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Abstract
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever

(RMSF) prevalence in four contiguous states of Midwestern United States, and to determine

the impact of environmental and socio–economic factors associated with this disease.

Bayesian hierarchical models were used to quantify space and time only trends and spatio–

temporal interaction effect in the case reports submitted to the state health departments in

the region. Various socio–economic, environmental and climatic covariates screened a pri-
ori in a bivariate procedure were added to a main–effects Bayesian model in progressive

steps to evaluate important drivers of RMSF space-time patterns in the region. Our results

show a steady increase in RMSF incidence over the study period to newer geographic

areas, and the posterior probabilities of county-specific trends indicate clustering of high

risk counties in the central and southern parts of the study region. At the spatial scale of a

county, the prevalence levels of RMSF is influenced by poverty status, average relative

humidity, and average land surface temperature (>35°C) in the region, and the relevance of

these factors in the context of climate–change impacts on tick–borne diseases are

discussed.

1. Introduction
Rocky Mountain spotted fever (RMSF) is a life–threatening fulminant tick-borne infection
caused by the obligate intercellular bacterium Rickettsia rickettsii (Family: Rickettisiaceae,
Order: Rickettsiales) [1]. This disease has been reported from most of the lower 48 states in the
United States, with onsets typically occurring during the tick season (April through September)
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[1–3]. Despite the name, most RMSF cases occur in the lower Midwest and southern United
States, with the states of Oklahoma, Arkansas, Missouri, Tennessee, and North and South Car-
olinas reporting most cases per year [4]. The disease is difficult to diagnose since symptoms do
not develop until a few days well into infection [5], [6], and a lack of early treatment could lead
to death [7]. Young children and the elderly are more frequently affected by RMSF [8], and
although case fatality rates have declined during the last decade the incidences of RMSF has
increased during the same time period in the United States [9].

Increased incidence of vector–borne diseases could be at least partly due to ongoing cli-
mate–change [10–12], and there is considerable interest in attributing climate–change effects
on disease incidences. Arthropod life–cycles are highly regulated by climatic conditions, and
the changes in recent climate patterns due to climate–change could affect incidences of tick-
borne diseases in many ways. Some of these include changing spatial distribution of ticks and
tick-borne pathogens [13], [14], and the persistence and replication rates of tick pathogens in
their hosts [15]. Influential climatic factors behind increased incidence of RMSF are not clearly
understood but are worth considering under a climate–change context.

At least three different tick species are confirmed vectors of RMSF in the United States [3],
[16]. The population dynamics and spatial range of these ticks along with those of other arthro-
pods may have changed in the past decade [17], [18] as a result of climate–change and other
anthropogenic influences. The primary tick that transmits R. rickettsii to humans east of the
Rocky Mountains is suggested to be the American dog tick, Dermacentor variabilis [3],
although the role of D. variabilis ticks in the transmission has been contested since several
recent reports have not detected the pathogen among field-collected ticks or those that were
attached to humans or animals [19], [20]. The Rocky Mountain wood tick, D. andersoni is
implicated in transmissions in the Rocky Mountain States and in the Pacific west. And, the
brown dog tick, Rhipicephalus sanguineus has been shown to transmit this bacterium in the
southwestern United States and along the United States–Mexico border [3], [21].

Determining the associations of influential climate and/or short–term weather factors with
vector–borne diseases are problematic since they are often confounded with the effects of phys-
ical environment and socio–economic factors [10], [22]. A number of studies have shown rela-
tionship between various climatic (temperature, rainfall, humidity) factors and tick-borne
illnesses but also physical environmental (land cover, landscape structure) and socio–economic
factors [23], [24]. Therefore, attempts to determine climate associations with infectious dis-
eases may benefit by simultaneously considering these additional factors. Also, abiotic determi-
nants of vector–borne diseases are subject to changes due to influences of varying spatio–
temporal factors, and incidences of vector–borne diseases have strong spatio–temporal depen-
dencies, which necessitates evaluations of any associations to be conducted in a spatio–tempo-
ral context [25], [26]. Bayesian spatio–temporal models provide a flexible and robust platform
for space-time analysis and also for evaluating covariate association with disease incidences
between aggregated areal units such as a county. Such models have been used to study other
tick-borne disease systems at a county scale [27], [28].

The purpose of this study was to evaluate the spatio–temporal pattern of RMSF incidence in
the central United States spanning four contiguous states (Kansas, Missouri, Oklahoma and
Arkansas) where this disease has noticeably increased over the past decade. Using case reports
submitted to the respective state health departments over the years we asked the following spe-
cific questions; Is there an overall trend (increase, decrease or stable) for RMSF in the region
comprising these four states? Are there areas within the region where there are the departures
from the overall trend, or specifically high ‘risk-areas’? And, what are some of the influential
factors–including any climate–change indices that are associated with RMSF incidence in this
region?
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2.0 Materials and Methods

2.1 Study area
The spatial extent considered in this study included the contiguous states of Kansas, Missouri,
Oklahoma and Arkansas in central United States, which have recorded RMSF cases since the
first identification of the disease, and has some of the highest number of incidences in the
United States. Climate in the study area is transitional from east to west, and as well as south to
north, with the southeastern region receiving progressively more rainfall than the west.

2.2 Data
2.2.1 Ethics statement. The RMSF data used in this study was notifiable by individual state

health departments to the Centers for Disease Control and Prevention (CDC), and were aggre-
gated annually to their respective administrative units. No individually–identifiable information
was collected for this study. The use of RMSF data was approved by the Internal Review Board
at Kansas State University’s Office of Research Compliance (IRB #7465) and the study was con-
sidered exempt from the requirement for full review by the Missouri Department of Health and
Senior Services (MDHSS) Institutional Review Board based on 45 CFR 46.101(b)(4).

2.2.2 Epidemiological data. Annual county–level RMSF cases between years 2005 and
2014 were obtained from the state health departments of Kansas, Missouri, Arkansas and Okla-
homa. Cases are classified into ‘confirmed’, ‘probable’, and ‘suspected’ categories per CDC
guidelines. Case classification for RMSF changed once during the study period in 2008 and
included the ‘suspected’ criteria for diagnosis. For the purposes of this study all three categories
were considered to indicate positive RMSF diagnosis. In the case of Missouri, cases were pre-
dominantly aggregated at county–level; however, they also included three additional public
health administrative units that were subsequently used in the disease mapping and Bayesian
spatio–temporal analysis. Population data for these jurisdictions were provided by the
MDHSS, and for all other jurisdictions an average value of county population recorded for
years 2000 and 2010 by the US Census Bureau was used.

2.2.3 Covariate data. Covariate data for this study was collected from three thematic
groups; viz., physical environment, climate, and socio–economic status. For environmental
data, the percentage land occupied by different cover types in each county was estimated in a
geographical information systems (GIS) environment from the publicly available 2006
National Land Cover Dataset [29] (Table 1). Among climate variables, county averages of
annual mean temperature; the maximum normalized vegetation index (NDVI); minimum

Table 1. Physical environment variables screened in the study.

Source Independent variables

NLCD (source: MRLC (2011); years1: 1992–
2001; resolution2: 30 m; spatial scale3:
1:100,000)

Open water, developed—open space, developed—low
intensity, developed—medium intensity, developed—
high intensity, barren land, deciduous forest, evergreen
forest, mixed forest, scrub/shrub, grassland/
herbaceous, pasture/hay, cultivated crops, woody
wetlands, emergent herbaceous wetland.

1 Years represent the time period during which satellite images of land cover were captured for creating the

data set, including multiple images within a year.
2 Resolution indicates the fineness of ground data as captured by a satellite image, shorter resolution

meaning higher clarity;
3 Spatial scale indicates the scale for which interpretations are appropriate.

doi:10.1371/journal.pone.0150180.t001
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land surface temperature (LST); mean LST; precipitation and relative humidity were extracted
in a GIS environment for the corresponding years. The LST and NDVI estimates were derived
fromMODIS (Moderate Resolution Imaging Spectroradiometer) imagery [30]. Precipitation
and relative humidity were derived from the Prediction of Worldwide Renewable Energy
(POWER) web portal of the NASA Langley Research Center [31] (Table 2). Climate variables
were extracted for a period roughly corresponding to the active tick–season in the region (May
through August). For socioeconomic variables, the U.S. Census 2010 data on population and
housing were obtained from the National Historical Geographic Information System
(NHGIS), a publicly available online resource for U.S. Census Bureau’s historical and current
population data [32] (Table 3). Identical census attribute information and geographic bound-
ary files for counties were also obtained from the NHGIS. From the tables, 20 housing and 23
population related variables were extracted for each county by spatial query and joined to the
census shapefiles using the common GIS codes.

2.3 Statistical analysis
2.3.1 Covariate selection. Candidate explanatory variables to be included in the Bayesian

hierarchical models were screened a priori in order to avoid model fitting issues. Several fre-
quentist bivariate regression models were used to evaluate each variable independently and
only variables that were significant at a liberal p� 0.2 were kept for further analysis. A bivariate
regression takes the form,

ðYijÞ ¼ b0 þ bkvkij:

where Yij is RMSF relative risk, β0 the intercept coefficient, and βk the coefficient for the explan-
atory variable vkij (k = 1,. . ., n) and (i = 1, . . ., 105 county; and j = year 2005, . . ., 2014). Care
was taken not to remove candidate variables that were deemed clinically relevant [33]. Among
screened variables the presence of multicollinearity was tested by estimating the variance infla-
tion factor (VIF) and all variables with a (VIF� 10) were considered to indicate multicollinear-
ity, in which case, one of the variables was dropped at a time until multicollinearity was absent.
Non–linearity among independent variables was evaluated, and significant variables with non–
linearity were categorized using cutoffs based on scatter–plots.

2.3.2. Bayesian model specification. The observed number of RMSF cases in the study
was notated as Yij among Nij individuals at risk in the population of county i, diagnosed with

Table 2. Climate variables evaluated in the study.

Source Variable

NASA Moderate Resolution Imaging
Spectroradiometer (MODIS)¶ Land Process
Distributed Active Archive Center (LP DAAC)

Daytime land surface temperature (� 35°C, 28–
34.9°C, 24.9–27.9°C, � 25°C), Night time land
surface temperature (� 16°C, 15.9–19.9°C, � 20°
C), Diurnal temperature range.

NASA Prediction of Worldwide Renewable Resources
(POWER)

Normalized Difference Vegetation Index (NDVI),
Daily maximum temperature, Daily minimum
temperature, Daily average temperature, Dew
point, Relative humidity, Diurnal temperature
range.

¶ Several sixteen day composite MODIS images were downloaded for each year, for a period

corresponding roughly to the tick season in North America (March–September), and county–level averages

were estimated for different variables using pixels completely present within independent county

boundaries.

doi:10.1371/journal.pone.0150180.t002

Spatial Analysis of Rocky Mountain Spotted Fever

PLOS ONE | DOI:10.1371/journal.pone.0150180 March 4, 2016 4 / 17



RMSF in year j. Yij was assumed to follow a Poisson approximation, (Yij) ~ Poisson (Eij θij),
where Eij is the expected number of the population at risk for RMSF and θij is the relative risk.
Although a Binomial approximation could have been used in this context since n is known, rel-
atively only few RMSF infections occur randomly over time with different age groups, whose
members vary throughout the study period due to aging; therefore, Poisson distribution was
chosen over Binomial since the latter assumes constant population of individuals. And, since
RMSF prevalence is disproportionate among different age groups [4], standardized rates were
calculated assuming five age classes l, (< 5, 5–19, 20–45, 46–65 and> 65). Mapping crude
rates can be non–informative or misleading when population in some areal units are small,
resulting in large posterior estimates, which in turn render it difficult to distinguish chance var-
iability from genuine differences. The expected number of RMSF cases was therefore calculated
by

Eij ¼
X

l

nijl

X
i

X
ijl
YijlX

i

X
ijl
Nijl

:

A logit link function in an extended generalized linear model (GLM) structure was used
that incorporated stochastic spatial and temporal functions and as well as different covariate
effects. We first fitted a parametric spatio–temporal model with various random terms to act as
surrogate indicators of unobserved risk factors that vary over time, space or both. In a second
model, the parametric terms were replaced with nonparametric terms to assess any model
improvements. In a third step, we extended the second model with different covariates to
explain spatio-temporal patterns.

The parametric model was notated as following,

LogðyijÞ ¼ aþ ui þ vi þ gj þCij:

Where, α (intercept term) represents the mean prevalence of RMSF in all counties in all years,

Table 3. Population and housing variables evaluated in the study.

Census
category

Independent variables£

Housing Housing units (total housing units), Tenure (owner occupied, renter occupied), Tenure
(Historic or Latino Householder) (owner occupied, renter occupied), Race of
householder (white alone, Black or African American alone, Asian alone), Household
size (1–person, 2–person, 3–person, 4–person, 5–person, 6–person, or 7–more person
household), Year structure built (Built 2005 or later, 2000 to 2004, 1990 to 1999, 1980
or earlier¶). (20 variables).

Population Population (total population), Race (White alone, Black or African American alone,
Asian alone), Household income in the past 12 months (Less than $10,000, $10,000 to
$14,999, and thirteen other variables representing $49,999 incremental income thereof
up to $199,999, and $200,000 or more), Poverty status in the previous 12 months
(income in the past 12 months below poverty level, income in the past 12 months at or
above poverty level). (23 variables).

Definitions of different census variables can be found from their source (NHGIS) website at: https://www.

nhgis.org/.
£ Observations for all the independent variables are counts, in continuous form, and recorded per areal unit

(county). Items in italics are Census Table names, and items within parenthesis are independent variables

evaluated in this study.
¶ The variable 1980 or earlier was derived by summing all the number of houses built prior to 1980

originally available in five–year increments in census.

doi:10.1371/journal.pone.0150180.t003
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and ui and vi are random terms accounting for spatially structured variation in RMSF preva-
lence and unstructured heterogeneity, respectively. No interaction was assumed to exist
between ui and vi, and these terms were assigned ui ~ CAR, and vi � Normal ð0; s2

vÞ priors.
Spatial dependence in ui was applied by assuming a conditional autoregressive model (CAR)(γ)
with a Gaussian distribution, which implies that each ui is conditional on the neighbor uj with
variance ðs2

i Þ dependent on the number of neighboring counties ni of county i, i.e.,

uiju; j neighbor of i � N
1

ni

g
Xni

j¼1
uj;

s2
i

ni

� �
:

The γj term measured the purely temporal and a linear time trend in the data, which assumed
no temporal structure a priori. An independent mean–zero normal prior with unknown vari-
ance s2

g was used for γ. In the same model, in order to account for spatio–temporal interaction

effects in RMSF prevalence, a spatially structuredCij term modeled as an intrinsic Gaussian
Markov random field (IGMRF) [34] was included, with a joint prior density for ψ = (ψ1,. . .,ψI)

T

written as

pðcjs2
cÞ / exp � 1

2s2
c

X
i�i0

ðci � ci0 Þ2
" #

:

A major limitation with the above described model is the assumption that there is a linear
time trend in each region. Therefore, in a second model the linearity assumption was dropped
and a nonparametric term, βj was included, whose prior density can be written as

pðbjs2
bÞ / exp � 1

2s2
b

XT

t¼2

ðbt � bt�1Þ2
" #

:

The β term quantified the overall time trend for the region. In addition, a nonparametric
Type–IV interaction prior [25], [35] was assigned to theCij term, which is notated as

pðcjs2
cÞ / exp � 1

2s2
c

XT

t¼3

XI

i�i0
fðcit � 2ci;t�1 þ ci ;t�2Þ � ðci0 ;t�2 � 2ci0;t�1 þ ci0;t�2Þg2

" #
:

For the extended models with covariate terms, different covariates were included to the sec-
ond model in several steps, starting with a model that included all covariates screened in the
bivariate procedure that retained significance at a liberal (p� 0.2) value followed by the
removal of one variable at each step. Individual covariates were retained in the model unless
their removal resulted in the increase of Deviance Information Criterion (DIC) value by 5 units
or more. The removed covariates did not re–enter the model and all covariates were assigned
noninformative priors, Normal ð0; s2

vÞ:
The spatiotemporal interaction term,Cij in the covariate model measured the trend after

accounting for purely spatial (α + ui + vi) and purely temporal effects (βij) in addition to the
covariate effects, and reveals the variation in RMSF incidence trends across counties over time.
The differential trend (the difference between overall trend and local trend) of a county i for a
given year j can also be estimated fromCij, withCij > 0 indicating steeper than overall trend
andCij < 0 indicating a less steeper the overall trend. Counties whereCij = 0 are areas where
the trends are equal [36].

Model selection criteria in this study used two criteria, the DIC value and the logarithmic
score (LS). The former is the tool of Bayesian model choice for selecting the most parsimoni-
ous model after penalizing for model complexity [37], however DIC can be problematic in
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models that consider many random effects [38]. Thus, in addition to DIC the LS of each
model was computed to assess predictive quality of models [39], [40], which is represented by
LS = −log(πij), where πij = pr(Yij = yij | y-ij) denotes the cross-validated predictive probability.
A smaller LS indicates better predictive quality of a model.

All model posterior parameters were estimated using a Bayesian framework implemented
using R–INLA software [41], and the median estimates from the posterior distribution and
their corresponding uncertainty measures [95% Credible Intervals (CrI)] were recorded.

3. Results
From January 1, 2005 to December 31, 2014, there were a total of (n = 11,062) confirmed, prob-
able and suspected cases of RMSF reported to the health departments of the four states included
in the study. Missouri recorded the most number of cases (n = 3,766) followed by Arkansas
(n = 3,271) and Oklahoma (n = 3,271), and Kansas recorded the least number of cases (n = 754)
among the four states during this period. Throughout the study period, and in all four states
males were diagnosed at a higher rate than females, with a male female ratio averaging 2.2:1 for
all states. Also, the disease was more common among the 46–64 year old age group followed by
the�65 year old age group. A plot of case numbers in the four states during the study period is
illustrated in Fig 1. A general upward trend for cases can be observed for Arkansas and Okla-
homa, while in Missouri the case numbers have fallen since 2007–2008 period with only a small
increase in 2014, and Kansas is largely constant throughout the study period. Also, with the
exception of Missouri, all three states have recorded a marked increase in the number of cases
during the year 2012. Missouri experienced a similar peak in the year 2007.

Of all the variables evaluated in the bivariate screening procedure in this study, five retained
significance at a liberal p� 0.2 level (Table 4). Two variables, “Year structure built in 2005 or
later” and “Year structure built in 2000–2005” were revealed as collinear among the selected var-
iables. Non–linearity was not observed among the selected variables. Numerical results of

Fig 1. Plot of reported number of cases submitted to different state health departments in the study
region.

doi:10.1371/journal.pone.0150180.g001

Spatial Analysis of Rocky Mountain Spotted Fever

PLOS ONE | DOI:10.1371/journal.pone.0150180 March 4, 2016 7 / 17



Bayesian hierarchical models, the posterior Bayes median estimates and their corresponding
95% CrI are present in Table 5. From Table 6, we see that Model– 1 has the highest deviance
information criterion (DIC) value pointing to the presence of additional space–time structure to
the data beyond just purely spatial and temporal main effects. The addition of nonparametric
terms to the fixed effect spatio–temporal model markedly reduced theDIC values, and the sub-
sequent addition of covariate terms further improved the spatio–temporal model performance.
‘Income in the past 12 months below poverty level’ (henceforth, poverty–status), ‘average rela-
tive humidity’ and ‘average daytime land surface temperature� 35°C’ were retained in the final,
best fitting Bayesian hierarchical covariate model. This showed that the covariate terms are
competing to explain the space–time structure in the dataset that are not captured by the main
effects alone. Even though the covariate model is not the most parsimonious it was the best
among all the models considered, and all interpretations were made based on this model alone.

The posterior Bayes estimates of the final covariate model indicated that all variables except
the ‘number of houses built in 2005 or before’, and ‘percent developed—medium intensity
area’ were significantly positively related to RMSF levels in the four states. Based on the magni-
tude of posterior median estimates, we observe that the socio–economic variable ‘poverty–
level’ was most important, followed by almost identical influence of ‘average relative humidity’
and ‘average daytime land surface temperature’(� 35°C).

Table 4. Results of bivariate regression analysis and candidate variables (p� 0.2).

Covariate Estimate S.E p–value

Income in the past 12 months below poverty level 0.89 0.31 0.01

Relative humidity 0.62 0.12 0.03

Daytime land surface temperature

� 35°C, –0.61 –0.13 0.03

28 − 34.9°C –1.05 –0.53 0.20

24.9–27.9°C 0.92 0.46 0.19

� 25°C Reference category

Housing: Year structure (house) built in 2005 or later 1.83 0.74 0.20

Percent developed—medium intensity area 1.20 0.58 0.12

All covariates were in a continuous format with the exception of daytime land surface temperature, which

was categorized.

doi:10.1371/journal.pone.0150180.t004

Table 5. Model statistics for Bayesian spatio–temporal covariate models evaluating county–level
RMSF prevalence in four central Midwestern states (Kansas, Missouri, Arkansas, Oklahoma), United
States of America.

Covariate Model– 3 Model– 4 Model– 5

Estimate (95% Bayes Cr. I)

β1 0.31 (0.16, 0.41) 0.32 (0.16, 0.39) 0.31 (0.11, 0.41)

β2 –0.12 (–0.08, –0.13) –0.13 (–0.09, –0.13) –0.13 (–0.07, –0.12)

β3 0.13 (0.06, 0.15) 0.13 (0.07, 0.12) 0.14 (0.06, 0.14)

β4 0.74 (0.02, 0.91) 0.76 (0.02, 0.90) –

β5 0.58 (0.05, 0.12) – –

β1 = poverty–status, β2 = daytime LST (� 35°C), β3 = relative humidity, β4 = number of houses built in 2005

or before, β5 = percent developed—medium intensity area.

doi:10.1371/journal.pone.0150180.t005
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The posterior median and uncertainty levels (95% CrI) of overall time trend, βj is depicted
in Fig 2, showing a clearly increasing trend for the region with a slight decrease in the later part
of the study. Plots of annual crude rate estimates for RMSF prevalence for individual years over
the study period is depicted in Fig 3, while Fig 4 illustrates maps of Bayes smoothed annual
RMSF estimated relative risks for the study period after adjusting for the random terms and
covariate effects. The estimates are based on the Bayesian geostatistical covariate model with
socio–economic and climatic predictors and correspond to the median of the posterior predic-
tive distribution. The counties of high risk were identified by mapping county–specific differ-
ential trends (posterior median ofCij) with values greater than 0 (Fig 5) after accounting for

Table 6. Model fit and comparison criteria.

Model D pD DIC LS

Partial spatio–temporal model

Model– 1: Non–parametric terms (γj, ψij) 4654.21 358.31 5012.52 0.31, 0.57

Model– 2: Parametric terms (βj, ψij) 4012.34 302.11 4314.45 0.28, 0.51

Covariate model

Model– 3: Model– 2 + β1,. . ., β5. 4723.59 402.61 5126.20 0.32, 0.59

Model– 4: Model– 2 + β1,. . ., β4. 3951.27 247.64 4198.91 0.25, 0.48

Model– 5: Model– 2 + β1,. . ., β3. 3429.73 236.18 3665.91 0.21, 0.43

D is the expected deviance, pD is the deviance derived from the expected values of parameters, DIC is the deviance information criterion, and LS is the

logarithmic score.

β1 = poverty–status, β2 = daytime LST, β3 = relative humidity, β4 = number of houses built in 2005 or before, β5 = percent developed—medium intensity

area. The removal of β2, then β1 one at a time resulted in model DIC values of 3984.24 and 3746.65, respectively, and were therefore retained in the

Bayesian covariate model.

doi:10.1371/journal.pone.0150180.t006

Fig 2. The posterior median and 95%CrI for the overall time trend in the covariate model.

doi:10.1371/journal.pone.0150180.g002
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covariate effects in the final model. Higher values close to zero indicate counties with a high
probability of difference from the overall trend.

4. Discussion
The smoothed risk maps of relative risk produced in this study show all areas in the region that
are affected by RMSF year after year, and are superior to maps of crude rate estimates, largely

Fig 3. County–level crude rate estimates of Rocky Mountain spotted fever prevalence reported to the state health departments for the study
period, 2005–2014.

doi:10.1371/journal.pone.0150180.g003
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owing to the ability of Bayesian models to efficiently borrow information from neighboring
areal units, and in tackling the low–number problem commonly associated with epidemiologi-
cal data in some areal units versus others. A primary concern in this study however was to
identify the presence of any overall trend for the region, and to isolate high risk counties where
disease trend could be increasing. We therefore specified appropriate random effect terms in a
Bayesian framework to identify an overall time trend, and any space–time interaction effect,

Fig 4. County–specific Bayesian smoothed estimates (posterior median) of Rocky Mountain spotted fever prevalence for the study period
between years 2005–2014.

doi:10.1371/journal.pone.0150180.g004
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followed by the addition of different covariates that would explain additional variability in the
data due to space–time effect. Although a descriptive plot of the reported numbers of cases to
the health departments (see Fig 1) show a declining trend for Missouri, and a more or less sta-
ble trend for Kansas, this study has identified a steadily increasing overall time trend for RMSF
for all four contiguous states combined during the study period, indicating that RMSF has in
fact increased year by year in the overall region, which are not visible when simply the crude
numbers are plotted. Maps of counties with positive differential trends (Cij > 0) represent

Fig 5. Posterior median of county–specific differential trends. Counties with values closer to 0 indicate a higher risk for RMSF.

doi:10.1371/journal.pone.0150180.g005
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higher risk for RMSF compared to other counties in the region, and can be seen to have
increased in area over the years and expanded outwards from a central focus in 2006 bordering
all four states towards all the directions in subsequent years. These findings have implications
for prevention and management strategies of RMSF.

The notable abrupt increase in the number of cases during the 2011–2012 period in Arkan-
sas and Oklahoma could be attributed to a number of factors, including changes to reporting
practices employed by the state health departments in their respective states that may have
temporarily increased interest in case reporting, and as well as changes to diagnostic methods
adopted by laboratories during this period, which may have improved the accuracy levels by
which different tick–borne diseases are identified. It is evident through the state health depart-
ments of Arkansas and Oklahoma that they made a strong push for improving submission
rates for tick-borne disease cases through awareness and education campaigns during the
2010–2011 period. Also, increasingly more diagnostic laboratories in the region are adopting
molecular methods based on in vitro amplification procedures for rapidly detecting multiple
tick-borne diseases, reasons that could have played a role in the noticed surge. The presence of
environmental or climatic linkages behind this surge is also conceivable, but they could not be
adequately evaluated in the present study due to data limitations. However, such evaluation of
any associations, particularly with climatic patterns is worthy of further consideration. The
winter and spring months of the year 2012 was unusually warm and humid in the Midwestern
U.S [42], [43]. Even though a prolonged low pressure system over the Midwest lead to a
drought in the summer of 2012, conditions earlier in the tick season may have favored a higher
population growth and the proliferation of pathogens.

Poverty status of individuals in the four states was a strong predictor of RMSF in this study.
In an earlier study we identified poverty status to be a significant predictor of another tick-
borne disease, human monocytic ehrlichiosis in the same region as well [28]. Such associations
of tick-borne diseases with socio–economic conditions are rarely evaluated in North America;
however, lower socio–economic conditions were stronger predictors of tick-borne encephalitis
in Europe compared to climatic and environmental predictors [23], [44]. This recurring associ-
ation is perhaps indicative of higher exposure to tick pathogens for low–income individuals,
who may work outdoors, and lower literacy levels and less awareness towards preventing tick-
borne illnesses could be contributing factors.

There is notable interest in understanding the implications of ongoing climate–change on
incidences of vector–borne diseases worldwide [10], [14], [45]. Climatic conditions affect
arthropod phenology, population dynamics and their distribution over space, and the recent
changes noted in shifting spatial range of some tick vectors [46], extended activity period due
to relatively warmer conditions during winter [47], and changes to questing behavior all have
been suspected to be influenced by climate–change [48], [49]. Whilst a strong emphasis is
placed on researching the effect of climate change on disease–spreading arthropod vectors, the
detection and then ascribing climate–change to increased disease incidences is however prob-
lematic since there are many confounding players involved in such systems. Even though ongo-
ing climate change is conceivably an influential driver in vector–borne disease systems, its
relative importance over social, economic and demographic factors is debated [23]. This study
further shows that a mixture of factors are important in the spatio–temporal patterns or the
eco-epidemiology of tick–borne diseases, including such factors as poverty status and they
need to be accounted for in modeling climate–change implications on vector–borne diseases.

The two climatic factors associated with RMSF prevalence in this study, relative humidity
and daytime land surface temperature are important climate–change indices, and are intensely
monitored by climate–change researchers [50]. Their identification in the present study as
important drivers of RMSF at a county–scale is therefore significant. Optimal humidity
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conditions are vital for tick survival and it is an important delimiter to their spatial distribution
[51], and relative humidity can often be seen associated with the survival and abundance of
ticks in the literature, with higher humidity conditions often favoring the long–term survival of
some ticks species’ life stages through dry seasons [48] among other reasons. The higher day-
time land surface temperature identified in this study is likely an indication of the average tem-
perature conditions in some counties that are unfavorable for Dermacentor ticks versus others.
Potential temperature effects on ticks and tick–pathogen interactions have been noted [52],
and studies aiming to understand any physiological effects on Dermacentor ticks and R. rickett-
sii interaction in their host are worthy of consideration.

Some limitations of the study need to be mentioned. Even though R. rickettsii is identified as
the causative agent for RMSF, multiple Rickettsia species are vectored by ticks—many known
to infect humans, which lead to similar clinical symptoms to that of RMSF [53]. These other
Rickettsia spp. also cross-react in diagnostic tests that are currently performed for confirming
RMSF status, leading to poor test specificity [54]. The extent to which cases were wrongly iden-
tified as RMSF in the present dataset cannot be reliably verified, although a majority of the
cases are likely to be R. rickettsii causing RMSF. We expect that the use of PCR–based diagnos-
tic methods versus the current serology–based diagnosis will alleviate the misdiagnosis in the
future and a clearer picture of the space–time dynamics of RMSF will become evident.

5. Conclusions
Results of this study show that Rocky Mountain spotted fever incidence in the central Midwest-
ern states of Kansas, Missouri, Oklahoma and Arkansas have increased over the past decade,
with high risk counties for this disease lying in the central and southern portions of the region.
At the scale of a county, the spatial and spatio-temporal covariates of poverty level and average
relative humidity are positively influential for incidence levels, while average day time land sur-
face temperatures above 35°C is a limiting factor. Future epidemiological studies on this disease
and other tick-borne diseases will benefit by considering socio-economic status of individuals,
particularly poverty status. The identification of climate–change indices as important drivers
of RMSF in this study is significant in the context of climate–change impacts on infectious
diseases.
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