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� CH-PANI MGs with strong NIR
absorption, pH-responsiveness,
polyampholyte behavior and
biodegradability are synthesized.

� Charge-reversal MGs are created by
mild treatment with NaCl solution,
and display high loading efficiency of
cationic VM.

� The MGs exhibit excellent resistance
to gastric acidity and prevent
premature VM leakage in healthy
intestinal tract.

� Lysozyme-triggered VM release
renders the smart MGs with an
obvious antibacterial activity.

� The smart MGs can be employed as
potential oral delivery system for IBD
treatment.
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Introduction: High-dose drug administration for the conventional treatment of inflammatory bowel dis-
ease induces cumulative toxicity and serious side effects. Currently, few reports have introduced smart
carriers for intestinal inflammation targeting toward the treatment of inflammatory bowel disease.
Objectives: For the unique lysozyme secretory microenvironment of the inflamed intestine, vancomycin-
loaded chitosan-polyaniline microgels (CH-PANI MGs) were constructed for lysozyme-triggered VM
release.
Methods: Aniline was first grafted to chitosan to form polymers that were crosslinked by glutaraldehyde
to achieve CH-PANI MGs using the inverse (water-in-oil) miniemulsion method. Interestingly, CH-PANI
MGs exhibit polyampholyte behaviour and display charge-reversible behaviour (positive to negative
charges) after treatment with a NaCl solution.
Results: The formed negatively charged N-CH-PANI MG aqueous solution is employed to load cationic
vancomycin with a satisfactory loading efficiency of 91.3%, which is significantly higher than that of
310014,
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chitosan-based MGs. Moreover, N-CH-PANI MGs present lysozyme-triggered biodegradation and control-
lable vancomycin release upon the cleavage of glycosidic linkages of chitosan. In the simulated inflamma-
tory intestinal microenvironment, vancomycin is rapidly released, and the cumulative release reaches
approximately 76.9%. Remarkably, N-CH-PANI@VM MGs not only exhibit high resistance to harsh gastric
acidity but also prevent the premature leakage of vancomycin in the healthy gastrointestinal tract.
Encouragingly, the N-CH-PANI@VM MGs show obvious antibacterial activity against Staphylococcus aur-
eus at a relatively low concentration of 20 lg/mL.
Conclusion: Compared to other pH-responsive carriers used to treat inflammatory bowel disease, the key
advantage of lysozyme-responsive MGs is that they further specifically identify healthy and inflamma-
tory intestines, achieving efficient inflammatory bowel disease treatment with few side effects. With this
excellent performance, the developed smart MGs might be employed as a potential oral delivery system
for inflammatory bowel disease treatment.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Inflammatory bowel disease (IBD), a chronic inflammatory syn-
drome, is associated with many complications, e.g., bowel obstruc-
tion [1], chronic diarrhoea [2], rectal bleeding [3], and colorectal
cancer [4]. Currently, more than 5 million people suffer from
IBD worldwide, and the incidence rate increases annually, making
IBD the third most common disease worldwide [5–7]. The conven-
tional therapeutic strategy for IBD depends on antibiotics and
immunosuppressive agents [8]. However, due to a lack of a tar-
geted delivery capability and unsatisfactory bioavailability, the
administration of high-dose agents is necessary to maintain an effi-
cient drug concentration in the inflamed intestinal region, which
will also lead to serious side effects and drug resistance [9–11].
Although direct rectal administration may provide an efficient
drug concentration in targeted sites, this method is always accom-
panied by injury and severe pain [12,13]. Moreover, oral adminis-
tration also increases drug efficacy and reduces side effects, but the
drug always encounters the harsh acidic gastric environment,
which alters stability and pharmaceutical effects [14,15]. There-
fore, an intestinal inflammation-targeted drug delivery system
must be developed that achieves gastric acid tolerance and con-
trollable drug release to maximize the therapeutic efficacy and
reduce side effects.

In recent years, smart microgels (MGs) have attracted increas-
ing attention in the field of drug delivery due to their tunable par-
ticle size [16–18], excellent loading ability [19–21], and stimuli-
responsive behaviour [22–24]. More importantly, MGs can be
employed as a protective shell to enhance the tolerance of the
loaded cargos to harsh environments [25–27]. Among them, chi-
tosan (CH) has been approved by the FDA for biomedical applica-
tions because of its excellent biocompatibility [28–30]. Likewise,
CH displays enzyme-triggered degradation, and some CH-based
carriers have been developed for controlled and targeted drug
release [31]. For instance, the integration of timolol maleate
(TM)-loaded CH-based nanoparticles into contact lenses has been
used to treat glaucoma [32]. The contact lens enables the con-
trolled and sustained release of TM in the presence of lysozyme.
Additionally, a novel wound-dressing biodevice incorporating epi-
dermal growth factor (EGF) was designed using CH-based films,
which are capable of slowly releasing EGF as required for normal
wound repair [33]. Colombo et al. [34] constructed tamoxifen-
loaded CH-based nanoparticles for lysozyme-triggered drug
release in Caco-2 cells (a model of the intestinal epithelium). These
results indicate that CH-based carriers show great promise in
developing enzyme-triggered drug delivery systems. Moreover,
as a unique cationic polysaccharide presents in nature, CH exhibits
outstanding antibacterial and anti-inflammatory properties [35–
37]. Notably, CH shows mucoadhesive properties by forming
hydrogen bonds with mucins secreted from the intestinal epithe-
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lium to obtain targeted intestinal delivery [38–40]. At present,
pH-responsive MGs have been designed for controllable drug
release in the intestinal region [41–43]. Nevertheless, some issues
remain unsolved, such as the specific response to intestinal inflam-
mation to achieve precise and controllable drug release [44]. In
2021, a review indicated that novel smart carriers not only facili-
tate targeted delivery but also should be able to respond to the
infection site for sustained drug release, thereby enhancing the
therapeutic effect and reducing potential adverse reactions [45].

Encouragingly, in a recent study, Bel et al. [46] found that
intestinal pathogens disrupt cellular functions, thus resulting in
abnormal secretion of lysozyme in the intestinal lumen against
bacterial invasion. Depending on the inflammatory intestinal
microenvironment, we designed vancomycin (VM)-loaded
chitosan-polyaniline microgels (CH-PANI MGs) for the lysozyme-
triggered release of VM. Aniline (ANI) was first grafted to CH to
form CH-PANI polymers, which were crosslinked by glutaralde-
hyde (GA) to obtain CH-PANI MGs. Interestingly, CH-PANI MGs
exhibit a charge-reversible behaviour (positive to negative
charges) after treatment with a NaCl solution to form negatively
charged N-CH-PANI MGs that are employed to load cationic van-
comycin hydrochloride with a high loading efficiency. Moreover,
N-CH-PANI MGs exhibit lysozyme-triggered biodegradation and
controllable VM release upon the cleavage of glycosidic linkages
of CH. In the simulated microenvironment of the inflamed intes-
tine, VM is rapidly released from N-CH-PANI@VM MGs. Remark-
ably, N-CH-PANI@VM MGs not only exhibit high resistance to
strong gastric acidity but also prevent the premature leakage of
VM in the healthy gastrointestinal tract. The N-CH-PANI@VM
MGs exhibit obvious antibacterial activity against Staphylococcus
aureus (S. aureus). Based on this outstanding performance, the
developed smart MGs with lysozyme-triggered VM release might
be employed as a potential orally administered candidate for IBD
treatment (Fig. 1).
Experimental

Synthesis of CH-PANI polymers and MGs

A series of CH-PANI copolymers with different ANI contents
were prepared using oxidative polymerization (Table S1). Briefly,
ANI (23.1–231.1 mg) dissolved in 1 M HCl (10 mL) and ammonium
persulfate (APS) (28.1–281.0 mg) dissolved in 1 M HCl (2.5 mL)
were added dropwise to a solution of 100 mg of CH dissolved in
0.1 M acetic acid (10 mL) with stirring at 0 �C in the dark for 1 h.
Then, the solution was stirred at room temperature for another
5 h. After that, the solution was precipitated in ethanol (200 mL),
and further purified by centrifugation, and washed with N-
methylpyrrolidone (NMP) (3 times), ethanol (3 times), as well as
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Fig. 1. Schematic preparation of charge-reversible and biodegradable CH-based MGs as potential oral delivery system for the IBD treatment by lysozyme-triggered antibiotics
release: High VM loading, excellent acid tolerance, and specific inflammatory recognition.
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water (3 times) respectively. Finally, the CH-PANI polymers were
obtained by oven-dried (60 �C, 2 days).

CH-PANI MGs were prepared using an inverse miniemulsion
method. Typically, CH-PANI polymers (10 mg) dissolved in 1 M
HCl (1 mL) were mixed with GA (10 lL) as an aqueous phase,
and Span 80 (258 mg) dissolved in cyclohexane (10 mL) as an
organic phase. The mixture was ultrasonicated by a Misonix Soni-
cator (XL2000, Division of QSonica, LLC., Newtown, CT) at the duty
cycle of 50% and output control of 40% in an ice bath for 10 min,
and then stirred at room temperature for 16 h. Finally, the pre-
pared CH-PANI MGs were purified by centrifugation (8000 rpm,
10 min), redispersed in water (10 mL) and transferred to a dialysis
bag with molecular weight cut-off of 12–14 kDa for 3 days against
water. Additionally, CH MGs were prepared as control samples
under the same experimental conditions.

Synthesis of N-CH-PANI MGs and N-CH-PANI@VM MGs

The CH-PANI-2 MGs (1 mL) were treated with different concen-
trations of NaCl solution (1 mL) for 24 h to prepare charge-tunable
MGs (Table S3). Among them, the CH-PANI-2 MGs treated with
NaCl at a concentration ratio of 1:4 are termed N-CH-PANI MGs.
Furthermore, the N-CH-PANI MGs were employed to load cationic
VM. Typically, N-CH-PANI MGs (5 mg) and VM (1 mg) were
immersed in 5 mL of water with stirring for 24 h in the dark. After-
wards, the N-CH-PANI@VM MGs were obtained by centrifugation
to remove free VM (13000 rpm, 20 min). Additionally, CH@VM
MGs and CH-PANI-2@VM MGs were prepared as control samples
under the same experimental conditions.

In addition, the VM loading efficiency was measured by UV–vis
spectroscopy at 280 nm depending on a calibration curve (Fig. S1)
and estimated by equation (1):

VM loading efficiency ¼ Mo �Mnð Þ=Mo � 100% ð1Þ
89
whereMn andMo represent the mass of the unloaded and the initial
VM, respectively.
Lysozyme-triggered biodegradation and controllable VM release

The lysozyme-triggered degradation behaviour of N-CH-PANI
MGs was investigated using dynamic light scattering (DLS) and
transmission electron microscopy (TEM). The N-CH-PANI MGs
(0.5 mg/mL) were dissolved in different media, namely, (a) pH
3.0 buffer, (b) pH 6.8 buffer, and (c) pH 6.8 buffer with lysozyme
(50 lg/mL), and then TEM imaging along with a DLS analysis of
NGs were conducted at predetermined time points (0–24 h).
Among these media, pH 3.0 buffer was obtained by preparing acet-
ate buffer (mixture of acetic acid and sodium acetate) as the sim-
ulated gastric fluid, pH 6.8 buffer was obtained by preparing
phosphate buffered saline (PBS) as the simulated healthy intestine,
and pH 6.8 buffer with lysozyme (50 lg/mL) was prepared as the
simulated inflamed intestine.

The VM release kinetics of N-CH-PANI@VMMGs were evaluated
in different simulated microenvironments. The N-CH-PANI@VM
MGs (0.5 mg) in buffer solution (pH 3.0, 1 mL) were placed in a
dialysis bag (MWCO = 50 kDa), suspended in buffer (pH 3.0,
9 mL) in the polyethylene tube, and incubated for 2 h. Next, the
N-CH-PANI@VM MGs were changed to fresh buffer media (pH
6.8, 9 mL) with or without lysozyme (50 lg/mL) and incubated
for 24 h. The release systems were placed in a vapour-bathed con-
stant temperature vibrator at 37 �C. At each predetermined time
interval, 1 mL of outer phase buffer from different systems was
removed and the absorbance was measured at 280 nm using
UV–vis spectroscopy; then, the same volume of the corresponding
buffer was replenished. All release experiments of N-CH-PANI MGs
as a control were repeated under each condition.
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Cytocompatibility and antibacterial assay

Caco-2 cells were cultivated in Dulbecco’s modified Eagle’s min-
imal essential medium (DMEM, 25 mM glucose) supplemented
with 10% (v/v) foetal bovine serum, 1% (v/v) nonessential amino
acids, 1% (v/v) L-glutamine, and 1% (v/v) penicillin–streptomycin
under 37 �C and 5% CO2. A CCK-8 assay of Caco-2 cell viability
was performed after the cells were treated with PBS or different
concentrations of CH-PANI-2 MGs or N-CH-PANI MGs. Briefly,
Caco-2 cells were first seeded in 96-well plates at a density of
5 � 103 cells per well with 200 mL of fresh medium and incubated
for 24 h. Then, the medium in each well was replaced with fresh
medium containing different final concentrations of CH-PANI-2
MGs or N-CH-PANI MGs (0.05–1 mg/mL) at pH 7.4. After 24 h of
incubation, the medium was removed, and the cells were rinsed
with PBS (3 times). Then, 200 lL of DMEM containing 10% CCK-8
reagent were added to each well, and the cells were incubated
for 4 h in the dark. Finally, the cell viability was detected by mea-
suring the absorbance at 450 nm via Multiskan MK3 ELISA reader
(Thermo Scientific, Logan, UT).

Moreover, the antibacterial activity of each formulation was
evaluated against S. aureus. Briefly, S. aureus was cultured in
Mueller-Hinton broth at 37 �C for 12 h. The original S. aureus con-
centration was adjusted to 0.5 McFarland (106 CFU/mL) standard,
and then bacteria were cultured in 96-well plates for the experi-
ments. Then, the N-CH-PANI@VM MGs with or without lysozyme
(50 lg/mL) were added to Mueller-Hinton broth (100 lL) at the
final concentration ranging from 2.5 lg/mL to 50 lg/mL. Likewise,
different concentrations of free lysozyme (2.5–50 lg/mL) were
added to Mueller-Hinton broth. After 24 h of incubation, S. aureus
viability was detected by measuring the absorbance at 630 nm via
Multiskan MK3 ELISA reader (Thermo Scientific, Logan, UT). A
blank sample with only Mueller Hinton Broth was used for the
control.
Fig. 2. (a) Schematic illustration of the synthesis of CH-PANI polymers. (b) FTIR, (c) 1H
contents.
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Results and discussion

Synthesis and characterization of CH-PANI MGs

As mentioned above, CH exhibits a variety of excellent proper-
ties for treatment of patients with bowel diseases, such as good
biocompatibility, enzyme-triggered degradation, and mucoadhe-
sive behaviour. Moreover, conducting PANI exists as the emeral-
dine form or deprotonated (base) form above or below the
isoelectric point, respectively. PANI may act as an anion or cation
exchanger. Smart MGs composed of CH and PANI are expected to
be biocompatible, and their charge-reversible properties can be
used for efficient drug loading and controllable release in the
inflamed intestinal region. First, a series of CH-PANI polymers with
different ANI contents were prepared using oxidative polymeriza-
tion using the method described in our previous study, with minor
modifications (Fig. 2a) [47,48]. The detailed mechanism of oxida-
tive polymerization is that the protonated ANI monomer is initi-
ated by APS to form the intermediate of the PANI radical cation,
while the hydrogen on the amino groups of CH is extracted by
APS to form CH macro radicals, and then these two macroradicals
recombine to obtain CH-PANI polymers (Fig. S2) [49]. The amounts
of each component used for CH-PANI polymer preparation are
listed in Table S1. In the FTIR spectra (Fig. 2b), the broad bands
of the pure CH and CH-PANI polymers at 3200–3450 cm�1 are
attributed to the stretching vibrations of the –NH2 group. Com-
pared to pure CH, the characteristic peaks at 1590 and
1502 cm�1 are related to the PANI part and attributed to C = C
stretching vibrations in the quinoid and benzenoid rings, respec-
tively, and the peak at 1154 cm�1 is attributed to the N = Q = N
bending vibration (Q = quinonoid). Notably, the formed absorption
peak at 747 cm�1 is derived from the –NH– group, indicating that
the PANI has been grafted onto the CH skeleton. Furthermore, the
content of ANI grafted onto CH-PANI polymers was quantitatively
NMR, and (c) UV–vis–NIR spectra of CH and CH-PANI polymers with different ANI



Fig. 3. (a) Schematic illustration of the synthesis of CH-PANI MGs. (b) TEM images of CH-PANI MGs with different ANI contents. (c) Hydrodynamic radius of CH-PANI MGs
dispersed in water. (d) FTIR spectra of CH and CH-PANI MGs. (e) Hydrodynamic radius and (f) electrophoretic mobilities of CH-PANI MGs in buffers with different pH values.
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analysed by recording 1H NMR spectra (Fig. 2c). The new peak
observed for CH-PANI polymers at approximately 7.0 ppm is
related to the aromatic protons of PANI, and the peak intensity
increases with the ANI content. Based on NMR integration, for
CH-PANI-0.5 to CH-PANI-5 polymers, the ANI content was calcu-
lated to be 9.1, 13.8, 24.8, 37.9, and 48.7 mol%, respectively
(Table S1). Likewise, in the UV–vis-NIR spectra (Fig. 2d), the CH-
PANI polymers display a peak at 382 nm corresponding to the p-
p* electron transition within the benzenoid segments and an obvi-
91
ous absorption in the NIR I and II regions (700–1200 nm) compared
with that of pure CH. With the increase in the amount of grafted
PANI, the absorption intensity of CH-PANI polymers increased.

Next, these CH-PANI polymers were crosslinked with GA to
achieve the corresponding CH-PANI MGs via the inverse miniemul-
sion method (Fig. 3a). As shown in the TEM images, the CH-PANI
MGs exhibit a uniform morphology and a radius of 186.2–
219.8 nm in the dehydrated state (Fig. 3b). Furthermore, the
hydrodynamic radius of CH-PANI MGs was determined to be
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197.8–393.7 nm using DLS (Fig. 3c and Table S2). Notably, the size
measured using DLS was larger than that measured from TEM
images due to the swelling behaviour of CH-PANI MGs in aqueous
solution. In the FTIR spectra (Fig. 3d), a new peak of CH-PANI MGs
appearing at 1651 cm�1 is attributed to the Schiff base group (–N =
CH–), suggesting that crosslinked bonds formed between the
amino groups of polymers and aldehyde groups of GA [50].

Additionally, the pH-responsive behaviours of CH-PANI MGs
were determined by performing DLS measurements (Fig. 3e). At
different pH values (pH 3 to 11), the pure CH MGs displayed the
maximum size shrinkage from 663.6 nm to 243.1 nm. In compar-
ison, the CH-PANI MGs showed reduced shrinkage due to the lower
number of amino groups. Furthermore, the electrophoretic mobil-
ities of CH-PANI MGs were investigated (Fig. 3f). With increasing
pH, the electrophoretic mobilities of CH MGs and CH-PANI MGs
decreased and even reversed from positive to negative. In the
acidic environment, the positive charge of MGs is contributed by
the protonated amine groups. In the basic environment, the charge
reversal of MGs is due to the formation of a Stern layer because the
negatively charged counter ions overcompensate for the positive
charge on the surface of MGs [51]. Notably, the charge reversal
of CH-PANI MGs was easier to obtain under weakly alkaline condi-
tions (pH 8) than pure CH MGs.

Adjustable charge and VM loading of N-CH-PANI MGs

To obtain the suitable nanocarriers for highly efficient loading
of cationic antibiotics, it is essential to design the nanocarriers with
adjustable charge. Based on the results described above, the CH-
PANI MGs exhibit charge reversal properties under weakly alkaline
Fig. 4. (a) Schematic illustration of charge reversal of CH-PANI-2 MGs after treated with
and after treated with NaCl solution at different concentration ratios. (c) VM loading ef
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conditions. Moreover, our previous study revealed that the nega-
tive charge of MGs in aqueous solution is beneficial for the loading
of cationic drugs [47]. Therefore, adjusting the charge of MGs in
aqueous solution to a negative value at pH 7.0 is critical to increase
the loading capacity of cationic antibiotics. In the next experiment,
CH-PANI-2 MGs were chosen due to their lowest charge at pH 7.0.
After treatment with NaCl at concentration ratios of 1:2 and 1:4,
the charge of CH-PANI-2 MGs reversed from positive to negative
at pH 7.0 (Fig. 4b and Table S3-S4). The specific attraction of neg-
atively charged counteranions (Cl�) by the PANI chains in the
MGs allowed the formation of a negatively charged Stern layer,
leading to an overcompensation for the positive charge on the sur-
face of MGs (Fig. 4a) and thus reducing the electrophoretic mobil-
ity of MGs to negative values. These results are consistent with
data reported in the previous literature [51–53]. The CH-PANI-2
MGs treated with NaCl solution at a concentration ratio of 1:4
(named N-CH-PANI MGs) showed an electrophoretic mobility of
approximately �0.40 lmcm/Vs, indicating the good colloidal sta-
bility of N-CH-PANI MGs. In contrast, the CH MGs maintained a
positive charge after treatment with NaCl solution.

Next, the loading efficiency of cationic VM in N-CH-PANI MGs in
aqueous solution was investigated (Fig. 4c). The N-CH-PANI MGs
exhibited the highest VM loading of 182.6 mg/mg at pH 7.0 due
to the electrostatic interaction between negative N-CH-PANI MGs
and cationic VM. Notably, the VM loading in CH MGs and CH-
PANI-2 MGs was only approximately 36.4 and 69.4 mg/mg respec-
tively, because of electrostatic repulsion. According to the calcula-
tion, the loading efficiency of N-CH-PANI@VM MGs was up to
91.3% and the values of CH@VM MGs and CH-PANI-3@VM MGs
were 18.2% and 34.7%, respectively. Based on this result, the
NaCl solution. (b) Electrophoretic mobilities of CH MGs and CH-PANI-2 MGs before
ficiency of N-CH-PANI@VM MGs, CH-PANI-2@VM MGs and CH@VM MGs.



Fig. 5. (a) Schematic illustration of lysozyme-triggered biodegradation of N-CH-PANI MGs. (b) TEM images of N-CH-PANI MGs at different simulative microenvironments
before and after degradation time for 24 h. (c) Hydrodynamic radius change of N-CH-PANI MGs at different simulative microenvironments over time. (d) Cumulative VM
release profiles from N-CH-PANI@VM MGs at different simulative microenvironments.
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Fig. 6. (a) CCK-8 viability assay of Caco-2 cells treated with CH-PANI-2 MGs and N-CH-PANI MGs for 24 h, respectively. (b) Antibacterial effects of S. aureus treated with free
lysozyme, N-CH-PANI@VM MGs (pH 6.8), and N-CH-PANI@VM MGs (pH 6.8 + lysozyme) for 12 h.
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N-CH-PANI MGs, which are negatively charged carriers, are suit-
able for the highly efficient loading of cationic VM.
Lysozyme-triggered biodegradation and controlled VM release

For IBD treatments, the designed MGs should meet the require-
ments of precise release into the inflamed intestinal region and
avoid premature drug leakage in the stomach or healthy intestine.
In contrast to the stomach and healthy intestine, the inflamed
intestine secretes a large amount of lysozyme to form a unique
microenvironment [46]. Therefore, we explored the degradation
of N-CH-PANI MGs in different simulated microenvironments. In
the simulated gastric fluids (pH 3.0) or healthy intestine (pH 6.8),
the morphology of N-CH-PANI MGs was intact after 24 h
(Fig. 5b). In the inflammatory intestinal microenvironment (pH
6.8 + lysozyme), the N-CH-PANI MGs were completely decom-
posed. Furthermore, the change in the size of the N-CH-PANI
MGs was monitored during one day to reveal the decomposition
process (Fig. 5c). Clearly, in simulated gastric fluids (pH 3.0) or
healthy intestines (pH 6.8), the size of the N-CH-PANI MGs
remained unchanged. However, the size of the N-CH-PANI MGs
rapidly decreased during the first 20 min, and then their size
slowly decreased to approximately 50 nm within one day. The
degradation mechanism is based on the enzymatic hydrolysis of
the lysozyme-cleavable 1,4-b-glycosidic bonds in the CH backbone
(Fig. 5a). Therefore, the N-CH-PANI MGs are capable of withstand-
ing the harsh gastric acid microenvironment and then display
lysozyme-triggered biodegradation in unique flamed intestinal
areas.

Additionally, VM release from N-CH-PANI@VM MGs was deter-
mined by incubating the carrier in the simulated gastric fluids for
2 h and then incubating it in the simulated healthy or inflamma-
tory intestinal microenvironment for 24 h to mimic gastrointesti-
nal drug delivery by MGs after oral administration (Fig. 5d).
Apparently, in the simulated gastric fluid (pH 3.0), the cumulative
release of VM reached only approximately 6.5%. Upon the next test
in the simulated healthy intestine (pH 6.8), VM was slowly
released, and the cumulative release remained at approximately
16.8%. Notably, in the inflamed intestine (pH 6.8 + lysozyme),
VM release was accelerated due to lysozyme-triggered degrada-
tion, especially in the first 30 min, and the final release rate
reached 76.9%. Overall, these results reveal that the developed N-
CH-PANI@VM MGs satisfy the oral administration requirements
for IBD treatment, namely, excellent gastric acid tolerance, precise
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release in the inflammatory intestine, and low leakage in the
healthy gastrointestinal tract.

Biocompatibility and antibacterial effects

The biocompatibility of CH-PANI-2 MGs and N-CH-PANI MGs
was evaluated by performing a CCK-8 assay of the viability of
Caco-2 cells (Fig. 6a). After treatment with CH-PANI-2 MGs for
24 h, cell viability decreased with increasing concentrations of
MGs, and the percentage of viable cells was only 39.6% when the
concentration of MGs reached 1 mg/mL. Thus, the positively
charged CH-PANI-2 MGs not only exhibit a low VM loading effi-
ciency but also present high cytotoxicity due to the strong positive
surface charge that destroys the integrity of negatively charged cell
membranes. For comparison, the viability of cells treated with N-
CH-PANI MGs was greater than 86.1%, even after treatment with
the highest concentration of MGs (1 mg/mL), indicating that the
N-CH-PANI MGs display satisfactory biocompatibility and may be
employed as safe nanocarriers for biomedical applications.

The antibacterial effects of N-CH-PANI@VM MGs were exam-
ined against the gram-positive bacteria S. aureus, representing
the bacterial model of IBD (Fig. 6b) [54,55]. In the control lysozyme
group, the viability of S. aureuswas maintained at a high level, indi-
cating that lysozyme exerted almost no antibacterial effect at low
concentrations (less than 50 mg/mL). Notably, in the N-CH-
PANI@VM MG group (pH 6.8 + lysozyme), a concentration-
dependent antibacterial effect was observed, and this treatment
displayed obvious antibacterial activity at a relatively low MGs
concentration of 20 mg/mL. In contrast, at the same concentration,
much higher viability of S. aureus was observed in the group trea-
ted with N-CH-PANI@VMMGs (pH 6.8) in the absence of lysozyme.
Based on these results, the N-CH-PANI@VMMGs exhibit lysozyme-
triggered controllable VM release in response to intestinal inflam-
mation, thus achieving a satisfactory therapeutic effect on IBD.
Conclusions

In summary, we developed smart carriers of VM-loaded CH-
based MGs as potential oral delivery systems for IBD treatment.
The prepared CH-PANI MGs exhibit polyampholyte behaviour
and display a reversible charge after treatment with NaCl solution
to form negatively charged N-CH-PANI MGs, which display a high
loading efficiency of cationic VM by forming electrostatic interac-
tions. Likewise, N-CH-PANI MGs exhibit lysozyme-triggered
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biodegradation and controllable VM release. Remarkably, N-CH-
PANI MGs provide a protective barrier for loaded VM against the
harsh gastric environment, and prevent premature leakage of VM
in the stomach. After oral administration, the carrier passes
through the stomach to reach the intestine, and VM release from
N-CH-PANI@VM MGs is specifically triggered by lysozyme in the
inflamed intestinal region and avoids unnecessary release in the
healthy intestine. The antibacterial experiments indicated that N-
CH-PANI@VM MGs exhibit obvious antibacterial activity, even at
a relatively low concentration. Compared with other pH-
responsive carriers designed for IBD treatment, the key advantage
of lysozyme-responsive MGs is that they further specifically iden-
tify healthy and inflamed intestines, achieving efficient IBD treat-
ment with few side effects. This investigation provides
information on a novel orally administered candidate for IBD treat-
ment and increases attention to IBD-specific microenvironment-
responsive carriers.
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