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ABSTRACT We report the draft genome of cold-tolerant Pseudomonas sp. strain
NKUCC02_KPG, which was isolated from a lake in Kentucky, namely, Old Alexandria
Reservoir. This strain contains several genes associated with cold adaptation and is charac-
terized by a G1C content of 58.21% and a total length of 5,187,984 bp.

Cold-adapted species of Pseudomonas have commonly been isolated from freshwaters
receiving urban stormwater runoff (1), from activated sludge (2), and from pristine cold

fjord waters in the Arctic (3). They have also been identified from cold spoiled foods (4, 5)
and soils (5). Several cold-adapted Pseudomonas strains have been shown to degrade antibi-
otics such as sulfamethoxazole (2) and to develop antimicrobial resistance (6, 7). Isolation
and identification of species in this genus are important for determination of the potential
potability of freshwaters, detection of antimicrobial-resistant groups, and elucidation of
genomic adaptions to cold environments.

Pseudomonas sp. strain NKUCC02_KPG was isolated from a surface water grab sample
obtained in January 2021 at the shoreline of Old Alexandria Reservoir (Alexandria, KY) (N
38.961166, W 84.368969) using a sterile Whirlpak bag. Strain NKUCC02_KPG was isolated
from serial dilutions spread on tryptic soy agar that had been incubated at 25°C for 48 h.
A single colony was grown in tryptic soy both at 25°C and genomic DNA extracted using
the UltraClean microbial DNA isolation kit (Qiagen, Germantown, MD, USA) following the
manufacturer’s protocol. DNA was quantified using a Qubit v3.0 fluorometer and the
broad-range kit and was sequenced at the Microbial Genome Sequencing Center
(MiGS) (Pittsburgh, PA, USA) using the Illumina NextSeq 2000 platform (2 � 150 bp),
with libraries prepared using the Nextera DNA library preparation kit. Sequencing
produced 3,411,987 paired-end reads and total of 1,010,005,316 bp, which were trimmed
and filtered using fastp (8) and then assembled using Shovill v1.1.0 (9). The genome cover-
age was 193�, as calculated using BBMap v38.90 (10). The assembled genome was anno-
tated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v5.2 (4). Default pa-
rameters were used for all software unless otherwise specified.

The draft genome is 5,187,984 bp and consists of 55 contigs, with a G1C content of
58.21% and an N50 value of 223,184 bp; the largest contig is 567,393 bp. The genome
was estimated to contain 4,751 protein-coding genes, and 3 noncoding RNAs, 11 rRNAs, and
65 tRNAs were detected. CheckM (11) predicted that the genome is 99.97% complete, with
0.54% contamination, and the strain was tentatively identified as Pseudomonas psychrophile,
with a match of 99.29%, using the GTDB-Tk classify workflow (12) within KBase (13).
Taxonomic relations were explored among other Pseudomonas species using JSpeciesWS
(14), and Tetra Correlation Search was used to select genomes sharing .95% identity.
Pairwise Tetra Correlation Search analysis indicated close relationships to P. psychrophila
(DSM 17535 and CF149) and Pseudomonas deceptionensis (DSM 26521 and LMG 25555),
with values of 0.99532 to 0.99211. Average nucleotide identity based on BLAST1 (ANIb) and
digital DNA-DNA hybridization (dDDH) calculated with formula d4 by TYGS (15) indicated that
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strain NKUCC02_KPG likely represents a novel cold-tolerant species within the genus
Pseudomonas, with only 91.5% ANIb to Pseudomonas psychrophila DSM 17535, and the
strain demonstrated only 46.8% similarity to P. psychrophila. These values are below
recommended species delimitation values, i.e., ANIb values of .95 to 97% and dDDH
values of .70%. Four predicted cold-shock proteins and two cold-shock domain-con-
taining proteins (CspD, and CspD-like) were annotated. ResFinder v4.1 (16) indicated
no acquired resistance to antimicrobials that might be present in the aquatic cold-
tolerant Pseudomonas strain.

Data availability. This whole-genome shotgun project has been deposited in DDBJ/
ENA/GenBank under the accession number JAHKRC000000000. The version described in
this paper is version JAHKRC000000000.1. This accession number is under BioProject acces-
sion number PRJNA734631 and BioSample accession number SAMN19515367. Raw reads
are available in the SRA under accession number SRR15168785. A log file output of the assem-
bly from Shovill v1.1.0 and the graph file (.gfa) are available at FigShare (https://doi.org/10
.6084/m9.figshare.14999787.v1).
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