA
a r t i c l e i n f o

Article history:
Received 18 December 2015
Received in revised form
6 December 2016
Accepted 17 January 2017
Available online 19 January 2017

Keywords:
Bevacizumab
Breast cancer
Personalized medicine
Subgroup analysis
Multivariate statistical classification
Machine learning
Abbreviations: FGF, fibroblast growth factor; FLT, fm
human epidermal growth factor receptor 2; MRST, in m
RCT, randomized clinical trial; VEGF, vascular endoth
* Corresponding author. Department of Biostatistic

4070 Basel, Switzerland.
E-mail addresses: paul.delmar@roche.com (P. Del

(C. Irl), lutian@stanford.edu (L. Tian).

http://dx.doi.org/10.1016/j.conctc.2017.01.007
2451-8654/© 2017 The Authors. Published by Elsevier
a b s t r a c t

Current methods for subgroup analyses of data collected from randomized clinical trials (RCTs) may lead
to false-positives from multiple testing, lack power to detect moderate but clinically meaningful dif-
ferences, or be too simplistic in characterizing patients who may benefit from treatment. Herein, we
present a general procedure based on a set of newly developed statistical methods for the identification
and evaluation of complex multivariate predictors of treatment effect. Furthermore, we implemented
this procedure to identify a subgroup of patients who may receive the largest benefit from bevacizumab
treatment using a panel of 10 biomarkers measured at baseline in patients enrolled on two RCTs
investigating bevacizumab in metastatic breast cancer. Data were collected from patients with human
epidermal growth factor receptor 2 (HER2)-negative (AVADO) and HER2-positive (AVEREL) metastatic
breast cancer. We first developed a classification rule based on an estimated individual scoring system,
using data from the AVADO study only. The classification rule takes into consideration a panel of bio-
markers, including vascular endothelial growth factor (VEGF)-A. We then classified the patients in the
independent AVEREL study into patient groups according to “promising” or “not-promising” treatment
benefit based on this rule and conducted a statistical analysis within these subgroups to compute point
estimates, confidence intervals, and p-values for treatment effect and its interaction. In the group with
promising treatment benefit in the AVEREL study, the estimated hazard ratio of bevacizumab versus
placebo for progression-free survival was 0.687 (95% confidence interval [CI]: 0.462e1.024, p ¼ 0.065),
while in the not-promising group the hazard ratio (HR) was 1.152 (95% CI: 0.526e2.524, p ¼ 0.723). Using
the median level of VEGF-A from the AVEREL study to divide the study population, then the HR becomes
0.711 (95% CI: 0.435e1.163, p ¼ 0.174) in the promising group and 0.828 (95% CI: 0.496e1.380, p ¼ 0.468)
in the not-promising group. Similar results were obtained with the median VEGF-A levels from the
AVADO study (“promising” group: HR ¼ 0.709, 95%CI: 0.444e1.133, p ¼ 0.151; “not-promising” group:
HR ¼ 0.851, 95% CI: 0.497e1.458, p ¼ 0.556). Our analysis shows it is feasible to employ statistical
methods for empirically constructing and validating a scoring system based on a panel of biomarkers.
This scoring system can be used to estimate the treatment effect for individual patients and identify a
subgroup of patients who may benefit from treatment. The proposed procedure can provide a general
framework to organize many statistical methods (existing or to be developed) into a coherent set of
analyses for the development of personalized medicines and has the potential of broad applications.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Randomized clinical trials are designed to assess the efficacy of a
new treatment compared with placebo or standard of care.
Oftentimes, in addition to the main comparison of the overall
population enrolled in the study, subgroup analyses are performed
to examine whether the benefit of the new treatment is consistent
across patient populations [1]. Specifically, subgroup analyses aim
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to estimate and test the treatment effect on pre-determined sub-
groups. The subgroups are usually characterized by simple crite-
rions measured at baseline, such as sex, race, comorbidities, and
pre-existing treatment status. The final results are often pre-
sented graphically in a forest plot (e.g., Fig. 1), where each tree
represents the point, as well as the interval estimates of the
treatment effect within a subgroup. If one or several trees stand(s)
out of the forest, this may indicate non-homogeneity of the treat-
ment effect.

This simplicity, however, may be misleading [2,3]. The first
difficulty associated with subgroup analyses is multiple testing [4].
If one tries to estimate the treatment effect in a sufficiently large
number of subgroups, there will always be significant findings. This
opens the door for subjective interpretation of the subgroups
identified based on the significance level or the point estimator
itself: it could be either a simple false-positive result due to mul-
tiple testing or a promising subgroup worthy of further investiga-
tion. Various statistical adjustments have been proposed but are
rarely used in practice for good reasons [5]. For example, the Bon-
ferroni correction is one of the most robust approaches to ensure
that the treatment effect in at least one of the identified subgroups
truly exists with the claimed significance level [6]. However, the
adjustment is highly conservative andmay fail to detect a moderate
subgroup-specific treatment effect. This raises the second difficulty
in subgroup analyses, i.e., lack of power to detect moderate yet
clinically meaningful treatment effects [3]. Finally, the definition of
the pre-defined subgroup may be too simplistic to characterize
patients who may (or may not) benefit from the treatment. If we
are willing to consider subgroups defined by a combination of
characteristics, the number of candidate subgroups increases very
rapidly, exacerbating the difficulties associated with multiple
testing and lack of statistical power. For example, 10 binary char-
acteristics can define up to 2048 different subgroups of patients.
Even after acknowledging that some subgroups may be too small to
be of interest, it is likely that we still need to deal with hundreds of
subgroups. When some of the characteristics are continuous, such
as systolic blood pressure or gene expression level, there are an
infinite number of subgroups and it becomes infeasible to conduct
Fig. 1. Forest plot for subgroup analysis in AVADO study. The high and low groups are
defined using the median of the corresponding biomarkers.
subgroup analyses. More sophisticated methods that allow auto-
matic identification of the subgroups of interest are needed [7e9].

In light of these drawbacks of the simple subgroup analyses,
there are many recent developments in statistical methodology for
personalized medicine [7e19]. Among them, many adopt various
modern machine learning techniques to relax conventional statis-
tical model assumptions [11,14e19].

However, most of these recent developments are fragmentary
and there is no practical guideline for conducting the complete
statistical analysis for personalized medicine. For example, in the
presence of multiple approaches for estimating personalized
treatment effect and even different metrics for quantifying the
personalized treatment effect, there is a lack of methods for
selecting the optimal approach.

We have identified three goals for statistical methods in
personalized medicine: (1) estimating the treatment effect for the
individual patient, i.e., the individualized treatment effect
[9,10,14e19], (2) building a classification rule for identifying pa-
tients who may (or may not) benefit from the treatment, or (3)
making valid statistical inferences about treatment effect in the
identified subgroup.

In this paper, we propose a coherent stage-wise procedure for
addressing all three objectives. It has a clearly defined target at each
step. The procedure is also flexible and can easily be extended to
leverage new or future developments in the field. This procedure
will be illustrated by analyzing the data from two randomized
clinical oncology trials conducted by Hoffmann-La Roche Inc. In
both trials, the overall comparisons showed moderate treatment
effect in the entire study population and it is desirable to identify a
subgroup of patients having more substantial treatment benefit
[26,27]. However, the simple subgroup analysis failed to detect and
confirm the existence of the heterogeneous treatment effect [28].
2. Methods

2.1. Procedure for subgroup selection

The procedure consists of two major steps: training and testing.
The outcome of the training step is a classification rule for selecting
a subgroup of patients based on baseline features including
biomarker levels, demographic information, comorbidities, etc. The
classification rule can be complex and depends on multiple fea-
tures. The outcome of the testing step is the verification and eval-
uation of the treatment effect in the subgroup identified by the
classification rule, as well as in the complementary subgroup. In the
ideal case, there are data from two randomized clinical trials and
we use the first for training (Part I) and the second for testing (Part
II). If all the data are from a single trial, we need to split the data into
two non-overlapping parts (Parts I and II).
2.2. Training step

In this stage, we estimate the treatment effect for individual
patients and construct a classification rule for selecting patients
with promising treatment effect. However, several estimation
methods can be used and we need to select the optimal one based
on the data. To this end, the estimation and validation steps need to
be built within the training step. Specifically, the training data will
be randomly split into two parts: the first part (Part I-E) will be used
to estimate the treatment effect for individual patients with
different methods; the second part (Part I-V) will be used to eval-
uate the performance of each of the estimated treatment effects in
stratifying patient population into strata of different treatment
effects.
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2.3. Estimation

In general, there are two steps in estimating the personalized
treatment effect using the Part I-E data.

(1) Select a measure for the treatment effect. Ideally themeasure
is estimable and has meaningful clinical interpretation. For
time-to-event data, such as overall survival or progression-
free survival, a popular choice is the hazard ratio (HR).
However, the interpretation of the HR relies on the propor-
tional hazards (PH) assumption, which is not always met in
practice [20]. Alternatively, one may choose the difference in
mean restricted survival time (MRST), which has the
appealing intuitive interpretation of the area under the sur-
vival curve (AUC) over a given interval [21,22]. Once the
measure is determined, one can define the personalized
treatment effect accordingly. For example, if we decide that
the difference in MRST is of interest, then the individualized
treatment effect can be defined as

DðzÞ ¼ EðminðT ; tÞjR ¼ 1; Z ¼ zÞ � EðminðT ; tÞjR ¼ 0; Z ¼ zÞ;

where the binary indicator Rdenotes the treatment assignment, Z is
a set of baseline covariates characterizing the patients, T is the
survival time of interest, and t is a given constant such that DðzÞis
identifiable from the observed data subject to right censoring. Note
that a limitation of MRST is its dependence on cut-off time point t,
whose choice can be subjective in practice.

(2) Choose a regression model for estimating the individualized
treatment effect specified in step 1. The output of the
regression model is a scoring system which is a multivariate
function of the baseline covariate Z ¼ z approximating the
treatment effect for individual patients. As an illustrative
example for the aforementioned steps, considering the dif-
ference in MRST as the treatment effect measure, one may
further assume PH models for two arms separately:

PðT > tjR ¼ 1; Z ¼ zÞ ¼ S1ðtÞexp
�
b
0
1Z
�

and PðT > tjR ¼ 0; Z ¼ zÞ

¼ S0ðtÞexp
�
b
0
0Z
�
;

where SjðtÞ; j ¼ 0; 1 are survival functions corresponding to the
baseline hazard at group j. Then DðzÞcan be estimated by the
“treatment effect score”

bDðzÞ ¼ Zt
0

cS1ðtÞexp
�bb1

0
Z
�
dt �

Zt
0

cS0ðtÞexp
�bb0

0
Z
�
dt

where bbjand bSjðtÞare estimators for bjand SjðtÞunder the PH model,
respectively [9,23].
Fig. 2. Example of the treatment-effect curve.
2.4. Validation

Validation will be conducted on Part I-V data. A scoring system
for the individualized treatment effect may be developed from
different combinations of regression model and measure for the
treatment effect. To compare multiple scoring systems, we need to
determine a treatment effect measure of the primary interest, such
as HR orMRST difference, whichmay not necessarily be the same as
those used to construct the scoring systems. Note that a scoring
system always yields a ranking for all the patients, which can be
used to select patients having the largest treatment benefit with
respect to the selected treatment effect measure. Therefore, the
quality of the ranking can be used to choose the optimal scoring
system. A scoring system is considered useful if the corresponding
ranking is consistent with that of the true underlying individual-
ized treatment effect. The obstacle is that the true individualized
treatment effect and its ranking are unknown, since each patient
only receives one treatment. Our solution is to consider the average
treatment effect for all patients with the treatment effect score
above a threshold. For each fixed threshold, we have a pair of
measures: the fraction of unselected patients and the average
treatment effect for selected patients. By varying the threshold, the
corresponding pairs can be graphically presented as the “treatment
effect curve”. The treatment effect curve only depends on the
ranking of the score, and a high-quality ranking yields a monotone
increasing treatment effect curve: the smaller the selected patient
subgroup (more selective), the bigger the average treatment effect.
Fig. 2 presents an example of an estimated treatment-effect curve,
suggesting that the difference of MRST between treatment and
control arms is 72 days among the top 50% of patients, 57 days
among the top 70% of patients, and 26 days among all patients. The
Y-axis of the figure represents the estimated treatment effect in the
selected subgroup based on the statistical method for estimating
the treatment effect in the entire study, e.g., the nonparametrically
estimated difference in MRST. Of note, the estimation method is
independent of the working models employed to construct the
scoring system. Since all treatment-effect curves start from the
same point, (0%, bD(1)) with bD(1) being the estimated treatment
effect for the entire population, the slope of curve can be measured
by its weighted AUC defined as

Z1
0

ð1� qÞbDðqÞdq

where 1� q is the fraction of the selected subgroup and bDðqÞ is the
estimated treatment effect of the subgroup. This weighted AUC
actually is proportional to the correlation between the score
ranking and the true individualized treatment effect [23]. In addi-
tion to the weighted AUC value, the overall shape of the average
treatment effect curve is also important: scoring systems with
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persistent and steep monotone treatment effect curve (and thus a
large AUC) are considered of high quality.

2.5. Cross-validation

Oftentimes, several different scoring systems have very similar
AUCs and we may want to avoid the dependence of subtle differ-
ences on the specific split of Part I-E and Part I-V. To this end, we
may employ the cross-validation method, i.e., we repeatedly split
Part I into Parts I-E and I-V in a random fashion, and the optimal
score will be selected based on the evaluation result in terms of the
treatment effect curve averaged across all replications. Character-
istics such as AUC and the size of the potential subgroup of patients
with clinically meaningful treatment effect are considered in the
selection process. Furthermore, the average of the estimated scores
in those replications can then be used as the final score for selecting
a patient subgroup for further testing. Similar to the bootstrap
aggregating technique in machine learning, this scoring system
ensemble often performs better than applying the selected esti-
mation method to the entire Part I data, especially when the esti-
mation procedure is irregular in nature and involves variable
selection, etc [24,29].

Once the optimal scoring system is selected, one may determine
a threshold level such that all patients with a score above the
threshold are considered to have promising treatment benefit. The
selection of this threshold needs to balance factors such as the size
of the selected subgroup, the magnitude of the expected average
treatment effect, and the likelihood of successful verification in the
testing stage. In the simplest term, one may want to select the
largest subgroup with a reasonable treatment effect, which can be
detected by the testing data with sufficient power.

Once an effective scoring system is obtained, it is important to
have a transparent interpretation to the score. Since the resulting
scoring system could be a complexmultivariate function of baseline
features, there is no simple method to decipher the contribution
role of each individual feature. If we denote the treatment effect
score by a multivariate function DðZÞ ¼ Dðz1; z2;/; zpÞ, one way to
measure the importance of individual features is to use

Ii ¼ E
��

vD
�
z1;/; zp

�
vzi

�2
� varðZiÞ

	
;

One can see, for example, if linear regression is involved, then

D
�
z1; /; zp

� ¼ b1z1 þ/þ bpzp;

Ii ¼ b2i varðZiÞ ¼ ~b
2
i ;

where ~bi is the standardized regression coefficient for covariate
Zi normalized to have a unit variance. In general, Ii approximately
measures the average change in the score caused by a “typical size”
perturbation of the ith input feature, i.e., one standard deviation
change in the feature value. Furthermore, the marginal expectation

miðzÞ ¼ EfDðZÞjZi ¼ zg

can be used to summarize the role of individual features in the
score [25]. However, evenwith measures such as Ii and miðzÞ, it still
may be difficult to decipher the contribution of each individual
feature and understand the underlying mechanism of the score,
since input features affect output score jointly

2.6. Testing step

Using the optimal scoring system and threshold determined via
the training data (Part I), we identify the “promising” subgroup of
patients in the independent test set (Part II). We then conducted a
statistical analysis to evaluate the treatment effect in this subgroup
of patients, and compare it with the complementary subgroup
using an interaction test. The point estimates, CIs, and p-values for
the treatment effect and its interactions, can be computed as in the
standard statistical analysis for a clinical trial. The testing step is
based on a fresh test set and independent of the complex analytical
procedure used for identifying the promising subgroup. The sta-
tistical analyses used in testing stage are analogous to those
employed in the primary analysis for treatment effect for the entire
study, which is based on minimum model assumption and gener-
ates results with causal interpretation. The testing is only con-
ducted for the finally selected subgroup to avoid false positives and
potential biases from multiple testing and model selections.

2.7. Operational considerations

The entire procedure is graphically summarized in Fig. 3. In
general, the analysis is conducted in the order of estimation, cross-
validation, subgroup identification, and final testing. There are
several important practical issues to consider in implementing the
procedure. The first step is to select the training and testing sets
(Part I and Part II, respectively). There is a delicate tradeoff in
allocating samples between two sets: while assigning too few
samples to Part I data may harm the chance of identifying a good
subgroup, a small Part II set lacks power to validate underlying
treatment benefit even in a “good” subgroup. Since we will only
recommend a successfully validated subgroup, in practice we pro-
pose to determine the Part II test set first considering the treatment
benefit of the targeted subgroup. For example, if we target a sub-
group consisting of ~50% of the patients with a HR of 0.5, then we
can choose the Part II size according to the planned power if such a
desired subgroup was actually identified based on Part I data. For
the same reason, we prefer to preserve high-quality data, such as
those fromwell-conducted randomized clinical trials, to the Part II
data to ensure the reproducibility of the final testing results.

Second, in the estimation stage, we need to choose working
models for developing scoring systems gauging the personalized
treatment effect. We have the flexibility in employing competitive
models and incorporating prior knowledge about the treatment
effect since all the resulting scoring systems will be evaluated via
cross-validation.

Third, in implementing the cross-validation for identifying the
subgroup of interest based on Part I data, one needs to repeatedly
separate Part I data into Part I-E and Part I-V for estimation and
validation, respectively. Since the validation will be made by
aggregating results from multiple Part I-Vs, we recommend
assigning most (85e95%) of the data to Part I-E to maximize the
chance of successfully constructing a high quality scoring system
and identifying corresponding subgroup of patients. Next, despite
the potentially large number of working models used at the esti-
mation step, it is advisable to select a consistent and interpretable
metric for validating the competing scoring systems based on Part
I-Es and testing the final subgroup based on the Part II data. We
used the difference in RMSTas an illustrative example, but one may
use difference in survival probability or HR depending on the
application context. We don't encourage to select subgroups by
directly examining all potential combinations of the estimated
score and corresponding cut-off value since a scoring system of
poor quality may still generate a promising subgroup by chance,
which would lack reproducibility in independent data. Therefore,
in general, we suggest to select the best scoring system first and
then identify the corresponding subgroup. In this step, we do not
recommend using a single rigid criterion such as the targeted



Fig. 3. The flow chart of the procedure for selecting a subgroup of patients with promising treatment effect.
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treatment effect size in determining the final subgroup of patients.
Instead, multiple criteria such as sensitivity to the cut-off values
and subgroup sizes, need to be considered. For example, one may
be willing to trade larger observed treatment effects with a larger
subgroup size and more robust cut-off values. However, although
the decision process for selecting the subgroup can be complex and
adaptive to the application, once it is selected, one cannot change it
based on the testing results, since this practice would render the
statistical inference from Part II data invalid.
3. Example

3.1. Data

The Part I and II data are from the randomized clinical trials
AVADO and AVEREL, respectively. The randomized, double-blind,
clinical trial AVADO was conducted to test the efficacy and safety
of the combination of bevacizumab and docetaxel among patients
with HER2-negative metastatic breast cancer [26]. The study
recruited 736 patients with 241 randomized into the control arm
receiving placebo and docetaxel (100 mg/m2), 248 into the low-
dose arm receiving bevacizumab (7.5 mg/kg) and docetaxel
(100 mg/m2), and 247 into the high-dose arm receiving bev-
acizumab (15 mg/kg) and docetaxel (100 mg/m2). The primary
endpoint of the study is the progression-free survival, i.e., the time
from randomization to the first documented disease progression or
death. Patients who did not experience any disease related to
progression or die during the study were right censored at the last
tumor assessment at which they were known to be progression
free. We consider the following 10 biomarkers baseline features for
characterizing the subgroup of patients who may benefit from the
treatment: platelet-derived growth factor C, vascular endothelial
growth factor (VEGF)-A, VEGF-C, fibroblast growth factor (FGF)2,
fms-like tyrosine kinase (FLT)1, FLT4, interleukin-8, kinase insert
domain receptor, intracellular adhesion molecule-1, and E-SELEC-
TIN. The 10 biomarkers were measured for the 345 patients
enrolled in the study.

The randomized, open-label, clinical trial AVEREL was con-
ducted to test the efficacy and safety of bevacizumab in combina-
tionwith trastuzumab/docetaxel in patients with human epidermal
growth factor receptor (HER)2-positive metastatic breast cancer
[27]. In AVEREL, 208 patients had been randomized into the
treatment arm receiving bevacizumab (15 mg/kg) plus docetaxel
(100 mg/m2) plus trastuzumab (8 mg/kg followed by 6 mg/kg), and
216 patients to the control arm receiving docetaxel (100 mg/m2)
plus trastuzumab (8 mg/kg followed by 6 mg/kg). The outcome of
interest is progression-free survival as in AVADO. The 10 bio-
markers used to characterize the patient subgroup were measured
for 158 patients in the AVEREL study.
3.2. Statistical analysis

Our objective was to identify patients who may benefit from
bevacizumab treatment using baseline biomarkermeasurements. It
has been reported that the baseline level of VEGF-A may be pre-
dictive for the treatment benefit from bevacizumab [28]. However,
we plan to empirically construct a rule for selecting patients with
promising treatment benefit based on a panel of biomarkers
without any special treatment of VEGF-A, since our purpose here is
to use the AVADO and AVEREL studies to illustrate our method in
general and such knowledge on predictive properties of individual
biomarkers may not be available in other situations. The AVADO
study was used as a training set (Part I). We focus on the compar-
ison between the high-dose and control arms only. The rational of
this decision is (1) the high-dose bevacizumab showed superior PFS
compared with placebo while the benefit of low-dose bevacizumab
was less pronounced in the AVADO study; (2) it is desirable to
identify patients who benefitted from a clearly defined treatment
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regimen including the dosage and (3) the dosage of bevacizumab in
the AVEREL study was 15 mg/kg, the same as that in the high-dose
arm of the AVADO study. Each arm consists of 115 patients with
complete biomarker measurements. In order to construct a scoring
algorithm approximating the treatment effect for individual pa-
tients, we employ 10 different regression models in the training
stage. The 10 regression models are listed in the Appendix. Several
of the proposed regression models, such as boosting method
coupled with the modified covariate approach for Cox models as
well as the accelerated failure time model, are new [14]. However,
we will not discuss their implementation details as well as theo-
retical justifications in the main text since it is not the focus of this
paper. Indeed, with more and better methods to be developed in
the future, this list of 10 regressions can grow as needed. The
optimal scoring algorithm is selected based on the estimated
treatment effected curves with 2000 cross-validation replications.
We classify the patient population into two groups based on the
selected optimal treatment effect scores: the “promising” subgroup
consists of patients with the top 70% individualized treatment ef-
fect scores, and the “not-promising” subgroup consists of patients
with the bottom 30% “individualized treatment effect” scores. The
proportions of promising and not-promising patients are chosen
because of our preference to a larger promising subgroup and the
empirical observation that the cross-validated treatment effect
estimator only slightly reduced when the proportion of promising
patients ranges from 50% to 70%. In the testing stage, we classify the
patients in the AVEREL study into two subgroups using the same
classification rule and separately estimate the treatment effect. The
HRs and 95% CIs are obtained. We also compare the performance of
this procedure with simply using VEGF-A levels with the median as
the cut-point for identifying the subgroup of patients with prom-
ising treatment effect [28].
4. Results

In the training step, we estimate the survival functions for the
high-dose and control arms in the AVADO study, the result is
plotted in Fig. 4. The estimated HR is 0.680 (95% confidence interval
Fig. 4. The estimated survival curves for progression-free survival in the high-dose
treatment arm and the control arm in the AVADO study.
[CI]: 0.488e0.947, p ¼ 0.023) favoring the treatment arm. In the
cross-validation step, the optimal score is selected by examining
both the shape of the resulting average treatment effect curve and
its weighted? AUC. The chosen final score is constructed from the
MRST-based regression model with non-parametric covariate
treatment interaction,

EðlogðminðT ; tÞÞjR ¼ r; Z ¼ zÞ
¼ a0 þ a1r þ a

0
2zþ DðzÞ � ð2r � 1Þ

with DðzÞ DðzÞ being approximated by a boosting algorithm of
aggregating a set of adaptively constructed depth-2 classification
trees [29]. The analytic form of the resulting score function is too
complicated to present, but its computation for any given patient is
easy and fast with a computer. Based on the cross-validated treat-
ment effect score in the training data, we split the 230 patients into
“promising” and “not-promising” groups of 161 and 69 patients,
respectively. The estimated HR is 0.620 (95% CI: 0.420e0.914,
p ¼ 0.016) and 0.913 (95% CI: 0.472e1.765, p ¼ 0.786) in the
“promising” and “not-promising” groups, respectively (Fig. 5). The
results of simple subgroup analysis of the AVADO study using
selected baseline characteristics were in general consistent with
results for the overall study population and failed to pinpoint a
subgroup with comparable size and treatment benefit as ours [26].
A subsequent paper reports that VEGF-A and VEGFR-2 are potential
predictive markers for bevacizumab efficacy [28]. However, the
findings are based on simple post-hoc analysis and need inde-
pendent validations. Note that our results may also be overly
optimistic because they are based on the same training dataset
(Part I) used to select the optimal scoring system. The independent
test data (Part II data) consist of 158 patients from the AVEREL study
with complete biomarker information. The distributions of
biomarker levels in AVEREL and AVADO studies are compared in
Supplemental Table 1.We calculate the treatment effect score for all
158 patients in the test set. A total of 123 patients are assigned to
the “promising” group and 35 patients are assigned to the “not-
Fig. 5. The estimated survival curves of progression-free survival in the “promising”
and “not-promising” subgroups determined by the estimated personalized treatment
effect in the AVADO study.
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promising” group. We estimate the survival functions of the
treatment and control arms in both subgroups (Fig. 6). The HR is
0.687 (95% CI: 0.462e1.024, p ¼ 0.065) and 1.152 (95% CI:
0.526e2.524, p ¼ 0.723) for the “promising” and “not-promising”
subgroups, respectively. We also plotted the estimated survival
curves if bevacuzumab is given to (1) all patients; (2) only the
selected patients based on the proposed method and (3) no patient
(Supplemental Fig. 7). This. suggests that the benefit of treating all
patients with bevacizumab can be maintained by targeting only the
top 70% of patients according to the estimated treatment scoring
system. The benefit of treating additional 30% of the patients is
minimal and need to be balanced against the cost and the risk of
potential adverse events.

If we use the median of VEGF-A in AVEREL study to divide the
study population, then the estimated HR is 0.711 (0.435e1.163,
p ¼ 0.174) in the “promising” group and 0.828 (0.496e1.380,
p ¼ 0.468) in the “not-promising” group. The results are similar if
we use the median of VEGF-A in AVADO study to divide the pop-
ulation: the estimated HR is 0.709 (0.444e1.133, p ¼ 0.151) in the
“promising” group of 87 patients and 0.851 (0.497e1.458,
p¼ 0.556) in the “not-promising” group of 71 patients. This result is
clearly inferior to that based on the constructed scores. The median
VEGF-A is chosen as the cut-off value out of convenience as well as
based on preliminary analysis results of the AVADO study. There
may be other cut-off values of VEGF-A generating better results.
How to search and validate the “optimal” cut-off values of VEGF-A
is analogous to the problem of identifying a good threshold value
for the estimated personalized treatment effect score, in which
many factors need to be considered in the context of the
application.

Here the constructed score approximating the individualized
treatment effect is a complex function of the 10 baseline bio-
markers but can be conveniently computed using a personal
computer. In our scoring system, VEGF-A, FLT1, and FGF2 are the
top three most important biomarkers. Furthermore, the marginal
expectation with respect to VEGF-A is monotone increasing,
Fig. 6. The estimated survival curves of progression-free survival in the “promising”
and “not-promising” subgroups determined by the estimated treatment effect of in-
dividual patient in AVEREL study.
suggesting that patients with higher VEGF-A level tend to have a
bigger treatment benefit, which is in consistent with our prior
knowledge on VEGF-A. It takes about 6 h to complete the entire
analysis on a PC with intel 3.40 GHz CPU and 16 GB RAM using R.

5. Discussion

There is substantial recent development in statistical method-
ology for personalized medicine. However, how to appropriately
choose and apply these methods in practice remains a great chal-
lenge. Different methods have different merits and limitations. For
example, while the tree-based learning method tends to select
over-simplified subgroups and thus, have unsatisfactory perfor-
mance, the performance of the more sophisticated outcome-
weighted learning methods depends on the choice of target func-
tion and the machine learning algorithms optimizing it. Further-
more, the statistical validity of many methods such as asymptotical
consistency often relies on theoretical assumptions, whose verifi-
cations are difficult in practice. In this paper, we have argued that
the selection of the methods can be achieved empirically without
the need of examining all the theoretical assumptions for each of
the models. We have also highlighted the importance of robust,
independent validation with minimum model assumptions. We
have demonstrated the merit this systematic approach to identify
subgroups of patients who may benefit from a treatment based on
data from two oncology trials that tested the efficacy of bev-
acizumab. Specifically, we constructed a scoring algorithm assess-
ing the treatment effect of individual patients and the independent
testing data supported that the treatment effect is higher among
patients with higher estimated treatment effect scores.

In the training stage, we treat the different regressionmodels for
deriving the treatment effect scores as working models employed
for convenience. Different regression models can be used at the
same time without assuming any one of them as the true model. In
practice, one can have substantial flexibility in expanding the tool
box by adding novel regression or machine learning methods to
approximate the individualized treatment effect. For example,
when the number of features is large, such as gene expression
levels, one may apply various regularization methods for feature
selection in the regression analysis [30,31].

The independence between the training and test sets is impor-
tant. It ensures that all statistical inferences, including estimation
and hypothesis testing, conducted in the test set are valid and can
be interpreted in the conventional manner, regardless of the novel
techniques employed in the training stage [32e34]. Ideally, the
statisticians performing the analysis for the training set should
remain blinded to the test data until the testing stage. The testing
step with independent data cannot be replaced by the commonly
used cross-validation. First, the cross-validation result was already
used for selecting the optimal scoring system and, therefore, the
performance of the selected scoring system from cross-validation is
prone to bias in the optimistic direction, especially when the
number of candidate scoring systems is not small. Furthermore,
there is no valid inference procedure for the treatment effect in
subgroups based on models selected with the cross-validation
procedure.

As a major limitation, the method requires data from two in-
dependent clinical trials (or a large trial allowing splitting the data).
It may not be feasible in many practical applications. The essence of
the problem is lack of power in detecting the treatment-covariate
interaction. In the example presented here, the interaction be-
tween the treatment and group assignment (“promising” vs. “not-
promising”) in the test set (AVEREL study) is not statistically sig-
nificant (p ¼ 0.225), which is likely due to the limited power/small
sample size. It highlights the need for cautious interpretation and
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further verification of the final result. Another limitation is the
selection of the appropriate cut-off value of the estimated scoring
system. Since many factors need to be considered, there is no
rigorous data-driven procedure to automatically give optimal cut-
off values and, therefore, the choice is still by and large subjec-
tive. In addition, the complexity and the “black box” nature of the
scoring algorithm, which prevent a straightforward interpretation
of the results, could be perceived as a hurdle to its application,
especially in a medical context. Understanding the relative impor-
tance of the different features in the final score is important. In
some cases, it may be possible to construct “simplified” scoring
algorithms based only on a small subset of the most important
features.

In summary, whenwe want to construct and recommend a rule
for selecting subgroups of patients with promising treatment effect,
many important, sensitive issues need to be carefully considered,
such as the strength of the evidence for the presence of heteroge-
neous treatment effect from the testing data, the understanding of
potential mechanism of the rule, and the consistency with our prior
knowledge. Therefore, while it may be advantageous that the
proposal is very flexible and adaptive, the implementation is not
automatic. The successful discovery of the targeted subgroup de-
pends on good choice on issues such as training and testing split-
ting, candidate estimation procedures, and the metric for the
treatment effect. It is unfortunate that there is no universal answer
to these important questions. Carefully designed simulation studies
can be conducted and are helpful to examine the empirical per-
formance of the proposal and provide practical guidelines on
implementing the proposal under different settings. The analysis
presented in this paper is limited and intended as proof of concept
for the proposed statistical and machine learning approach. The
bevacizumab data were used strictly as an example for illustrative
purposes. The results presented herein are purely exploratory and
should not be interpreted in terms of a recommendation for clinical
practice.

Lastly, we want to emphasize the fact that, although the auto-
matic statistical modeling and machine learning methods are
powerful tools in identifying multi-biomarker signatures for
approximating the treatment effect of individual patients and in
identifying subgroups of patients with promising treatment effect,
they are not replacements for subject-matter knowledge. Since
there is always a price to pay in eliminating “noise”, i.e., irrelevant
features, relevant prior knowledge of the underlying biological
mechanism may greatly help to boost the performance of the
procedure by focusing on truly important biomarkers and patient
characteristics.
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Appendix. The regression models used to estimate the
personalized treatment effect

(1) PH model for two arms separately, i.e., we assume

PðT > tjR ¼ 1; Z ¼ zÞ ¼ S1ðtÞexp
�
b
0
1Z
�

PðT > tjR ¼ 0; Z ¼ zÞ ¼ S0ðtÞexp
�
b
0
0Z
�

where SjðtÞ; j ¼ 1; 2 are survival functions corresponding to the
baseline hazard. The “treatment effect score” measuring the dif-
ference in MRST is

DðzÞ ¼
Zt
0

S1ðtÞexp
�
b
0
1Z
�
dt �

Zt
0

S0ðtÞexp
�
b
0
0Z
�
dt:

(2) PH model with treatment-covariate interaction

PðT > tjR ¼ r; Z ¼ zÞ ¼ S0ðtÞexp
�
a
0
0zþa1rþb

0
0z�ð2r�1Þ

�
where S0ðtÞ is the baseline survival functions. The “treatment effect
score” is DðzÞ ¼ b

0
0z:

(3) PH model with modified covariates

PðT > tjR ¼ r; Z ¼ zÞ ¼ S0ðtÞexp
��

a1þb
0
0z
�
�ð2r�1Þ

�
:

The “treatment effect score” DðzÞ ¼ b
0
0z.

(4) PH model with non-parametric covariate and treatment
interactions

PðT > tjR ¼ r; Z ¼ zÞ ¼ S0ðtÞexpðgðzÞ�ð2r�1ÞÞ;

where gðzÞ ¼ P
wjkIðxj � cj; xk � ckÞ; ðx1; x2;/; xp; xpþ1;/; x2pÞ ¼

ðz1; z2;/; zp; �z1;/; �zpÞ. The “treatment effect score”
DðzÞ ¼ gðzÞ.

(5) MRST regression model for two arms

EðminðT; tÞjR ¼ 1; Z ¼ zÞ ¼ exp
�
a1 þ b

0
1z
�

EðminðT; tÞjR ¼ 0; Z ¼ zÞ ¼ exp
�
a0 þ b

0
0z
�
;

The “treatment effect score” DðzÞ ¼ expða1 þ b
0
1zÞ�

expða0 þ b
0
0zÞ.

(6) MRST regression model with covariate treatment
interactions:

http://dx.doi.org/10.1016/j.conctc.2017.01.007
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EðminðT ; tÞjR¼ r; Z¼ zÞ¼ exp
�
a0þa

0
1zþa2rþb

0
0z�ð2r�1Þ

�
:

The “treatment effect score” DðzÞ¼ b
0
0z.

(7) MRST regression model with modified covariate:

EðminðT ; tÞjR ¼ r; Z ¼ zÞ ¼ exp
��

a0 þ b
0
0z
�
� ð2r � 1Þ

�
:

The “treatment effect score” DðzÞ ¼ b
0
0z.

(8) The log-transformed MRST regression model with non-
parametric covariate treatment interactions

EðlogfminðT ; tÞgjR ¼ r; Z ¼ zÞ
¼ a0 þ a1r þ a

0
2zþ gðzÞ � ð2r � 1Þ;

where gðzÞ ¼ P
wjkIðxj � cj; xk � ckÞ; ðx1; x2;/; xp; xpþ1;/; x2pÞ ¼

ðz1; z2;/; zp; �z1;/; �zpÞ. The “treatment effect score”
DðzÞ ¼ gðzÞ.

(9) The log-transformed MRST regression model with covariate
treatment interactions:

EðlogfminðT ; tÞgjR¼ r; Z¼ zÞ¼a0þa
0
1zþa2rþb

0
0z�ð2r�1Þ:

The “treatment effect score” DðzÞ¼ b
0
0z.

(10) The log-transformed MRST regression model with modified
covariate:

EðlogfminðT ; tÞgjR ¼ r; Z ¼ zÞ ¼
�
a0 þ b

0
0z
�
� ð2r � 1Þ:

The “treatment effect score” DðzÞ ¼ b
0
0z.

For fitting PHmodels in (1), (2), and (3), we maximize the lasso-
regularized log-partial likelihood functions. For fitting model (4),
we use the gradient boosting algorithm to maximize the partial
likelihood function with tree as the base learner. For fitting the
MRST regression models in (5), (6), and (7), we maximize the
inverse-probability weighted loss function with lasso-
regularization, where the loss function is in the form of
minðT ; tÞðaþ b

0
zÞ � expðaþ b0zÞ.

For fitting the log-transformed MRST in (8), we minimize the
inverse-probability weighted squared loss function with the
gradient boosting algorithm using tree as the base learner. For
fitting the log-transformed MRST regression models in (9) and (10),
we minimize the inverse-probability weighted squared loss func-
tion with lasso-regularization.
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