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Abstract

We have built a computational model for individual aging trajectories of health and survival,

which contains physical, functional, and biological variables, and is conditioned on demo-

graphic, lifestyle, and medical background information. We combine techniques of modern

machine learning with an interpretable interaction network, where health variables are cou-

pled by explicit pair-wise interactions within a stochastic dynamical system. Our dynamic

joint interpretable network (DJIN) model is scalable to large longitudinal data sets, is predic-

tive of individual high-dimensional health trajectories and survival from baseline health

states, and infers an interpretable network of directed interactions between the health vari-

ables. The network identifies plausible physiological connections between health variables

as well as clusters of strongly connected health variables. We use English Longitudinal

Study of Aging (ELSA) data to train our model and show that it performs better than multiple

dedicated linear models for health outcomes and survival. We compare our model with flexi-

ble lower-dimensional latent-space models to explore the dimensionality required to accu-

rately model aging health outcomes. Our DJIN model can be used to generate synthetic

individuals that age realistically, to impute missing data, and to simulate future aging out-

comes given arbitrary initial health states.

Author summary

Aging is the process of age-dependent functional decline of biological organisms. This

process is high-dimensional, involving changes in all aspects of organism functioning.

The progression of aging is often simplified with low-dimensional summary measures to

describe the overall health state. While these summary measures of aging can be used pre-

dict mortality and are correlated with adverse health outcomes, we demonstrate that the

prediction of individual aging health outcomes cannot be done accurately with these low-

dimensional measures, and requires a high-dimensional model. This work presents a

machine learning approach to model high-dimensional aging health trajectories and mor-

tality. This approach is made interpretable by inferring a network of pairwise interactions
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between the health variables, describing the interactions used by the model to make pre-

dictions and suggesting plausible biological mechanisms.

Introduction

Aging is a high-dimensional process due to the enormous number of aspects of healthy func-

tioning that can change with age across a multitude of physical scales [1, 2]. This complexity is

compounded by the heterogeneity and stochasticity of individual aging outcomes [3, 4]. Strate-

gies to simplify the complexity of aging include identifying key biomarkers that quantitatively

assess the aging process [5, 6] or integrating many variables into simple and interpretable one-

dimensional summary measures of the progression of aging, as with “Biological Age” [7–9],

clinical measures such as frailty [10, 11], or recent machine learning models of aging [12, 13].

Nevertheless, one-dimensional measures only summarize the progression of aging, and so can

miss significant aspects of high-dimensional aging trajectories and of heterogeneous aging out-

comes. We introduce a machine learning approach to model high-dimensional trajectories

directly, while still learning interpretable aspects of our model through an explicit network of

interactions between variables.

The increasing availability of large longitudinal aging studies is beginning to provide the

rich data-sets necessary for the development of flexible machine learning models of aging [14].

Methods for predictive modelling of individual health trajectories of disease progression have

already been developed [15–20], but they generally are not joint models that include both mor-

tality and the progression of aging [20]. There has also been progress on learning interpretable

summaries of aging progression [12, 13], generalizing biological-age approaches but still pro-

ducing low-dimensional summaries of aging.

Less progress has been made on the more general problem of modeling high-dimensional

aging trajectories. Stochastic-process joint models that simultaneously model longitudinal and

survival data have been proposed [21–23], but have only been implemented for one or two

health variables at a time. Farrell et al. [24] used cross-sectional data to build a network model

that generated trajectories of 10 health variables and predicted survival, but it was limited to

binary health measures.

In this work we use the English Longitudinal Study of Aging (ELSA, [25]), which is a large

observational population study including a wide variety of variables with follow-up measure-

ments for up to 20 years including mortality. Like other large observational studies, for most

individuals it has many missing measurements, few irregularly-timed follow-ups, and cen-

sored mortality. Any practical approach to model such data must confront the challenges pro-

vided by missing and irregularly timed data and by mortality censoring.

While machine learning (ML) approaches can help us navigate these challenges with avail-

able data, they face additional challenges of interpretability [14, 26]. “Scientific Machine Learn-

ing” [27] or “Theory guided data science” [28] suggests that domain knowledge be used to

constrain and add interpretability to ML models. For example, we require that aging is mod-

elled as a network of interacting health components [29, 30], and that stochastic differential

equations (SDEs) model the dynamical evolution of high-dimensional health states [21]. On

the other hand we use general ML approaches to model survival or to impute missing data for

baseline (initial) health states, where we may not be interested in interpretation.

The result (see Fig 1) is a powerful and flexible, but interpretable, approach to modelling

aging and mortality from high-dimensional longitudinal data—one that preserves but is not

crippled by the complexity of aging. We evaluate the resulting model with test data and
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Fig 1. DJIN model of aging. a) Baseline imputation is performed using the baseline health measurement yt0 , missing mask ot0
, background health

information ut0
, and baseline age t0 as input to an encoder neural network (green) that parameterizes a latent distribution. Sampling from this latent

distribution and using a decoder neural network (orange) gives an imputed complete baseline health-state x0. b) Baseline generation conditional on

background health information ut0
, and baseline age t0 can be used instead of imputation. The population latent distribution is sampled and used with

the same decoder neural network (orange) to produce a synthetic baseline health state x0. c) Network dynamics stochastically evolve the health state x(t)
in time starting from the baseline state x0. The stochastic dynamics are modeled with a stochastic differential equation which includes the pairwise

network interactions with connection weight matrix W, general diagonal terms fiðxiðtÞ; ut0
; tÞ parameterized as neural networks, and a diagonal

covariance matrix for the noise σx(x) also parameterized with a neural network. d) The survival function evolves in time based on the state and history

of the health state x using a recurrent neural network (RNN). The initial state of the RNN, ht0
, is set using the background health information ut0

,

baseline age t0, and x0. Details are provided in the Methods. The code for our model is available at https://github.com/Spencerfar/djin-aging.

https://doi.org/10.1371/journal.pcbi.1009746.g001
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compare with simpler linear modelling approaches. We use a variational Bayesian approach to

infer the approximate posterior distribution of the both interaction network and individual

health trajectories to approximate confidence bounds. We demonstrate our model’s ability to

robustly predict health trajectories using an interpretable network of constant linear interac-

tions between health variables. Additionally, we demonstrate that flexible but low-dimensional

latent space models of a similar structure cannot predict aging health outcomes as well as our

high-dimensional DJIN model—confirming the high-dimensional nature of our approach and

of the aging trajectories.

Results

ELSA dataset

We combine waves 0 to 8 in the English Longitudinal Study of Aging (ELSA, [25]) to build a

dataset of M = 25290 individuals, with longitudinal follow-up of up to 20 years. In ELSA, self-

reported health information is obtained approximately every 2 years and nurse-evaluated

health with physical assessment and blood tests approximately every 4 years. Considering all

waves together with 2 year increments, 27% of values are missing for self-reported variables,

78% of values are missing for nurse-evaluated variables, and 96% of individual mortality is

censored. Training and test trajectories (see below) are sampled starting with baseline times

starting at each of the waves; though at least one followup wave is required for test trajectories.

For a given starting wave, an individual’s health state is observed at K + 1 times ftkg
K
k¼0

with

a set of health variables fytkg
K
k¼0

. The vectors ytk describe the N-dimensional health state of an

individual, where each of the N dimensions represents a separate health measurement. We

select N = 29 continuous-valued or discrete ordinal variables that were measured for at least

two of the waves. Individuals also have background (demographic, diagnostic, or lifestyle)

information observed at baseline, which is described by a B-dimensional vector ut0
. In princi-

ple, any baseline data can be used as background information. We select B = 19 continuous or

discrete valued background variables. These are used as auxiliary variables at baseline; they

aide the subsequent prediction of the health variables yt vs time.

Variables used from the data-set were selected only by availability, not by predictive quality.

All chosen variables and the number of observed individuals for each is shown in S1 Fig, the

details of the variables are given in Table A in S1 Text.

DJIN model of aging

We build a model to forecast an individual’s future health fytkgk>0 and survival probability {S
(tk)}k>0 given their baseline age t0, baseline health yt0 and background health variables ut0

. It is

a dynamic, joint, interpretable network (DJIN) model of aging. A schematic of our model is

shown in Fig 1, while mathematical details are provided in the Methods.

Effective imputation is essential because none of the 25290 individuals in the data-set have

a fully observed baseline health state. Fig 1a illustrates our method of imputation for the base-

line health state. Variational auto-encoders have shown promising results for imputation [31,

32]. We impute with a normalizing-flow variational auto-encoder [33], where a neural net-

work (green trapezoid) encodes the known information about the individual into an individ-

ual-specific latent distribution, and a second neural network (orange trapezoid) is used to

decode states sampled from the latent distribution into imputed values. This is a multiple

imputation process that outputs samples from a distribution of imputed values rather than a

single estimate.
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We have chosen this imputation approach because we can also use it to generate totally syn-

thetic baseline health states given background/demographic health information and baseline

age. Fig 1b illustrates this method. We randomly sample the prior population distribution of

the same latent space used in imputation, and then combine this with arbitrary background

information and use the same decoder as in imputation to transform the latent state into a syn-

thetic baseline health state. With repeated random samples of the latent space, we generate a

distribution of synthetic baseline health states.

Fig 1c illustrates the temporal dynamics of the health state in the model. Dynamics start

with the imputed or synthetic baseline state x0. The health state is then evolved in time with a

set of stochastic differential equations, similar to the Stochastic Process Model of Yashin et al.
[21, 22, 34, 35]. The stochastic dynamics capture the inherent stochasticity of the aging pro-

cess. We assume constant linear interactions between the variables, with an interpretable inter-

action network W. This interaction network describes the direction and strength of

interactions between pairs of health variables.

Fig 1d illustrates the mortality component of the model. The temporal dynamics of the

health state is input into a recurrent neural network (RNN) to estimate the individual hazard

rate for mortality, which is used to compute an individual survival function. Recent work

shows that this approach can work well in joint models [20]. The RNN architecture uses the

history of previous health states in mortality, otherwise mortality could only depend on the

current health state and could not capture the effects of a history of poor health. We have cho-

sen this RNN approach to mortality because it performs better than a feed-forward model with

no history (as shown in S2 Fig).

We use a Bayesian approach to model uncertainty by estimating the posterior distribution

of parameters, of health trajectories and of survival curves—as illustrated by the shaded blue

confidence intervals in Fig 1C. To handle our large and high-dimensional datasets, we use a

variational approximation to the posterior [36] instead of impractically slower MCMC meth-

ods. The variational approximation reduces the sampling problem to an optimization prob-

lem, which we can efficiently approach using stochastic gradient descent. Mathematical details

are provided in the Methods. The code for our model is available at https://github.com/

Spencerfar/djin-aging.

Validation of model survival trajectories

We evaluate our model with test individuals withheld from training. Given baseline age t0,

baseline health variables yt0 , and background information ut0
for each of these test individuals,

we impute missing baseline variables and predict future health trajectories and mortality with

the model. These predictions are compared with their observed values.

The C-index measures the model’s ability to discriminate between individuals at high or

low risk of death. We use a time-dependent C-index [37], which is the proportion of distinct

pairs of individuals where the model correctly predicts that individuals who died earlier had a

lower survival probability. Higher scores are better; random predictions give 0.5. In Fig 2a we

see that our model (red circles) performs substantially better than a standard Cox proportional

hazards model (green squares) with elastic net regularization and random forest MICE impu-

tation [38, 39]. The horizontal lines show the C-index scores for the entire test set, and the

points show predictions stratified by baseline age. Stratification allows us to remove age-effects

in the predictions; we determine how well the model uses health variables to discriminate

between pairs of individuals at the same age. Our model predictions do not substantially

degrade when controlling for age, indicating that it is learning directly from health variables,

rather than from age. Predictions degrade at older baseline ages due to the limited sample size.
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Fig 2. Model predictions and validation. Errorbars for all plots represent standard errors of the mean for 5 fits of the DJIN model. a) Time-dependent

C-index stratified vs age (points) and for all ages (line). Results are shown for our model (red) and a Elastic net Cox model (green). (Higher scores are

better). b) Brier scores for the survival function vs death age. Integrated Brier scores (IBS) over the full range of death ages are also indicated. The Breslow

estimator for the baseline hazard is used for the Cox model. (Lower scores are better). c) D-calibration of survival predictions. Estimated survival

probabilities are expected to be uniformly distributed (dashed black line). We use Pearson’s χ2 test to assess the distribution of survival probabilities for

our network model (χ2 = 1.3, p = 1.0) and an elastic net Cox model (χ2 = 2.1, p = 1.0). (Higher p-values and smaller χ2 statistics are better). d) RMSE

scores when the baseline value is observed for each health variable for predictions between 1 and 6 years from baseline, scaled by the RMSE score from

the age and sex-dependent sample mean (relative RMSE scores). We show the predictions from our model starting the baseline value (red circles),

predictions assuming a static baseline value (blue squares), and 29 distinct elastic-net linear models trained separately for each of the variables (green

squares). The DJIN predictions here come from the same model as for mortality and the elastic net Cox model is also a distinct model. (Lower RMSE is

better). e) Relative RMSE scores when the baseline value for each health variable is imputed for predictions between 1 and 6 years from baseline. We
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We evaluate the detailed accuracy of survival curve predictions with the Brier score [40].

Individual Brier scores calculate squared error between the full predicted survival distribution

S(t) and the measured survival “distribution” for that individual, which is a step-function

equal to 1 while the individual is alive and 0 when they are dead. Lower Brier scores are better,

though the intrinsic variability of mortality will provide some non-zero lower bound to the

Brier scores. In Fig 2b we show the average Brier score for different death ages for our model

(blue) and a Cox model with a Breslow baseline hazard (green), indicating our model has a

substantially lower error between the predicted and exact survival distributions for older ages

(note the log-scale). The Integrated Brier Score (IBS) is computed by integrating these curves

over the range of observed death ages, and highlights the improvement of predictive accuracy

of our model as compared to Cox.

We evaluate the calibration of survival predictions with the D-calibration score [41]. For a

well-calibrated survival curve prediction, half of the test individuals should die before their

predicted median death age and half should live longer. Calibrated survival probabilities can

be interpreted as estimates of absolute risk rather than just relative risk. The D-calibration

score generalizes this to more quantiles of the survival curve, where the proportion observed

in each predicted quantile should be uniformly distributed. In Fig 2c, we show deciles of the

survival probability for our model (red bins), compared with the expected uniform black

straight line. We compute χ2 statistics and p-values for the predictions of our model vs the uni-

form ideal, as well as for a Cox proportional hazards model (histogram in S3 Fig). Our model

is consistent with a uniform distribution under this test (p = 1.0, χ2 = 1.3) as desired for cali-

brated probabilities. The Cox model is also calibrated (p = 1.0, χ2 = 2.1), but with a slightly

worse χ2 statistic.

These results demonstrate that our DJIN model accurately predicts the relative risk of mor-

tality of individuals (assessed by the C-index), predicts accurate survival probabilities (assessed

by the Brier score), and properly calibrates these survival probabilities so that they can be

directly interpreted as an absolute risk of death.

Validation of model health trajectories

Model predictions of individual health trajectories are also evaluated on the test set. We com-

pute the Root-Mean-Square Error (RMSE) for each health variable, and create a relative RMSE

score by dividing by the RMSE obtained when using the age and sex matched training-set sam-

ple mean as the prediction. In Fig 2d, we show that the model (red circles) performs better

than the age and sex-dependent sample mean (black dashed line) when the baseline value of

the particular variable is observed. The RMSE here is computed for all predictions between 1

and 6 years from baseline. In Fig 2e we show that the model is predictive of future health values

even when the initial value of the particular variable is imputed.

As measured by the relative RMSE, our model is better than a null model (blue squares)

that carries forward the observed baseline (d) or imputed baseline value (e) for all ages. For

comparison purposes, we also trained linear models with elastic net regularization and ran-

dom-forest MICE imputation [38, 39] that have been trained separately to predict each health

variable. We are therefore comparing our single DJIN model that predicts all 29 variables, to

show the predictions from our model starting from the imputed baseline value (red circles), predictions assuming a static imputed value (blue squares),

and predictions assuming an elastic-net linear model (green squares). (Lower RMSE is better). f) RMSE score distributions over all health variables for

increasing years of prediction from baseline. The median RMSE score is shown as a black dotted line between the boxes showing upper and lower

quartiles. Whiskers show 1.5x the interquartile range from the box. (Lower RMSE is better). Self-report and nurse-evaluated waves have distinct patterns

of missing variables; nurse-evaluated waves have higher missingness overall.

https://doi.org/10.1371/journal.pcbi.1009746.g002
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29 independently-trained linear models. While the linear models perform better than the null

model for observed baselines, our model performs better than both. For imputed baselines, the

linear models with random-forest MICE imputation performs poorly even compared to the

imputed null model, while our model continues to outperform both. In S4 Fig we show that

our model only performs poorly when variables have a large proportion (≳ 90%) of missing

values—though still better than linear models.

In Fig 2f, we show boxplots of RMSE scores over the health variables for 1–14 years past

baseline, when the variable was initially observed at baseline. The model is predictive for long

term predictions, and remains better than linear elastic net predictions for at least 14 years

past baseline for the self-report waves (blue) and 12 years past baseline for the nurse-evaluated

waves including blood biomarkers (pink).

In S5 Fig we show example DJIN trajectories for 3 individuals in the test set for the 6 best

predicted health variables. We show both the mean predicted model trajectory and a visualiza-

tion of the uncertainty in the trajectory. For comparison, the sample mean and elastic net lin-

ear model are shown. The predicted trajectories visually agree well with the data, and is often

substantially better than either the elastic net linear predictions or the sample means for the

corresponding variables.

These results demonstrate that our DJIN model predicts the values of future health variables

from baseline better than standard linear models, and also better than population-mean or

constant baseline models.

Comparison with latent space models

In Fig 3 we compare the DJIN model, with dynamics directly in the high-dimensional space of

observed health variables, with latent space models that have more flexible but less interpret-

able dynamics within a latent space of adjustable dimensionality. As illustrated by Fig 1, with

details in Methods, these latent space models use dynamics directly on the initial latent states

output by the VAE encoder z. The dynamics of the latent variables use a full feed-forward neu-

ral network for the drift of the SDE. The latent trajectories z(t) are then decoded into predicted

observed health states xt with the VAE decoder. Since we can reduce the dimensionality of the

latent space as compared to the space of observed health variables, we can investigate the

effects of dimensionality. Since the latent-space model dynamics are not restricted to have

only constant linear interactions, we can also investigate any limitations of the interpretable

interactions imposed in the DJIN model.

Fig 3a shows that a large number of dimensions are required to accurately predict health

trajectories. A one-dimensional model can be used to predict the relative risk of survival, as

assessed by the C-index in Fig 3b. However, good predictions of the survival probability

require at least two-dimensional models, as shown in Fig 3c. This suggests that single summary

measures of aging such as biological age can capture the relative progression of aging, but can-

not individually predict the specific heterogeneous health outcomes during aging [9, 13, 42].

In S6 and S7 Figs, we show in greater detail the results of 30-dimensional model and one-

dimensional latent space models. Our DJIN model that only includes pair-wise linear interac-

tions performs similarly to high-dimensional latent space models that use non-linear interac-

tions. This suggests that our interpretable linear network approximation is sufficient for

describing the dynamics of these variables. Linear pair-wise network approximation may work

so well because we are interested in long term predictions, rather than short-time scale dynam-

ics where the variables may be more strongly non-linearly coupled. Predictions with non-lin-

ear models may prove better with larger datasets, or with continuously acquired data that

necessitate shorter timescales.
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Validation of generated synthetic populations

Given baseline age t0, and background information ut0
for test individuals, we generate syn-

thetic baseline health states and simulate a corresponding synthetic aging population. We eval-

uate these aging trajectories by comparing with the observed test population. We train a

logistic regression classifier to evaluate if the synthetic and observed populations can be distin-

guished [18, 19, 43, 44]. We find that this classifier has below a 57% accuracy for the first 14

years past baseline (S8 Fig) – only slightly better than random. S8 Fig also shows that the DJIN

model does better or equivalent to the 30-dimensional latent space model from Fig 3.

In S9 and S10 Figs we show the population and synthetic baseline distributions and popula-

tion summary statistics for the trajectories vs age for ages 65 to 90. We find that our model cap-

tures the mean of the population, but slightly underestimates the standard deviation of the

population (as expected due to our variational approximation of the posterior [36]). In S11 Fig

we show the population synthetic survival function agrees with the observed population sur-

vival below age 90, where the majority of data lies.

The agreement of the synthetic and test populations demonstrates the DJIN model’s ability

to generate a synthetic population of aging individuals that resemble the observed population,

though with slightly less variation.

We have made a synthetic population available at https://zenodo.org/record/4733386.

DJIN infers interpretable sparse interaction networks

Our Bayesian approach infers the approximate posterior distribution of the interaction net-

work weights; Fig 4 visualizes the network with the mean posterior weights. Weights with a

99% posterior credible interval including zero have been pruned (white)—all visible weights

have posterior credible intervals either fully above or fully below zero. This cutoff is demon-

strated in S12 Fig.

Connections are read as starting at the variable on the horizontal axis (j), and ending at the

variable on the vertical axis (i), representing the connection weight matrix Wi j. Positive con-

nections indicate that an increasing variable j influences an increase in variable i. Negative

connections mean an increasing variable j influences a decrease in variable i. The interaction

Fig 3. Latent space model performance vs dimension. Black points show latent space models of various dimension, red points show the DJIN model,

green lines show the elastic net linear models. The purple point shows the 1D summary model described in S1 Text, which includes the information from

the auxiliary background variables ut0
within the latent state, rather than as a separate input in the model (see S7 Fig for more detail). Black points include

ut0
as a separate input in addition to z. Points indicate the mean of 10 independent fits of the models, and error bars represent standard error of mean

(often smaller than point size). a) RMSE for health predictions, relative to predictions with the population average (black dashed line). (Lower is better).

b) Survival C-index. (Higher is better). c) Integrated Brier score for survival. (Lower is better).

https://doi.org/10.1371/journal.pcbi.1009746.g003
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network is sparse, with typically only a small number of inferred interactions for each health

variable.

This inferred causal network can be readily and directly interpreted. For example, we see

strong connections between Vitamin-D and self-rated health, between activities of daily living

(ADL) score and walking ability, and between glucose and glycated hemoglobin. The sign of

the connections indicates the direction of influence. For example, a decrease in gait speed

influences an increase in self-reported health score (worse health), an increase in the time

required to complete chair rises, and a decrease in grip strength.

Hierarchical clustering on the connection weights is indicated in Fig 4, and the ordering of

the variables in the heatmap represents this hierarchy. Many of these inferred clusters of nodes

Fig 4. Inferred interaction network. Heatmap of the posterior mean value of the robust network weights. Weight directions are read from the horizontal

axis (j) towards the vertical (i), Wi j. The sign and color of the weight signify the direction of effect—a positive weight implies that an increase in a

variable along the horizontal axis influences the vertical axis variable to increase. A negative weight implies that an increase in a variable along the

horizontal axis influences the vertical axis variable to decrease. Hierarchical clustering is applied to the absolute posterior mean of the robust weights to

create a dendrogram (at right).

https://doi.org/10.1371/journal.pcbi.1009746.g004
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plausibly fit with known physiology. For example, most blood biomarker measurements (bot-

tom half) are separated from the physical/functional measurements (top half, purple cluster).

Other inferred clusters include blood pressure and pulse (orange) and lipids (green).

Discussion

We have developed a machine learning aging model, DJIN, to predict multidimensional health

trajectories and survival given baseline information, and to generate realistic synthetic aging

populations—while also learning interpretable network interactions that characterize the

dynamics in terms of realistic physiological interactions. The DJIN model uses continuous-val-

ued health variables from the ELSA dataset, including physical, functional, and molecular vari-

ables. We have shown that the comprehensive DJIN model performs better than 30

independent regularized linear models that were trained specifically for each separate health

variable or survival prediction task.

We were able to further investigate the multi-dimensionality of aging by comparing our

DJIN model with a latent-space model that has tunable dimensionality. Accurate death-age

predictions require greater than one-dimensional aging models; accurate health trajectories

continue to improve as the model dimensionality increases. We conclude that aging health is a

high-dimensional process, even for the correlated health variables that we used (see S14 Fig).

Previously, we had built a weighted network model (WNM) using cross-sectional data with

only binary health deficits [24]. The WNM did not incorporate continuous health variables

and could not be efficiently trained with longitudinal data. As a result, the networks inferred

by that model were not robust—and resulted in many qualitatively distinct networks that were

all consistent with the observed data. In contrast, the DJIN model uses many continuous val-

ued health variables and can be efficiently trained with large longitudinal datasets. As a result,

the DJIN model produces a robust and interpretable interaction network of multi-dimensional

aging (see S13 Fig).

Recently, other machine learning models of aging or aging-related disease progression have

been emerging [12, 18–20, 44]. Since they each differ significantly in terms of both the datasets,

types of data used, and scientific goals, it is still too early to see which approaches are best. We

use ELSA data since it is longitudinal (to facilitate modelling trajectories), has many continu-

ous variables (to allow modelling of continuous trajectories and constructing an interaction

network that is at the core of our model), and includes mortality (to develop our joint mortal-

ity model). The ELSA data is representative of many large-scale aging data sets.

Our scientific goals were to obtain good predictive accuracy from baseline for both health

trajectories and mortality, while at the same time obtaining an interpretable network of inter-

actions between health variables [14]. To achieve these goals with the ELSA data, we had to do

significant imputation to complete the baseline states. We include stochastic dynamics within

a Bayesian model framework to obtain uncertainties for both our predictions and the interac-

tion network. The Bayesian approach is computationally intensive and necessitated a varia-

tional approximation to the posterior that tends to underestimate uncertainty [36]. From

comparison of observed and synthetic populations (see S9, S10 and S11 Figs), this underesti-

mate appears to be modest. However, there are probably also systemic underestimates of the

widths of the posterior distributions of the network weights—and we cannot estimate the scale

of that effect in comparison with the observed population.

The DJIN model is not computationally demanding, needing only approximately 12 hours

to run with 1 GPU for M = 25290 individuals, B = 19 background variables, N = 29 health-vari-

ables, and up to K = 20 years of longitudinal data. We expect better predictive performance

and generalizability with more individuals M. Because of the interactions between health
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variables we also expect better predictive performance with more health variables N. We note

that binary health variables, or mixtures of binary and continuous variables, could be used

with only small adjustments. Since computational demands for a forward pass of the model

scale approximately linearly with M and K, and quadratically with B + N, our existing DJIN

model is already practical for significantly larger datasets.

In this work we only consider predictions from the baseline state at a single age. We antici-

pate that individual prediction could be significantly improved by utilizing more than one

input time to impute the baseline health state x0 or by conditioning the predictions on multiple

input ages. This conditioning can be done using a recurrent neural network [45, 46]. Observed

time-points after baseline can also be used to update the dynamics [47] for predictions of con-

tinually observed individuals in personalized medicine applications. However, both of these

developments would either require data with more follow-up times than we had available, or

limiting predictions to very short time intervals. For these reasons, we chose to model trajecto-

ries using only a single baseline health state.

We developed an imputation method that is trained along with the longitudinal dynamics

to impute missing baseline data. This imputation method can also be used to generate syn-

thetic individuals conditioned on baseline demographic information. Large synthetic datasets

can facilitate the development of future models and techniques by providing high-quality

training data [48], and are especially needed given the lack of large longitudinal studies of

aging [14]. In S8, S9, S10 and S11 Figs we show that our synthetic population is comparable to

the available individuals in the ELSA dataset. We have also provided a synthetic population of

nearly 107 individuals with annually sampled trajectories from baseline for 20 years [49].

At the heart of our dynamical model is a directed and signed network that is directly inter-

pretable. The DJIN model does not just make “black-box” predictions, but is learning a plausi-

ble physiological model for the dynamics of the health variables. The network is not a

correlation/association network (see comparison in S14 Fig) [8, 50, 51], but instead determines

how the current value of the health variables influence future changes to connected health vari-

ables, leading to coupled dynamics of the health variables. This establishes a predictive link

between variables [52]. Similar directed linear networks are inferred in neuroscience with

Dynamic Causal Modelling [53, 54]. While previous work on learning networks for discrete

stochastic dynamics has been done in the past [55–57], we have used continuous dynamics

here. When interpreting the magnitude of weights, links function as in standard regression

models: weight magnitudes will be dependent on the variables included in the model, and can

decrease if stronger predictor variables are added. Given the efficiency of our computational

approach, including more health or background variables is recommended if they are

available.

The directed nature of the network connections lend themselves to clinical interpretation—

for example ADL impairment has an effect on independent ADL (IADL) impairment and not

vice versa, and both have an effect on general function score and vice versa. The directed net-

work of interactions suggests avenues to explore for interventions. For a given intervention

(for example drug, exercise, or diet) we can ascertain which effects of the intervention are ben-

eficial and which are deleterious. In principle, we could also predict the outcome of multiple

interventions such as in polypharmacy [58]. A similar approach could be taken for chronic dis-

eases or disorders.

While static interventions could simply be included as background variables, our DJIN

model could also easily be adapted to allow for time-dependent interventions. These avenues

will be increasingly feasible and desirable with longitudinal ’omics data-sets, where the interac-

tions are not already largely determined by previous work. However, we caution that our

model does not currently take into account how interventions may change network
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interactions over time. We also do not currently account for higher than pair-wise interac-

tions. For example, the interaction between sodium levels, mobility, and diuretics appears to

be strong [59], but would not be captured in our current model. Extending our approach to

include such effects, and training with data that includes specific time-dependent interven-

tions, is an exciting prospect.

The accuracy of our model can be slightly improved if a network interpretation of the

dynamics is not desired—for instance if the goal is only prediction. In Fig 3 and S6 Fig, we

show that using a neural network instead of pair-wise network interactions and a high-dimen-

sional latent state can slightly improve health variable prediction accuracy for a handful of var-

iables, but not survival predictions. Our goal here was to demonstrate both good predictions

and interpretability.

Every aspect of our DIJN model can be made more structured, explicit and “interpretable”.

The advantage of more interpretable models will be more clearly seen when multiple data-sets

are compared—since interpretability facilitates comparisons between cohorts, groups, or even

between model organisms. For example, proportional hazards [60] or quadratic hazards [21]

could be used for mortality. While these changes would reduce predictive performance com-

pared to our more general DJIN model, they would add interpretability to the survival

predictions.

Our work opens the door to many possible follow-up studies. Our DJIN model can be

applied to any organism or set of variables that has enough individual longitudinal measure-

ments. With genomic characterization of populations, the background health information ut0

can be greatly expanded to examine how the intrinsic variability of aging [3, 4] and mortality

are affected by genetic variation. By including genomic, lab-test, and functional data we could

use the interpretable interactions to determine how different organismal scales of health data

interact in determining human aging trajectories. By including drug and behavioral (exercise,

diet) interventions as background variables, we can better determine how they affect health

during aging. Finally, large longitudinal multi-omics datasets [61, 62] could be used to build

integrative models of human health.

We have demonstrated a viable interpretable machine learning (ML) approach to build a

model of human aging with a large longitudinal study that can predict health trajectories, gen-

erate synthetic individual trajectories, and learn a network of interactions describing the

dynamics. The future of these approaches is bright [14], since we are only starting to embrace

the complexity of aging with large longitudinal datasets. While ML models can find immediate

application in understanding patterns of aging health in populations, we foresee that similar

techniques will eventually reach into clinical practice to guide personalized medicine of aging

health.

Methods

ELSA dataset

We use waves 0–8 of the English Longitudinal study of Aging (ELSA) dataset [25], with 25290

total individuals. We include both original and refreshment samples that joined the study after

the start at wave 0. In Table A in S1 Text. we list all variables used. In S1 Fig, we show the num-

ber of individuals for which the variable is available at different times from their entrance

wave. Each available wave is used as a baseline state for each individual, see section for details.

We extract 29 longitudinally observed continuous or discrete ordinal health variables

(treated as continuous) and 19 background health variables (taken as constant with age). We

set the gait speed of individuals with values above 4 meters per second to missing, due to a
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likely data error. Sporadic missing ages are imputed by assuming the age difference between

waves is 2 years—the time difference in the design of the study.

Individuals above age 90 in the ELSA dataset have their age privatized. By assuming the

time difference between waves is 2 years, we “deprivatize” these ages within our analysis pipe-

line. For example, an individual may have recorded ages 87, 89, hprivatizedi, hprivatizedi,
which we deprivatize as 87, 89, 91, 93. When individuals are known to die at an age above 90 at

a specific wave, the same approach is done to deprivatize the death age. We have examined the

accuracy of reported ages compared to this fixed two-year wave interval deprivatization

method (shown in S15 Fig), and we find that the majority of deviations range from 0–1 years

(with 78% at 0 years, and an average deviation of 0.23 years)—we expect similar variability for

deprivatized ages above 90.

Height is imputed with the last observation carried forward (if it is missing, the first value is

carried backwards from the first available measurement). Individuals with no recorded death

age are considered censored at their last observed age.

The data is randomly split into separate train (16689 individuals), validation (4173 individ-

uals), and test sets (5216 individuals). The training set is used to train the model, the validation

set is used for control of the optimization procedure during training (through a learning rate

schedule, see Section below), and the test set is used to evaluate the model after training. Indi-

viduals with fewer than 6 variables measured at the baseline age t0 are dropped from the train-

ing and validation data. Individuals with fewer than 10 variables measured at the baseline age

t0 are dropped from the test data for predictions, while all individuals in the test data are used

for population comparisons.

All variables are standardized to mean 0 and standard deviation 1 (computed from the

training set); however variables with a skewed age-aggregated distribution p(y) covering multi-

ple orders of magnitude are first log-transformed. Log-scaled variables are indicated in

Table A in S1 Text.

Data augmentation

Since some health variables are measured only at specific visits, using the entrance wave as the

only baseline of every individual forces some variables to be rarely observed at baseline, hin-

dering imputation of variables that are only observed at later waves. To mitigate this, we aug-

ment the dataset by replicating individuals to use all possible starting points,

tðmÞk ; k 2 f0; :::; argmaxkðt
ðmÞ
k Þg. Since individuals have different numbers of observed times we

weight individuals in the likelihood who have multiple times available by

sðmÞ ¼ 1=ðargmaxkðt
ðmÞ
k Þ þ 1Þ. This helps to prevent the over-weighting of individuals with

many possible starting times. Nevertheless, we assume for convenience that replicated individ-

uals are independent in the likelihood. We show a comparison of our model trained with and

without this replication in S16 Fig, demonstrating a large improvement in health and survival

predictions.

To further augment the available data, we artificially corrupt the input data for training by

masking each observed health variable at baseline with probability 0.9. This allows more dis-

tinct “individuals” for imputation of the baseline state, and allows us to use self-supervision for

these artificially missing values by training to reconstruct the artificially corrupted states.

DJIN model

We model the temporal dynamics of an individual’s health state with continuous-time stochas-

tic dynamics described with stochastic differential equations (SDEs). These SDEs include lin-

ear pair-wise interactions between the variables to form a network with a weight matrix W.
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We assume the observed health variables yt are noisy observations of the underlying latent

state variables x(t), which evolves according to these network SDEs. This allows us to separate

measurement noise from the noise intrinsic to the stochastic dynamics of these variables.

These SDEs for x(t) start from each baseline state x0, which is imputed from the available

observed health state yt. This imputation process is done using a normalizing-flow variational

auto-encoder (VAE) [33]. In this approach, we encode the available baseline information into

a latent distribution for each individual, and decode samples from this distribution to perform

multiple imputation. The normalizing-flow VAE allows us to flexibly model this latent distri-

bution. The details are described in Section below.

An individual’s health state is observed at K + 1 times ftkg
K
k¼0

with a set of health variables

fytkg
K
k¼0

. The vectors ytk describe the N-dimensional health state of an individual, where each

of the N dimensions represents a separate health measurement. Background (demographic,

diagnostic, or lifestyle) information observed at baseline, which is described by a B-dimen-

sional vector ut0
used as an auxiliary variable for the dynamics of mortality. We denote the

death age or last known age of survival for an individual as a, and indicate an individual as cen-

sored with c = 1 and uncensored with c = 0. Our model is described by the following equa-

tions:

θ ¼ fW;σy;σx; θl; θp; θfg: ðParametersÞ ð1Þ

z; θ � pðzÞpðθÞ; ðPriorÞ ð2Þ

x0 ¼ ot0
� yt0 þ ð1 � ot0

Þ � ~x0; ~x0 � N ðx0jμxðz; ut0
; t0; θpÞ;σ

2
yÞ; ðImputationÞ ð3Þ

dxiðtÞ ¼ ð
XN

j¼1

WijxjðtÞ þ fiðxiðtÞ; ut0
; t; θfi

ÞÞdt þ sxi
ðxðtÞÞdBðtÞ; xðt0Þ ¼ x0; ð4Þ

yt � N ðψ � 1ðxðtÞÞ; diagðs2
yÞÞ; ðHealth observationsÞ ð5Þ

SðtÞ ¼ expð�
Z t

t0

lðfxðtÞgt�t0 ;ut0
; t0; θlÞdt

0Þ; ðSurvivalÞ ð6Þ

a � lðfxðtÞg
t�a;ut0

; a; θlÞSðaÞ; ðSurvival observationsÞ ð7Þ

pðz; fxðtÞgt; θjfytkgk;ut0
; fotk
gk; t0; a; cÞ / pðθÞpðzÞpðx0jz; ut0

Þ�

pðfxðtÞgtjx0; ut0
; t0; θÞpða; cjfxðtÞgt; ut0

; t0; θÞ
YK

k¼0

pðytk jfxðtkÞgk; otk
; θÞ; ðInferenceÞ

ð8Þ

Model parameters (θ) include the explicit network of interactions between health variables

(W), measurement noise (σy) and dynamical SDE noise (σx), and network weights for mortal-

ity RNN (θλ), imputation VAE decoder (θp), and dynamical SDE (θf). Eq (2) represents priors

on the model parameters and latent state z. We use Laplace(w|0, 0.05) priors for the network

weights and Gamma(σy|1, 25000) priors for the measurement noise scale parameters. We use a

normal (Gaussian) prior distribution for the latent space z. We assume uniform priors for all

other parameters.
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In Eq (3) we sample the baseline state. The distribution for x0 given z is modeled as Gauss-

ian with mean computed from the decoder neural network and the same standard deviation as

the measurement noise, N ðμxðz; ut0
; t0; θpÞ;σ

2
yÞ. The missing value imputation and the

dynamics model are trained together simultaneously (see details below). This allows us to uti-

lize the additional longitudinal information for training the imputation method, and helps to

avoid an imputed baseline state that leads to poor trajectory or survival predictions.� is ele-

ment-wise multiplication.

Eq (4) describes the SDE network dynamics, starting from the imputed baseline state for

each health variable i = 0, . . ., N. We capture single-variable trends with the non-linear

fiðxiðtÞ; ut0
; t; θfi

Þ, and couple the components of x(t) linearly by the directed interaction matrix

W, which represents the strength of interactions between the health variables. In this way, fi
can be thought of as a non-linear function for the diagonal components of this matrix, while

W gives linear pair-wise interactions for the off-diagonal components. The intrinsic diffusive

noise in the health trajectories is modeled with Brownian motion with Gaussian increments d
B(t) and strength σx. The functions fi and σx are parameterized with neural networks.

Eq (5) describes the Gaussian observation model for the observed health state. Measure-

ment noise here is separate from diffusive noise d B(t) in the SDE from Eq (4). The compo-

nent-wise transformation ψ applies a log-scaling to skewed variables (indicated in Table A in

S1 Text) and z-scores all variables.

Eq (6) describes the survival probability as computed with a recurrent neural network

(RNN) for the mortality hazard rate λ. The RNN allows us to use the stochastic trajectory for

the computation of the hazard rate (i.e. it has some memory of health at previous ages), rather

than imposing a memory-free process where the hazard rate only depends on the health state

at the current age. We use a 2-layer Gated Recurrent Unit (GRU [63]) for the RNN, with hid-

den state ht. The initial hidden state h0 is inferred from the initial health variables x(t0), back-

ground health information ut0
, and baseline age t0, with a neural network

h0 ¼ Hðxðt0Þ; ut0
; t0Þ. Eq (7) describes the observation model for survival with age of death or

last age known alive a = max(td, tc), and censoring indicator c.
When sampling trajectories from the model, the probability that an individual dies in [t, t +

dt) is exp(−λ(t)Δt). This is applied at every time-step of the SDE solver to determine specific

death times of stochastic realizations of the model.

Instead of just a maximum likelihood point estimate of the network and other parameters

of the model, we use a Bayesian approach. This is a natural approach for this model, since the

stochastic dynamics of x(t) are separate from the noisy observations yt. This also allows us to

infer the posterior distribution of the health trajectories and interaction network, and so lets us

estimate the robustness of the inferred network and the distribution of possible predicted tra-

jectories, given the observed data. In Eq (8) we show the form of the unnormalized posterior

distribution.

Variational approximation for scalable Bayesian inference

While sampling based methods of inference for SDE models do exist [64, 65], these are gener-

ally not scalable to large datasets or to models with many parameters. Instead, we use an

approximate variational inference approach [66, 67]. We assume a parametric form of the pos-

terior that is optimized to be close to the true posterior. While variational approximations tend

to underestimate the width of posterior distributions and simplify correlations, they typically

capture the mean [36]. For the rest of the methods we denote posterior approximations as q(.),

and prior distributions, likelihood distributions, and the true posterior with p(.).
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Our factorized variational approximation to the posterior in Eq (8) is

qðz; xðtÞ; θjy
0
; ut0

; ot0
; t0; ϕÞ ¼ qðzjy

0
;ut0

; ot0
; t0; ϕzÞqðxðtÞjx0;ut0

; t; ϕxÞqðθjϕyÞ;

fxðtÞgt � qðxðtÞjx0;ut0
; t; ϕxÞ )

ð9Þ

dxðtÞ ¼ ð �Wx þ fðx; ut0
; t; θf Þ þ gðx; ut0

; t;�ÞÞdt þ σxðxðtÞÞdBðtÞ; ð10Þ

with variational parameters ϕ = {ϕx, ϕz, ϕθ}. Instead of assuming an explicit parametric form

for q(x(t)|ϕx), we instead assume the trajectories {x(t)}t are described by samples from a poste-

rior SDE with drift modified by including a small fully connected neural network g [68]. This

approach allows an efficient and flexible form of the variational posterior in Eq 9. �W is the pos-

terior mean of the network weights. The functional form of the posterior drift is both more

general and more easily trainable than the network SDE in Eq 4, but ultimately is forced to be

close to the network dynamics in Eq (4) by the loss function. The loss function for this

approach has been previously derived [66, 67]. The imputed baseline states x0 are averaged

over.

For the latent state z, the approximate posterior takes the form

μz; σz; γz ¼ Encoderð~y t0
; ot0

; ut0
; t0; �zÞ; ð11Þ

~y t0
¼ ot0

� yt0 þ ð1 � ot0
Þ � �ys;t0 ;pop

; ð12Þ

qðzjyt0 ;ut0
; ot0

; t0; ϕzÞ � qðzðLÞj~y t0
; ut0

; ot0
; t0; ϕzÞ

ð13Þ

¼ N ðzð0Þjμz;σ
2
zÞ
YL

l¼1

det
@aðlÞðzðlÞ; γz; �zÞ

@zðlÞ

�
�
�
�

�
�
�
�

� 1

; ð14Þ

where the functions a(l) are RealNVP normalizing flows [69] used to transform the Gaussian

base distribution for z(0) to the non-Gaussian posterior approximation, conditioned on the

specific individual with γz. These are invertible neural networks that transform probability dis-

tributions while maintaining normalization. We use L = 3 normalizing flow networks. In

Eq 12 we fill in missing values in the observed health state since o is a mask of observed vari-

ables and �ys;t0 ;pop
is sampled from a Gaussian distribution with the sex and age-dependent sam-

ple mean and standard deviation.� is element-wise multiplication. These filled in values are

temporarily input to the encoder neural network, and replaced after imputation.

The variational parameters ϕ of the approximate posterior are optimized to minimize the

KL divergence between the approximation and the true posterior. This minimized KL diver-

gence provides a lower bound to the model evidence that can be maximized,

log pðfytkgkjut0
; ot0

; t0Þ � Eθ; z; x0 jz; fxðtÞgt jx0

�

log fpðθÞpðzÞpðfxðtÞgtjx0;ut0
; θÞpða; cjfxðtÞgt;ut0

; t0Þ
Y

k

pðytk jxðtkÞ; otk
; θÞg

� log fqðzjy
0
;ut0

; ot0
; t0ÞqðθÞqðfxðtÞgtjx0; ut0

Þg

�

;

ð15Þ

where in the expectation θ, z, and {x(t)}t are sampled from their respective posterior
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distributions. The imputed baseline state is sampled as,

μx ¼ Decoderðz; ut0
; t0Þ ð16Þ

~x0 � N ðμx;σ
2
yÞ ð17Þ

x0 ¼ ot0
� yt0 þ ð1 � ot0

Þ � ~x0: ð18Þ

Note that we keep the observed value yt0 when available.

The final objective function to be maximized is L, where the derivation is provided in the

S1 Text. We obtain

Lð�Þ ¼ E
XK

k¼0

"

otk
� logN ðytk jxðtkÞ;σyÞ

þ ð1 � cÞ½loglðajxðtÞ; ut0
; t0Þ þ log SðajxðtÞ; ut0

; t0Þ�

þ

Z a

t0

c log SðtjxðtÞ; ut0
; t0Þdt þ

Z amax

a
ð1 � cÞlogð1 � SðtjxðtÞ; ut0

; t0ÞÞdt

�
1

2

Z a

t0

jjσ � 1

x � Wx � �Wx � gðx;ut0
; tÞ

� �
jj

2

2
dt

#

� KLðqðθÞjjpðθÞÞ � KLðqðzð0Þjy
0
;ut0

; ot0
; t0Þjjpðzð0ÞÞÞ

þ
XL

l¼1

log det
@aðlÞðzðlÞ; γz; �zÞ

@zðlÞ

�
�
�
�

�
�
�
�;

ð19Þ

as the loss function for each individual. This is for all individuals in the data multiplied by the

sample weights s(m) for each individual m. The first 3 lines of this loss are the likelihood for the

data, including both health and survival. We penalize the survival probability by integrating

the probability of being dead from the death age a to amax, which better estimates survival

probabilities [70]. We set amax = 5 years. Otherwise, it is difficult for the model to learn S! 0

for large t. The last 3 lines are the KL-divergence terms for variational inference. The very last

term is for the normalizing flow portion of the variational auto-encoder.

To simplify the evaluation of L and decrease the number of parameters, we assume inde-

pendent Gamma posteriors for each measurement error parameter σy with separate shape αi

and rate βi. We also assume independent Laplace posteriors for each of the network weights

Wij with separate means �Wij and scales bij. For the approximate distribution of all other

parameters we use delta functions, and together with uniform priors this leads to simplifying

the approach to just optimizing these parameters instead of optimizing variational parameters

of the posterior.

Summarized training procedure

1. Pre-process data. Assign N dynamical health variables and B static health variables. Reserve

validation and test data from training data.

PLOS COMPUTATIONAL BIOLOGY Interpretable machine learning for high-dimensional trajectories of aging health

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009746 January 10, 2022 18 / 30

https://doi.org/10.1371/journal.pcbi.1009746


2. Sample batch and apply masking corruption and temporarily fill in missing values with

samples from the population distribution,

~y t0
¼ c� ot0

� yt0 þ ð1 � c� ot0
Þ � þ�ys;t0 ;pop

; ð20Þ

c � Bernoullið0:9Þ: ð21Þ

3. Impute initial state x0 with the VAE and compute the initial memory state of the mortality

rate GRU,

z � qðzj~y t0
; ut0

; c� ot0
; t0Þ; ð22Þ

~x0 � N ðx0jμxðz; ut0
; t0Þ;σ2

yÞ ð23Þ

x0 ¼ ot0
� yt0 þ ð1 � ot0

Þ � ~x0; ð24Þ

ht0
¼ Hðx0;ut0

; t0Þ: ð25Þ

4. Sample trajectory from the SDE solver for the posterior SDE and compute mortality rate

from GRU,

fxðtÞgt ¼ SDESolverðx0;ut0
; t0Þ; ð26Þ

fSðtÞgt ¼ GRUðfxðtÞgtjht0
Þ: ð27Þ

5. Compute the gradient of the objective function (Eq 19) and update parameters, returning

to step 2 until training is complete.

6. Evaluate model performance on test data.

Network architecture and Hyperparameters

The different neural networks used are summarized in Table C in S1 Text. We use ELU activa-

tion functions for most hidden layer non-linearities, unless specified otherwise. We have

N = 29 dynamical health variables, and B = 19 static health variables. Additionally, we append

a mask to the static health variables indicating which are missing, of size 17 (sex and ethnicity

are never missing).

The functions fi in Eq (4) are feed-forward neural networks with input size 2 + B + 17, hid-

den layer size 12, and output size 1. Each fi, i 2 {1, . . ., N} has its own weights. The noise func-

tion σx has input size N, hidden layer size N, and output size N. The posterior drift g is a fully-

connected feed-forward neural network with input size N + B + 1 + 17, hidden layer size 8,

and output size N. The VAE encoder has input size 2N + B + 1 + 17, hidden layer sizes 95 and

70, and output size 40, with batch normalization applied before the activation functions for

each hidden layer. The VAE decoder has input size 20 + B + 17, hidden layer size 65, and out-

put size N with batch normalization applied before the activation for the hidden layer. The size
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of the latent state z is 20. The mortality rate λ is a 2-layer GRU [63] with a hidden layer sizes of

25 and 10.

We use L = 3 normalizing flow networks to transform the latent distribution from the

Gaussian z(0) to z. We use RealNVP normalizing flow networks [69] with layer sizes 30, 24,

and 10 with batch normalization before a Tanh activation function for the hidden layer. The

size of γz is 10.

We use batchsize of 1000 and learning rate 10−2 with the ADAM optimizer [71]. We decay

the learning rate by a factor of 0.5 at loss plateaus lasting for 40 or more epochs. We use KL-

annealing with β increasing linearly from 0 to 1 during the first 300 epochs for the KL loss

terms for q(x(t)) and q(z(t)), and increase linearly from 0 to 1 from 300 to 500 epochs for the

KL terms for the prior on W. SDEs are solved with the strong order 1.0 stochastic Runge-

Kutta method [72] with a constant time-step of 0.5 years. Integrals in the likelihood are com-

puted with the trapezoid method using the same discretization as the dynamics.

Latent space models

We compare our pair-wise interactions network model with latent space models, where we

directly incorporate dynamics for the latent state z(t) and apply the decoder to estimate the

health variables x(t) at specific ages. With this approach we do not need to impute the baseline

state of health variables, or to directly include dynamics for the observed health state. Rather

an encoder maps the baseline health state yt0 to the baseline latent state z0, dynamics are run

on this latent space for z(t), and a decoder directly maps the latent states z(t) to the predicted

output of the health variables yt. In this model, we also can choose the size of the latent state z,

and so we use this approach to explore how many dimensions are required for good predic-

tions of health outcomes and survival.

These models have the form,

z0; θ � pðz0ÞpðθÞ ðPriorÞ

dzðtÞ ¼ fðzðtÞ; ut0
; t; θf Þdt þ σzðzðtÞÞdBðtÞ; zðt0Þ ¼ z0; ðDynamicsÞ

SðtÞ ¼ expð�
Z t

t0

lðfzðtÞg
t�t0 ;ut0

; t0; θlÞdt
0Þ; ðSurvivalÞ

yt � N
�

ψ � 1ðμðzðtÞ; ut0
; θpÞÞ; diagðs 2

y Þ
�
; ðHealth observationÞ

a � lðfzðtÞgt�a;ut0
; a; θlÞSðaÞ; ðSurvival observationÞ

pðfzðtÞgt; θjfytkgk;ut0
; t0; a; cÞ / pðθÞpðz0ÞpðfzðtÞgtjz0;ut0

; t; θÞ�

pða; cjfzðtÞgt;ut0
; t; θÞ

Y

k

pðytk jfzðtkÞgk; θÞ; ðInferenceÞ

θ ¼ fW; sy; sx; θl; θp; θfg; ðParametersÞ

where instead of the variable-wise neural networks in the pair-wise network model, the func-

tion f is now a full feed-forward neural network including the interactions between all vari-

ables. The function μ is a decoder neural network which outputs the mean of a Gaussian

distribution for the health variables yt, from the latent state at that age.
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To create a 1D summary model that includes all information in ut0
in the 1-dimensional

latent state z, we use this same model but remove all instances of ut0
(except sex, ethnicity, and

country of birth components) from every function except the encoder.

Other than the size of the latent state z, all other hyperparameters and the training proce-

dure remain the same as the DJIN model described above. In particular, the form of the loss

function remains the same, except that the priors for W are removed, and the form of the drift

function in the SDE is adjusted. The parameters for these alternative models are trained with

the loss function using the same approach as our primary DJIN model.

Evaluation metrics

RMSE scores. Longitudinal health trajectory predictions are assessed with the Root-

Mean-Square Error (RMSE) of the predictions with respect to the observed values. The RMSE

is evaluated for each health variable and is weighted by the sample weights s(m). We compute

these RMSE values for predictions for a specific age tk for variable i,

RMSEiðtkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

m¼1

sðmÞðc� 1

i ðx
ðmÞ
i ðtkÞÞ � yðmÞi;tk Þ

2

s

; ð28Þ

where the inverse transform c
� 1

i reverse any log-scaling and the z-scoring performed on the

variables. The index (m) indicates the individual, for M total individuals.

Time-dependent C-index. The C-index measures the probability that the model correctly

identifies which of a pair of individuals live longer. Our model contains complex time-depen-

dent effects where survival curves can potentially intersect, so we use a time-dependent C-

index [37],

Ctd ¼ PrðŜðm1Þðaðm1ÞÞ < Ŝðm2Þðaðm1ÞÞjaðm1Þ < aðm2Þ; cðm1Þ ¼ 0Þ

¼

P
m1 ;m2

sðm1Þsðm2Þd½Ŝðm1Þðaðm1ÞÞ < Ŝðm2Þðaðm1ÞÞ�d½aðm1Þ < aðm2Þ�d½cðm1Þ ¼ 0�
P

m1 ;m2
sðm1Þsðm2Þd½aðm1Þ < aðm2Þ�d½cðm1Þ ¼ 0�

;
ð29Þ

where s(m) are individual sample weights. We denote death ages by td and censoring ages by tc,
and define aðmÞ ¼ minðtðmÞc ; tðmÞd Þ as the last observed age for censored individuals (c(m) = 1) or

the death age for uncensored individuals (c(m) = 0). The indexes (m1) and (m2) indicate the

pair of individuals that are being compared. Delta functions δ[] have value 1 if the argument is

true, otherwise have value 0.

Brier score. The Brier score compares predicted individual survival probabilities to the

exact survival curves, i.e. a step function where S = 1 while the individual is alive, and S = 0

when the individual is dead. The censoring survival function G(t) is computed from the

Kaplan-Meier estimate of the censoring distribution (using censoring as events rather than the

death [40]), which is used to weight the individuals to account for censoring. Then the Brier

score is computed for all possible death ages,

BSðtÞ ¼
1

M

X

m

sðmÞ
d½aðmÞ � t; cðmÞ ¼ 0�ðSðmÞðtÞÞ2

GðaðmÞÞ
þ
d½aðmÞ > t�ð1 � SðmÞðtÞÞ

GðtÞ

� �

: ð30Þ

Each individual is indexed (m). Delta functions δ[] have value 1 if the argument is true, other-

wise have value 0.

D-calibration. For well-calibrated survival probability predictions, we expect p% of indi-

viduals to have survived past the pth quantile of the survival distribution. This can be evaluated

using D-calibration, and we follow the previously developed procedure [41] for computing the
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D-calibration statistic. The result is a discrete distribution that should match a uniform distri-

bution if the calibration is perfect.

We use a χ2 test to compare to the uniform distribution. Using 10 bins, we use a χ2 test with

9 degrees of freedom. Larger p-values (and smaller χ scores) indicate that the survival probabil-

ities are more uniformly distributed, as desired.

2-sample classification tests. To assess the quality of our synthetic population, we train a

logistic regression classifier and evaluate its ability to differentiate between the observed and

synthetic populations [18, 19, 43, 44]. Ideally, a synthetic population would be indistinguish-

able from the observed population, giving a classification accuracy of 50%.

Our classifier takes the current age t, the synthetic or observed health variables yt, and the

background health information variables ut0
, and then outputs the probability of being a syn-

thetic individual or a real observed individual from the data-set. Missing values in the observed

population are imputed with the sex and age-dependent sample mean, and these same values

are applied to the synthetic health trajectories by masking the predicted values.

Hierarchical clustering. We perform hierarchical clustering on the network weights W.

This is done by constructing a dissimilarity matrix,

ω ¼ ðWT þWÞ=2; ð31Þ

D ¼ maxðωÞ � ω; ð32Þ

and then using this dissimilarity matrix D to perform agglomerative clustering with the aver-

age linkage [73]. We use the Scikit-learn [74] package.

Comparison with linear models

Imputation for comparison models. For the linear survival and longitudinal models, we

use MICE for imputation [38] with a random forest model [39]. We impute with the mean of

the estimated values. We use 40 trees and do a hyperparameter search over the maximum tree

depth. We use the Scikit-learn [74] package.

Proportional hazards survival model. To compare with a suitable baseline model for sur-

vival predictions, we use a proportional hazards model [60] with the Breslow baseline hazard

estimator [75]:

lðtjt0; yt0 ;ut0
Þ ¼ expðb0t0 þ βy � yt0 þ βu � ut0

Þ; ð33Þ

Sðtjt0; yt0 ; ut0
Þ ¼ expð� L̂Br

0
ðtÞlðtjt0; yt0 ; ut0

ÞÞ: ð34Þ

We include elastic net regularization [76] for the coefficients of the covariates.

Linear trajectory model. We use a simple linear model for health trajectories given base-

line data,

ytk;i ¼ yt0 ;i þ bðyt0 ;ut0
; t0Þðtk � t0Þ; ð35Þ

biðyt0 ; ut0
; t0Þ ¼ b0;it0 þ β1;i � yt0 þ β2;i � ut0

; ð36Þ

trained independently for each variable i. The parameters β0,i, β1,i, and β2,i are trained with

elastic net regularization.

Linear models’ hyperparameters. We perform a random search over the L1 and L2 elastic

net regularization parameters and the MICE random forest maximum depth using the valida-

tion set. The regularization term in the elastic net models is al1;ratiojjbjj1 þ 1

2
að1 � l1;ratioÞjjbjj

2

2
,
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the common form of elastic net regularization used in Scikit-learn [74], the package we use to

implement the elastic net linear model. We do the random search over log10 α 2 [−4, 0], log10

l1,ratio 2 [−2, 0], and maximum tree depth in [5, 10] for 25 iterations.

We find the parameters α = 0.40423, l1,ratio = 0.55942, and a maximum tree depth of 10 for

the longitudinal model hyperparameters. We find the parameters α = 0.00016, l1,ratio =

0.15613, and a maximum tree depth of 10 for the survival model hyperparameters.

Supporting information

S1 Text. Supplemental information. Supplemental derivations, alternate models, and tables.

Table A. Variables used from the ELSA dataset. Background variables are only used at the first

time-step, as ut0
. Longitudinal variables are predicted in yt. All variables are z-scored; addi-

tional transformations before z-scoring are indicated. Table B. Activities of daily living (ADL)

and Instrumental activities of daily living (IADL) from the ELSA dataset, for a total of 10 ADL

and 13 IADL. Table C. Neural network architectures used in the DJIN model, as described in

Fig 1 and “Network architecture and Hyperparameters” of the methods. The health variables

yt0 are size N = 29, the health variable observed mask ot0
is of size N = 29, and the background

health variables ut0
with appended missing mask are of size B + 17 = 36.

(PDF)

S1 Fig. Coverage of ELSA dataset. Number of individuals with measurements vs number of

years after entrance to the study. Although ELSA study design has each wave 2 years apart, the

age of individuals can change between 1 and 3 years between visits. Health variables (purple

shading) are included in yt. Background variables (green shading) are included in ut0
. Indi-

cated at the bottom (orange shading) are the number of deaths reported, the number of indi-

viduals, and the average coverage percentage for those individuals. The darker shading

indicates more measurements, relative to the maximum for that variable.

(TIF)

S2 Fig. Feed-forward mortality rate model. a) Time-dependent C-index stratified vs age

(points) and for all ages (line). Results are shown for the feed-mortality mortality rate model

(purple), the DJIN network model with a recurrent neural network mortality rate shown in

the main results (red) and a Elastic net Cox model (green). (Higher scores are better). b) Brier

scores for the survival function vs death age. Integrated Brier scores (IBS) over the full range of

death ages is also shown. The Breslow estimator is used for the baseline hazard in the Cox

model (Cox-Br). (Lower scores are better). Our DJIN model performs better than the feed-for-

ward mortality model. c) RMSE scores when the baseline value is observed for each health var-

iable for predictions at least 5 years from baseline, scaled by the RMSE score from the age and

sex dependent sample mean (relative RMSE scores). We show the predictions from the feed-

forward model starting from the baseline value (purple stars), our DJIN model (red circles),

predictions assuming a static baseline value (blue diamonds), an elastic-net linear model

(green squares). (Lower is better). d) Relative RMSE scores when the when the baseline value

for each health variable is imputed for predictions past 5 years from baseline. We show the pre-

dictions from the feed-forward mortality model starting from the imputed value (purple stars),

our DJIN model (red circles), and predictions with an elastic-net linear model (green squares).

For longitudinal predictions, the DJIN model is almost equivalent to the feed-forward mortal-

ity model.

(TIF)
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S3 Fig. D-calibration comparison with elastic-net Cox model. a) D-calibration of survival

predictions for the DJIN model. Estimated survival probabilities are expected to be uniformly

distributed (dashed black line). We use Pearson’s χ2 test to assess the distribution of survival

probabilities finding χ2 = 1.3 and p = 1.0 and an elastic net Cox model. (Higher p-values and

smaller χ2 statistics are better). b) D-calibration of survival predictions for the elastic-net Cox

model. Estimated survival probabilities are expected to be uniformly distributed (dashed black

line). We use Pearson’s χ2 test to assess the distribution of survival probabilities finding χ2 =

2.1 and p = 1.0. Error bars show the standard deviation.

(TIF)

S4 Fig. Longitudinal predictions vs proportion missing. Relative RMSE up to six-years past

baseline for longitudinal predictions of each health variable plotted against the proportion of

observations where that variable was missing. Red circles show our network DJIN model,

while green squares show the elastic net linear model. Predictions degrade only at high miss-

ingness.

(TIF)

S5 Fig. Model example trajectories. We show example predictions for 3 test individuals (a, b,

and c). For each individual we show the top 6 best predicted health variables from Fig 2 in the

main results. Black circles show the observed ELSA data. Red lines indicate the mean predicted

x(t) and the red shaded region is one standard deviation from the predicted mean trajectory.

Green lines indicate the linear model prediction (which appear curved for log-scaled variables

such as ferritin). The average relative RMSE for each variable for each individual is shown.

(TIF)

S6 Fig. 30-dimensional latent variable model with full neural network drift. a) Time-depen-

dent C-index stratified vs age (points) and for all ages (line). Results are shown for the full neu-

ral network model (purple), the DJIN network model shown in the main results (red) and a

Elastic net Cox model (green). (Higher scores are better). b) Brier scores for the survival func-

tion vs death age. Integrated Brier scores (IBS) over the full range of death ages is also shown.

The Breslow estimator is used for the baseline hazard in the Cox model (Cox-Br). (Lower

scores are better). c) RMSE scores when the baseline value is observed for each health variable

for predictions at least 5 years from baseline, scaled by the RMSE score from the age and sex

dependent sample mean (relative RMSE scores). We show the predictions from the full neural

network model starting from the baseline value (purple stars), our network model (red circles),

predictions with a static baseline value (blue diamonds), an elastic-net linear model (green

squares). (Lower is better). d) Relative RMSE scores when the when the baseline value for each

health variable is imputed for predictions past 5 years from baseline. We show the predictions

from the full neural network model starting from the imputed value (purple stars), our net-

work model (red circles), and predictions with an elastic-net linear model (green squares).

(TIF)

S7 Fig. One-dimensional summary model. a) Time-dependent C-index stratified vs age

(points) and for all ages (line). Results are shown for the 1D summary model (purple), the

DJIN network model shown in the main results (red) and a Elastic net Cox model (green).

(Higher scores are better). b) Brier scores for the survival function vs death age. Integrated

Brier scores (IBS) over the full range of death ages is also shown. The Breslow estimator is used

for the baseline hazard in the Cox model (Cox-Br). (Lower scores are better). c) RMSE scores

when the baseline value is observed for each health variable for predictions at least 5 years

from baseline, scaled by the RMSE score from the age and sex dependent sample mean (rela-

tive RMSE scores). We show the predictions from the 1D summary model starting from the
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baseline value (purple stars), our network model (red circles), predictions assuming a static

baseline value (blue diamonds), an elastic-net linear model (green squares). (Lower is better).

d) Relative RMSE scores when the when the baseline value for each health variable is imputed

for predictions past 5 years from baseline. We show the predictions from the 1D summary

model starting from the imputed value (purple stars), our network model (red circles), and

predictions with an elastic-net linear model (green squares).

(TIF)

S8 Fig. Synthetic population classification. We use a logistic regression classifier to evaluate

the quality of our generated synthetic population by the classifier’s ability to differentiate the

synthetic population from the observed sample. The boxplot shows the median with the hori-

zontal lines, interquartile range with the box, and 1.5x from the interquartile range with the

whiskers. Completely indistinguishable natural and synthetic populations would have a classi-

fication accuracy of 0.5. We show the classification accuracy vs years from baseline, showing

low classification accuracies that increase slowly with time from baseline in the DJIN model,

and the DJIN model is equivalent or better than non-linear latent variable models.

(TIF)

S9 Fig. Synthetic population baseline distributions. Each plot shows a synthetic baseline

marginal distribution (red shading) for each variable. The synthetic baseline is generated given

the background variables ut0
for the test set. Also shown is the observed distribution (blue

shading). Log-scaled variables are shown with a logarithmic x-axis, and are indicated with an
�.

(TIF)

S10 Fig. Synthetic population trajectories. Red lines show the synthetic population trajectory

marginal distribution means for each variable. Red shaded regions indicate 1 standard devia-

tion away from the mean. Synthetic trajectories are generated from the baseline states shown

in S9 Fig. Blue lines and shaded regions indicate the corresponding means and 1 standard

deviation away for the observed population.

(TIF)

S11 Fig. Synthetic survival distribution. Survival curve for synthetic and observed popula-

tions, as indicated. The shaded regions show the 95% confidence intervals for Kaplan-Meier

curves. The observed sample censoring distribution is applied to the synthetic population. The

survival probability is approximately the same until 90 years, indicating that the mortality of

the synthetic population is representative until older ages.

(TIF)

S12 Fig. Network interaction criterion. Criteria for determining robust connections. We

show the posterior mean of the network weights {Wij} vs. the proportion of the posterior

above zero for weights with a positive mean, and below zero for weights with a negative mean.

The vertical dashed red line shows the criteria for robust connections (which are used in

Fig 4), which is a 99% credible interval around the mean not containing zero. We see that

larger weights are all credible, while many smaller weights are not.

(TIF)

S13 Fig. Network robustness. Inferred network for 4 different fits of the model. These net-

works visually look very similar, however there are some differences in magnitudes of the con-

nections.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Interpretable machine learning for high-dimensional trajectories of aging health

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009746 January 10, 2022 25 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009746.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009746.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009746.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009746.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009746.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009746.s014
https://doi.org/10.1371/journal.pcbi.1009746


S14 Fig. Comparison with correlation network. a) Pearson correlation network between the

health variables for all individuals at all time-points, values are pruned for p-values above 0.01.

b) Our model interaction network, for comparison. Weights are pruned when the 99% poste-

rior credible interval includes zero.

(TIF)

S15 Fig. Testing deprivatization of ELSA ages. All known unprivatized ages past the first age

for each individual in the ELSA dataset are set to missing. This allows us to test our approach

to deprivatizing ages above 90, using the known ages below 90. a) Scatter plot of observed age

vs deprivatized age. The green dashed light highlights perfect deprivatization. All errors are

within 3 years, except for the three highlighted red points for 3 different individuals. For these

individuals, we suspect a data error. For one of these individuals their observed age only

advances 1 year over 5 waves, for another their age advances 15 years over 2 waves, and for the

third their age advances 7 years over 1 wave. b) Dropping these three red points, we show that

the mean absolute error with this approach is 0.23 years, and the maximum error is 3 years.

The histogram shows that for the vast majority of individuals, there is a 0 to 1 year error with

this method of deprivatization.

(TIF)

S16 Fig. DJIN model trained with and without replicated individuals. a) Time-dependent

C-index stratified vs age (points) and for all ages (line). Results are shown for the DJIN model

trained without replicated individuals (purple), the DJIN model trained with replicated indi-

viduals shown in the main results (red) and a Elastic net Cox model (green). (Higher scores

are better). b) Brier scores for the survival function vs death age. Integrated Brier scores (IBS)

over the full range of death ages is also shown. The Breslow estimator is used for the baseline

hazard in the Cox model (Cox-Br). (Lower scores are better). c) RMSE scores when the base-

line value is observed for each health variable for predictions at least 5 years from baseline,

scaled by the RMSE score from the age and sex dependent sample mean (relative RMSE

scores). We show the predictions from the DJIN model trained without replicated individuals

starting from the baseline value (purple stars), the DJIN model trained with replicated individ-

uals (red circles), predictions assuming a static baseline value (blue diamonds), an elastic-net

linear model (green squares). (Lower is better). d) Relative RMSE scores when the when the

baseline value for each health variable is imputed for predictions past 5 years from baseline.

We show the predictions from the DJIN model trained without replicated individuals starting

from the imputed value (purple stars), our DJIN model trained with replicated individuals

(red circles), and predictions with an elastic-net linear model (green squares).

(TIF)
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rez-Robledo LM. Network analysis of frailty and aging: Empirical data from the Mexican Health and

Aging Study. Experimental Gerontology. 2019; 128:110747. https://doi.org/10.1016/j.exger.2019.

110747 PMID: 31665658

52. Granger CWJ. Economic processes involving feedback. Information and Control. 1963; 6:28–48.

https://doi.org/10.1016/S0019-9958(63)90092-5

53. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003; 19(4):1273–1302.

https://doi.org/10.1016/S1053-8119(03)00202-7 PMID: 12948688

54. Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, et al. Dynamic causal modelling revis-

ited. NeuroImage. 2019; 199:730–744. https://doi.org/10.1016/j.neuroimage.2017.02.045 PMID:

28219774

55. Xiao S, Yan J, Yang X, Zha H, Chu SM. Modeling the Intensity Function of Point Process via Recurrent

Neural Networkss. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.

AAAI’17. AAAI Press; 2017. p. 1597–1603.

56. Xiao S, Yan J, Farajtabar M, Song L, Yang X, Zha H. Learning Time Series Associated Event

Sequences With Recurrent Point Process Networks. IEEE Transactions on Neural Networks and

Learning Systems. 2019; 30(10):3124–3136. https://doi.org/10.1109/TNNLS.2018.2889776 PMID:

30676979

57. Qian Z, Alaa A, Bellot A, Rashbass J, Schaar M. Learning Dynamic and Personalized Comorbidity Net-

works from Event Data using Deep Diffusion Processes. In: AISTATS; 2020.

58. Davies LE, Spiers G, Kingston A, Todd A, Adamson J, Hanratty B. Adverse Outcomes of Polypharmacy

in Older People: Systematic Review of Reviews. Journal of the American Medical Directors Association.

2020; 21(2):181–187. https://doi.org/10.1016/j.jamda.2019.10.022 PMID: 31926797

59. Miller AJ, Theou O, McMillan M, Howlett SE, Tennankore KK, Rockwood K. Dysnatremia in Relation to

Frailty and Age in Community-dwelling Adults in the National Health and Nutrition Examination Survey.

Journals of Gerontology A. 2017; 72(3):376–381. PMID: 27356976

60. Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society Series B. 1972;

34:187–200.

61. Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, et al. Undulating changes in human

plasma proteome profiles across the lifespan. Nature Medicine. 2019; 25:1843–1850. https://doi.org/

10.1038/s41591-019-0673-2 PMID: 31806903

PLOS COMPUTATIONAL BIOLOGY Interpretable machine learning for high-dimensional trajectories of aging health

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009746 January 10, 2022 29 / 30

https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18%3C2529::AID-SIM274%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18%3C2529::AID-SIM274%3E3.0.CO;2-5
http://www.ncbi.nlm.nih.gov/pubmed/10474158
https://doi.org/10.18632/aging.101603
http://www.ncbi.nlm.nih.gov/pubmed/30362959
https://openreview.net/forum?id=SJkXfE5xx
https://doi.org/10.1103/PhysRevE.97.032317
http://www.ncbi.nlm.nih.gov/pubmed/29776147
http://www.ncbi.nlm.nih.gov/pubmed/32519579
https://zenodo.org/record/4733386
https://doi.org/10.2202/1544-6115.1128
http://www.ncbi.nlm.nih.gov/pubmed/16646834
https://doi.org/10.1016/j.exger.2019.110747
https://doi.org/10.1016/j.exger.2019.110747
http://www.ncbi.nlm.nih.gov/pubmed/31665658
https://doi.org/10.1016/S0019-9958(63)90092-5
https://doi.org/10.1016/S1053-8119(03)00202-7
http://www.ncbi.nlm.nih.gov/pubmed/12948688
https://doi.org/10.1016/j.neuroimage.2017.02.045
http://www.ncbi.nlm.nih.gov/pubmed/28219774
https://doi.org/10.1109/TNNLS.2018.2889776
http://www.ncbi.nlm.nih.gov/pubmed/30676979
https://doi.org/10.1016/j.jamda.2019.10.022
http://www.ncbi.nlm.nih.gov/pubmed/31926797
http://www.ncbi.nlm.nih.gov/pubmed/27356976
https://doi.org/10.1038/s41591-019-0673-2
https://doi.org/10.1038/s41591-019-0673-2
http://www.ncbi.nlm.nih.gov/pubmed/31806903
https://doi.org/10.1371/journal.pcbi.1009746


62. Ahadi S, Zhou W, Rose SMSF, Sailani MR, Contrepois K, Avina M, et al. Personal aging markers and

ageotypes revealed by deep longitudinal profiling. Nature Medicine. 2020; 26:83–90. https://doi.org/10.

1038/s41591-019-0719-5 PMID: 31932806
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