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Intratumoural immune heterogeneity as a hallmark
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hepatocellular carcinoma
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The clinical relevance of immune landscape intratumoural heterogeneity (immune-ITH) and

its role in tumour evolution remain largely unexplored. Here, we uncover significant spatial

and phenotypic immune-ITH from multiple tumour sectors and decipher its relationship with

tumour evolution and disease progression in hepatocellular carcinomas (HCC). Immune-ITH

is associated with tumour transcriptomic-ITH, mutational burden and distinct immune

microenvironments. Tumours with low immune-ITH experience higher immunoselective

pressure and escape via loss of heterozygosity in human leukocyte antigens and immunoe-

diting. Instead, the tumours with high immune-ITH evolve to a more immunosuppressive/

exhausted microenvironment. This gradient of immune pressure along with immune-ITH

represents a hallmark of tumour evolution, which is closely linked to the transcriptome-

immune networks contributing to disease progression and immune inactivation. Remarkably,

high immune-ITH and its transcriptomic signature are predictive for worse clinical outcome in

HCC patients. This in-depth investigation of ITH provides evidence on tumour-immune co-

evolution along HCC progression.
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Hepatocellular carcinoma (HCC) is known to be a hetero-
geneous tumour derived primarily from a background of
chronic liver inflammation with various etiopathogenesis

including chronic viral hepatitis infection, alcoholism and fatty
liver diseases1. Due to the heterogenous nature and hence the
limited options for targeted treatment, HCC remains the third
leading cause of cancer mortality globally2. The recent success of
immunotherapy in HCC benefits only up to 20% of the patients
who would respond to the anti-PD-1 immune-checkpoint
blockade (ICB)3,4. Hence, the current immunotherapy land-
scape leans towards combination therapy with enhanced clinical
efficacy, such as that demonstrated by the recently approved
atezolizumab (anti-Programmed death-ligand 1 [PD-L1]) and
bevacizumab (anti-Vascular Endothelial Growth Factor
A [VEGFA]) combination therapy for advanced HCC from the
phase III (IMbrave150) trial5. Moreover, a recent biomarker study
from liver cancer patients treated with ICB demonstrated that low
tumour cell transcriptomic diversity and cytolytic activity of CD8
+ T cells predict their therapeutic response6. This warrants a
deeper understanding of the complex nature of immune micro-
environment and its relationship with tumour genomic profiles in
a spatio-temporal manner.

The genomic intratumoural heterogeneity (ITH) was pre-
viously described as an important hallmark of tumour evolution
and cancer progression7 including in HCC8,9. On the flip side, the
biological and clinical relevance of ITH in the tumour micro-
environment (TME), based upon degree of heterogeneity in the
spatial distributions and the phenotypes of tumour-infiltrating
leukocytes (TILs), is not known. It was previously described that
distinct histological TME could impact on clinical outcome of
HCC10,11, whereas multiomic analyses also described intensive
ITH in TME of HCC12. Other recent studies using immunoge-
nomics approach addressed how the immune landscape con-
tributes to genomic ITH in ovarian cancer13 and HCC14. Despite
all that, the clinical impact and role of immune-ITH in tumour
evolution remain unexplored. Furthermore, tumour evolution or
immunoediting driven by immunoselective pressure was pre-
viously shown in various cancers15,16; it is however not known
whether immune-ITH is linked to TME with different immu-
noselective pressure, which drives tumour evolution. Given the
multistep nature of carcinogenesis and disease progression in
HCC, it will be important to study and understand the evolution
of its immune microenvironment along with tumour genomic
evolution.

Our study aims to fill the knowledge gap in the field of tumour
ITH and to examine the significance of immune-ITH in tumour
evolution and disease progression. Using multi-sectoring and
multi-omics approaches on different regions from a single HCC
tumour, we found a marked degree of immune-ITH, which is
correlated to tumour transcriptomic-ITH. Concurrently, the
overall TME shows decreasing immunoselective pressure with
increased immune-ITH, indicating an immune evolution towards
immune exhaustion/suppression. Along with this differential
immunoselective pressure, tumour evolve with distinct escape
strategies. We also uncovered immune-ITH-related
transcriptome-immune networks and the distinct molecular
pathways involved in dictating the disease progression and
immune status. The current findings demonstrate the remodel-
ling of immune landscape with increased immune-ITH as
another dimension in tumour-immune co-evolution, which can
be harnessed as a predictive signature for tumour progression.

Results
Significant degree of immune-ITH in HCC. Based on our
previous discovery of significant genomic ITH and its impact on

evolution trajectory in HCC9, we aimed to examine the degree
and implication of ITH in the immune landscapes from multiple
regions within an HCC tumour. Following strict sampling pro-
tocol of two to five regions per tumour (Supplementary Fig. 1a,
b), we prospectively collected a total of 95 tumour sectors (T)
with its adjacent non-tumour liver tissues (N) and peripheral
blood (P) from 28 HCC patients who underwent surgical resec-
tion as the first-line therapy without any prior treatment (Sup-
plementary Table 1). The samples from the same region were
analysed by cytometry by time-of-flight (CyTOF), whole genome
sequencing (WGS) and RNA sequencing for their immunomic,
genomic and transcriptomic profiles, respectively (Fig. 1a).
CyTOF analysis was performed using 38 surface or intracellular
immune markers (Supplementary Table 2) as previously
described17.

We employed Phenograph clustering18 and our in-house
CyTOF analytics pipeline19 on the data generated from all
tumour sectors and identified 30 immune cell clusters (Fig. 1b).
The clusters were assigned to major immune lineages according
to their lineage marker expressions (Fig. 1c). The varying
proportions of these clusters across sectors from the same
tumour showed different degree of immune-ITH (Fig. 1d and
Supplementary Fig. 2a). Next, we examined the ITH by manual
gating of all major TIL subsets identified as the key global
representative of TME in HCC from our previous study17

(Supplementary Fig. 3a). Again, we observed significant varia-
tions in the proportions (Fig. 1e) and the variances (Supplemen-
tary Fig. 3b) of these 15 immune subsets in the TME of HCC,
indicating varying degree of immune-ITH. Next, to systematically
quantify for immune-ITH, we compared the proportions of these
15 immune subsets in pairwise manner across all tumour sectors
from each tumour using Spearman’s correlation coefficient (ρ),
which measures degree of association or homogeneity20; the
immune-ITH scores (degree of heterogeneity) were reported as 1
− ρ (Supplementary Fig. 4a). HCC tumours showed varying
degree of immune-ITH (Fig. 1e, bottom) and the immune-ITH
scores according to t-distributed stochastic neighbor embedding
(tSNE) clusters or manual gating of 15 immune subsets showed
good concordance (Fig. 1f). We also calculated immune-ITH
scores using previously described Euclidean distance21 and
demonstrated a high correlation between the two scoring
methods (ρ= 0.99, Fig. 1g) resulting in the same immune-ITH
groupings of HCC tumours according to their respective medians
(Supplementary Fig. 5a).

To validate whether ITH was also reflected by tissue immune
cell density, we next examined the heterogeneity in the densities
of the CD4+ and CD8+ T cells within tumour tissues using
multiplex immunohistochemistry (mIHC) (Fig. 1h, left). We
assigned ITH scoring by calculating the standard deviation (SD)
of CD4+ and CD8+ T-cell densities from ten regions of each
tumour. Indeed, we observed a significant correlation in the
degrees of immune-ITH based on CyTOF (proportions of
immune subsets) or tissue mIHC (cell densities) (Fig. 1h, right),
both demonstrating consistent degree of Immune-ITH.

Taken together, the above data demonstrated significant
immune-ITH within HCC tumours.

Tumour evolutionary events are linked to immune-ITH. Next,
we aim to explore immune-ITH as a hallmark of tumour evo-
lution along tumour mutational trajectory. First, we compared
immune-ITH with genomic (DNA)- and transcriptomic (RNA)-
ITH, which were shown to be an important hallmark of tumour
evolution7,9. We constructed the phylogenetic trees for the RNA
and DNA profiles of the tumours with low or high immune-ITH
using median immune-ITH score as the cut off (Fig. 2a). The
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phylogenetic trees illustrated the evolutionary relationships
between tumour sectors (T) and the adjacent non-tumour liver
tissues (N), based upon similarities and differences in their
genetic characteristics22. In general, we observed concordance
between immune-ITH and RNA- or DNA-ITH where tumours

with low immune-ITH showed shorter RNA or DNA branch
distances between tumour sectors compared to those with high
immune-ITH (Fig. 2a). Next, we calculated the tumour RNA-
ITH, as 1 minus Spearman’s ρ for RNA expression of each gene
and DNA-ITH, as ratio of the number of unique DNA mutations
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to the total number of DNA mutations, with references to pre-
viously described methods9,23 (Supplementary Fig. 4b). Com-
paring these ITHs, we found a strong correlation between
immune-ITH and RNA-ITH and a positive trend with DNA-ITH
(Supplementary Fig. 6a), indicating a closer relationship between
immune and tumour transcriptome landscapes.

To further illustrate their relationship with tumour mutational
landscape, we examined genome-wide alteration fractions or copy
number variations (CNVs) in tumours with high vs. low
immune-ITH. We observed higher events of CNVs, indicating
higher genomic instability in tumours with high immune-ITH
(Fig. 2b, c). In particular, we identified 214 deleted and 114
amplified cytobands associated with high immune-ITH (Supple-
mentary Table 3). Several well-known tumour suppressor genes,
such as PTEN, NOTCH1, APC, CDKN2A and FAT1, were among
the deleted cytoband, whereas known oncogenes, such as VEGFA,
MUC1, NTRK1, SHC1 and JTB, were among the amplified
regions (Fig. 2b, d). These mutations are known to be associated
with tumour aggressiveness and progression, placing immune-
ITH along tumour progressive mutational trajectory. Interest-
ingly, the amplification of VEGF in tumours with high immune-
ITH indicated a link to angiogenesis24 and anti-VEGFA
combined with anti-PD-L1 ICB has been a successful phase III
trial in advanced HCC (IMbrave150)5. One of the deleted genes,
APC, is a gene from Wnt signalling pathway, which has been
shown to be associated to immune exclusion25. However, CNV of
CTNNB1, another gene known to be linked to immune
exclusion25,26, was not significantly related to immune-ITH
(Fig. 2d). To show the relationship between immune-ITH and
immune exclusion, we compared immune-ITH and tumour tissue
T-cell density in our current cohort, and found no significant
association between them (Supplementary Fig. 7a, b). We hence
propose that immune-ITH is an immune evolutionary event
independent of immune exclusion.

Taken together, immune-ITH is linked to multiple tumour
evolutionary events, such as enhanced tumour transcriptomic-
ITH and increased CNV, particularly in genes related to tumour
aggressiveness and progression.

Immune exhaustive and suppressive TME in tumours with
high immune-ITH. To further underscore the impact of
immune-ITH on the overall immune activation status in
tumours, we next compared the proportion of key immune
subsets in low vs. high immune-ITH tumours according to their
median immune-ITH scores. We found that tumours with high
immune-ITH were significantly enriched with immunosuppres-
sive/exhausted GB-inactive memory CD4+ T cells, regulatory T
cell (Treg), as well as Tim-3+ and PD-1+GB− exhausted CD8+

T cells, conversely, tumours with low immune-ITH were enriched
with activated/cytotoxic immune subsets, such as GB+CD45RO+

activated memory CD4+ T cells, CD69+/− natural killer (NK)
cells and Tim-3− or PD-1−GB+ activated CD8+ T cells (Fig. 3a).
Eight other immune subsets, including naive CD4+ T cells,
Lag-3+/−CD8+ T cells and CD14+macrophages, showed no
significant enrichment in neither tumour groups (Supplementary
Fig. 8a), although CD27− B cells with unknown functions were
also significantly enriched in tumours with low immune-ITH
(Fig. 3a). This data demonstrated that immune-ITH is linked to
distinct immune subsets distribution and hence the overall
immune status of TME.

To further validate the immunosuppressive status of tumours
with high immune-ITH, we showed that the intratumoural tissue
density of Treg was indeed enriched in the tumours with high
immune-ITH (Fig. 3b). Next, we also tested the functionality of
CD3+ T cells for cytokines production upon Phorbol 12-
myristate 13-acetate (PMA)/Ionomycin stimulation and observed
varying percentages of cytokine-expressing T cells across different
tumour sectors, demonstrating a marked degree of ITH in T-cell
functionality (Fig. 3c). Consistent with the findings above, the
levels of the pro-inflammatory cytokines tumour necrosis factor-α
and interferon-γ in stimulated CD3+ T cells were lower in
tumours with high vs. low immune-ITH (Fig. 3d).

Overall, tumours with low immune-ITH experienced stronger
immune pressure; while tumours with higher immune-ITH
harboured a more immunosuppressive and exhaustive TME.
Such gradient towards immune inactivation with increased
immune-ITH indicates TME remodelling and immune evolution,
which could have important implications in tumour progression.

Immunoediting events in tumours with different immune-
ITH. Given the link between immune-ITH and intratumoural
immune status, we next examined non-silent mutations, loss of
heterozygosity in human leukocyte antigens (HLA-LOH) and
immunoediting16, events known to be driven by immunoselective
pressure. Comparing low vs. high immune-ITH tumours
according to median immune-ITH scores, we observed higher
total non-silent mutations in high immune-ITH tumours
(Fig. 4a), suggesting a tumour evolutional trajectory with the
accumulation of more mutational burden. Next, we examined
specific genomic mutations, the neoantigen (8-mer to 11-mer
epitopes with <500 nM predicted binding affinity to major his-
tocompatibility complex (MHC) class 1), which could be pre-
sented to and recognized by the immune system. Interestingly,
tumours with high immune-ITH harboured higher total and
subclonal (occurred in at least one but not all sectors), but not
clonal (occurred in all sectors) neoantigens (Fig. 4b). This data
suggests that the heterogeneity of neoantigens across tumour
sectors represented by higher subclonal neoantigens mirrored
that of the increased immune-ITH. Also as genomically hetero-
genous tumours with higher subclonal neoantigens was shown to

Fig. 1 Significant degree of intratumoural heterogeneity (ITH) in the immune landscapes of HCC. a Two to five tumour sectors (T), one adjacent non-
tumour sector (N) and one PBMC (P) sample were collected from each of the 28 HCC patients and analysed by CyTOF, RNA sequencing (seq) or whole
genome sequencing (WGS) for their genomic, transcriptomic and immunomic profiles. b Global tSNE plots showing 30 immune clusters (0–29) from all
tumour sectors (n= 95), each represented by one colour. c Heatmap depiction of 30 immune clusters (rows) with normalized protein markers expression
(columns) from all samples. The colour bars on the left correspond to the major immune lineages. d Graphs showing proportions of 30 immune clusters in
each tumour sector from five representative HCC patients. e Bar graphs showing proportions of 15 immune subsets (percentages of each immune subsets
of total live CD45+ immune cells) in all 95 tumour sectors from 28 HCC patients (each patient labelled and separated by grey colour zone). Bottom,
heatmap showing relative immune-ITH scores of 28 HCC patients with respect to its median value. Each bar represents a single tumour sector. f Scatter
plot showing correlation between immune-ITH scores calculated from tSNE or manually gated immune clusters. g Scatter plot showing correlation between
immune-ITH scores by Spearman’s correlation and Euclidian distance metrics. h Left: representative images from multiplex immunohistochemistry (mIHC)
stained for CD8 (green), CD4 (red) and DAPI (blue) on either homogenous (patient A002) or heterogeneous (patient C002) tumours. Scale bar, 50 μm.
Right: correlation between immune-ITH calculated by Spearson’s correlation from CyTOF data and standard deviation (SD) of CD4+ and CD8+ T-cell
density derived from mIHC data. f–h Spearman’s correlation coefficient, ρ- and p-value were indicated.
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be an indication of tumour evolution27, this again provided evi-
dence of potential co-evolution between the tumour and immune
landscapes, where both demonstrated enhanced heterogeneity.

Given that the stronger immunoselective pressure experienced
by tumours with lower immune-ITH could serve as a driving
force for tumour escape mechanisms such as HLA-LOH and

immunoediting16, we next mapped the HLA-LOH and immu-
noediting (represented by the ratio of neoantigen/non-silent
mutation) against immune-ITH from each tumour sector
(Fig. 4c). Interestingly, we observed lower immune-ITH in
tumours with HLA-LOH (Fig. 4d), indicating a defective antigen-
presentation machinery (HLA-LOH) as a tumour escape
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Fig. 2 Tumour evolution trajectory along immune-intratumoural heterogeneity (ITH). a Representative RNA and DNA phylogenetic trees from tumours
with low vs. high immune-ITH. The genetic distances between each tumour sector (T), as well as between tumours and adjacent non-tumour tissue (N),
were represented by the length of the tree branches drawn to scale. b Comparing low vs. high immune-ITH across 95 tumour sectors (top), bar chart
showing the altered genome fraction (second top), heatmap showing differential copy number variations (CNV) level (middle) and copy number status of
the selected genes showing significant deletion or amplification (bottom). Source data are provided as a Source Data file. c CNV by altered genome
fractions in low vs. high immune-ITH tumours. **P < 0.01 by two-sided Wilcoxon’s rank-sum test. d Selected genes showing significant deletion,
amplification or no change respectively, between tumours with low vs. high immune-ITH. Two-tailed P-values by Fisher’s exact test, **P < 0.01, ***P <
0.001, ****P < 0.0001.
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mechanism in tumours with low immune-ITH. In addition, we
observed significant immunoediting (indicated by lower neoanti-
gen/non-silent mutation ratio) only in tumours with low
immune-ITH and intact HLA (Fig. 4e), indicating that only
tumours with stronger immune pressure (low immune-ITH) and
antigen-presentation capability (intact HLA) underwent immu-
noediting as another escape mechanism. We further confirmed
this by calculating the immunoediting score as the ratio of
observed : expected neoantigens per non-silent mutation accord-
ing to previously published methods16 and showed significant
immunoediting event only in low immune-ITH tumours with
intact HLA (Fig. 4f). This data strengthens the link between
immune-ITH, immunoselective pressure and tumour escape
mechanisms as a series of tumour evolutionary events.

Taken together, tumours with low immune-ITH experienced
higher immunoselective pressure and underwent HLA-LOH and
immunoediting as the intrinsic tumour escape mechanisms.
Whereas tumours with high immune-ITH escaped with extrinsic
mechanisms by remodelling towards a more immunoexhaustive
and suppressive TME as well as accumulated more mutations
particularly subclonal neoantigens. These distinct evolutionary
mechanisms provided evidence for tumour-immune co-evolution
along the gradient of immune-ITH in HCC tumours.

Transcriptomic signature and networks of immune-ITH. To
provide mechanistic insights to immune-ITH, we next examined
the transcriptomic or molecular signatures associated with
immune-ITH. We first identified a total of 1709 differentially
expressed genes (DEGs) as the ‘immune-ITH transcriptomic
signature’ when comparing tumours with low vs. high immune-
ITH (Supplementary Fig. 9a). To further explore the interactions
between the tumour-specific transcriptome with its immune
landscapes, we filtered off from these DEGs the genes contributed
by immune subsets according to CIBERSORT28 to obtain the
tumour-specific transcriptomes. We then correlated these genes
with the proportion of key immune subsets in TME (from
CyTOF) and found very distinct transcriptome-immune net-
works between tumours with low vs. high immune-ITH (Fig. 5a,
b). Tumour transcriptome from low immune-ITH showed posi-
tive association with cytotoxic NK cells and activated GB
+memory CD4+ and PD-1− GB+ CD8+ T cells, or negative
association with immunosuppressive Treg, exhausted PD-1+GB
−CD8+ T cells and inactive GB− memory CD4+ T cells (Fig. 5a).
The opposite transcriptome-immune interactions were observed
in high immune-ITH, whereby positive correlations with
immunosuppressive and exhaustive or negative correlations with
cytotoxic and activated immune subsets were observed (Fig. 5b).
These networks demonstrated that transcriptomic signature of
high immune-ITH was closely linked to an immunosuppressive
and exhausted TME, consistent with our data above.

Next, we performed pathway enrichment analyses on the DEGs
from these low or high immune-ITH networks (Fig. 5c and
Supplementary Table 4). We found that metabolism pathways,
particularly genes associated with fatty acid metabolism, such as
CBR4, CPT2, ACAA2, ECHDC2 and ACAA1, as well as
glycoprotein-related genes such as CLEC1A, ADAMTS4,
COL25A1, CLEC3B, ADAMTS1 and CLEC2B were enriched in
tumours with low immune-ITH (Fig. 5c, d), indicating the
distinct metabolism pathways were potentially involved in
maintaining the immune status of TME in HCC. Indeed,
metabolic regulation of immune functions in cancer have been
increasingly appreciated in a number of recent studies29,30.

Conversely, the pathways enriched in trancriptome-immune
network from tumours with high immune-ITH included
cell cycle, nucleotide-binding, centromere, microtubule and

transcription (Fig. 5c), all of which were well known to be
associated with tumour cell proliferation and disease progres-
sion31–33. In particular, cell cycle genes such as CSNK2A1,
MCM8, CDK19, KIFC1 and MCM7 (Fig. 5d), among which
KIFC1 was previously found to be a factor for poor prognostic
and a therapeutic target associated with tumour proliferation in
HCC34,35, even though its immunodulatory function has never
been described before. Another group of chaperone genes, such as
CCT6A, CCT4, TCP1, CCT5, PTGES3 and CCT7 (Fig. 5d), were
previously implicated in cancer cell proliferation and predicts
poor prognosis in HCC36,37.

The distinct gene-immune networks further strengthened the
evidence that transcriptomic signature of immune-ITH was
closely linked to the phenotypes of its TME. More importantly, it
demonstrated that tumours with high immune-ITH formed a
transcriptomic network linked to immune exhaustion or
suppression, as well as tumour proliferation and disease
progression.

High immune-ITH predicts worse disease prognosis and sur-
vival in HCC patients. Although genomic- and transcriptomic-
ITH has been shown to correlate with poor prognosis in various
cancers38, the clinical relevance of immune-ITH remains
unknown. Our data above suggest that tumours with high
immune-ITH are more immunosuppressive, harboured more
mutations and show aggressive or progressive tumour tran-
scriptomic signature. By examining immune-ITH against multi-
ple clinical parameters, we indeed found that high immune-ITH
was associated with larger size of tumours, higher degree of
fibrosis, the presence of microvascular invasion (MVI) and
advanced tumor node metastasis (TNM) stage of tumour (Fig. 6a,
b), all of which indicative of tumour progression and poor disease
profiles. Of note, the immune-ITH is not associated with other
parameters such as grade, alpha fetoprotein (AFP) level or the
number of tumour sectors collected and analysed (Supplementary
Fig. 10a). It is also independent of the viral hepatitis status of the
patients (Supplementary Fig. 10b).

More importantly, patients with tumours of high immune-ITH
had a significantly higher risk of recurrence than those with
tumours of low immune-ITH (Fig. 6c). Of note, patients received
no treatment prior to the point of recurrence, showing this as a
phenomenon following the natural trajectory of tumour evolution
and disease progression that was not influenced by any
therapeutic intervention. Next, we examined the survival impact
of immune-ITH in our current cohort with both univariate and
multivariate analyses, taking into consideration of multiple
clinical factors including tumour stage, grade, size, MVI, as well
as other factors associated with immune-ITH including cytokine-
expressing CD3+ T cells (representing TME immunoselective
pressure), DNA- and RNA-ITH, and tumour neoantigen burden.
Among all the parameters, only immune-ITH as well as stage,
tumour size, MVI and race were significantly linked to
recurrence-free survival (RFS) in the univariate analysis (Supple-
mentary Table 5). From the multivariate analysis, we found that
only immune-ITH remained an independent predictive factor for
RFS, together with stage and MVI (Fig. 6d). Hence, to rule out
potential confounding effect from both stage and MVI, we tested
the impact of immune-ITH only in patients with tumours from
early stages (TNM stage I and II) or without MVI and found that
immune-ITH remained an independent predictor of RFS (Fig. 6e).
Taken together, increased immune-ITH was significantly asso-
ciated with worse clinical profile and predicts for poor disease
outcome in HCC patients.

Lastly, to validate the impact of immune-ITH on larger
publicly available HCC dataset, we interrogated the expression
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profile of 1709 immune-ITH gene signature in two large public
HCC datasets: the Japanese Liver Cancer from the International
Cancer Genome Consortium39 (‘Japanese,’ n= 203) and the Liver
HCC from TCGA40 (‘TCGA,’ n= 315). For each dataset, we
clustered the patients into low or high immune-ITH associated
groups based on significant differential expression of immune-
ITH related genes (Supplementary Fig. 11a). Indeed, we
confirmed that patients with gene expression profiles resembling
high immune-ITH had poorer overall survival (OS) than those
with gene expression profiles resembling low immune-ITH, in
both the Japanese and TCGA cohorts (1000-time bootstrap false
discovery rate (FDR) < 0.01, Fig. 6f). Therefore, despite the fact
that these publicly available transcriptomic data were obtained
from single tumour biopsy, the molecular features underlying
immune-ITH were consistently and closely linked to advanced
clinical trajectory. We further confirmed the robustness of our
observations by shifting one patient between the immune-ITH
groups and using leave-one (patient) out method to show that
>95% of target genes remained consistent and capable of
segregating patients’ OS (Supplementary Fig. 11b, c). Hence, we

have identified and validated a robust immune-ITH signature
capable of predicting disease prognosis in HCC patients.

In conclusion, we proposed a tumour-immune co-evolution
model (Fig. 6g), where the immune landscapes evolved with
increased immune-ITH and immunosuppressive/exhaustive
TME; concurrently, the tumours evolved with accumulation of
more mutations and escaped using HLA-LOH or immunoediting.
Collectively, these events lead to tumour progression and early
recurrence, making immune-ITH a hallmark of tumour evolution
and progression.

Discussion
The clinical relevance of immune-ITH and its relationship with
tumour evolution were not explored previously. Our current
study uncovered significant degree of immune-ITH from multiple
HCC tumour regions and their inter-relationships with tumour
evolution and impact on clinical outcome. We observed a sig-
nificant degree of immune-ITH, which is linked to
transcriptomic-ITH. Importantly, a gradient of immunoselective
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pressure was uncovered along with immune-ITH, under which
the tumours employed distinct mechanisms to escape accord-
ingly. The immune-ITH transcriptomic signature provided
insights in pathways associated with tumour progression and
dampening of immune response in TME. Lastly, our data

demonstrated that immune-ITH correlates to worse clinical
profile and could predict for poorer prognosis in HCC patients,
emphasizing immune-ITH as a hallmark of tumour evolution and
critical indicator of disease progression. Taken together, our
current findings show extensive cross-talk between tumour and
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immune microenvironments, which co-evolve along tumour
progression with increased immune-ITH, enhanced TME
exhaustion and tumour mutations, supporting a tumour-immune
parallel evolution model (Fig. 6g).

Despite previous work that described the heterogenous land-
scapes of HCC6,11,14, the impact of immune-ITH is largely
unknown. Ma et al.6 employed single cell RNA sequencing to
analyse the multiple tumour sectors before ICB and concluded
that tumour cell transcriptomic diversity is linked to clinical
response to ICB. However, the biological and clinical relevance of
immune-ITH remain unexplored. Losic et al on the other hand
focused mainly on how T cell receptor (TCR) clonal hetero-
geneity is correlated to tumour genomic ITH in liver cancer14,
while our study focused on the heterogenous composition and
spatial locality of TILs as an evolutionary event that is relevant to
clinical outcome. Lastly, despite the fact that the immune land-
scapes from multiple regions of HCC were previously analysed,
the tumours were segregated into high or low immune infiltration
for correlation with clinical outcome11, which again did not
demonstrate the relevance of immune-ITH as an evolutionary
event of tumour progression as we have shown herein.

It is important to appreciate that tumour-immune interaction is
heterogeneous, dynamic and also bi-directional. For instance,
immune pressure could potentially drive tumour genomic
evolution16,41; in return, immune landscapes are also constantly
being shaped by the tumour transcriptomic landscapes42,43. From
our current data, the HCC TME shifted from homogenously ‘good’
to heterogenously ‘bad’ albeit exhausted and suppressive TME,
forming a gradient of decreasing immunoselective pressure, an
indication of immune landscape remodelling and evolution. The
tumours, on the other hand, accumulated more mutations espe-
cially subclonal neoantigens, showing its parallel evolution trajec-
tory. Hence, as concluded in the current study, the tumour-immune
dynamic is changing constantly to adapt to one another,
strengthening the concept of tumour-immune co-evolution cham-
pioned by several previous studies44. Our findings also highlight
that even within a single tumour, each tumour sector harbours its
own unique mutation and microenvironment. This poses a notable
challenge to conventional clinical decision-making, which is based
on sampling of a single tumour biopsy. Despite a recent report that
claimed the reliability of single-sample in HCC from multi-region
sampling and analysis using mainly IHC45, our data proposed
herein the existence of significant immune heterogeneity with
clinical relevance with in-depth immuno-phenotyping.

As both tumour mutational burden and TME have important
implications in the response to immunotherapy46,47, higher total
mutational burden, neoantigens loads as well as higher frequency
of exhausted PD-1+CD8+ T cells (prime target for anti-PD-1
ICB) in HCC tumours with high immune-ITH could potentially
show better respond to immunotherapy. However, it must also be
taken into consideration that these tumours are also infiltrated
with more Treg and harboured higher subclonal neoantigen levels
(consistent with a more heterogenous tumour), which may
dampen the response and leading to resistance to
immunotherapy48,49. Moreover, the recent study from liver can-
cer patients treated with ICB demonstrated that low tumour
transcriptomic diversity and higher cytolytic activity of CD8+
T cells, consistent with our tumours with low immune-ITH,
predicts clinical response to immunotherapy6. On the other hand,
our current data show VEGFA amplification in the tumours with
high immune-ITH, indicating the potential therapeutic benefit of
combining anti-angiogenesis agent and checkpoint blockade in
advanced HCC as demonstrated in recent successful phase III
trial (IMbrave150) using atezolizumab (anti-PD-L1) and bev-
acizumab (anti-VEGFA)5. Therefore, it will be very important
and interesting to study how this immune-ITH could affect

response to immunotherapy with a deeper understanding of this
intratumoural immune–host dynamics, which we believe would
be helpful to stratify HCC patients for precision immunotherapy.

In conclusion, our study deciphers the complexity of intratu-
moural immune–host interaction and provides evidence showing
immune-ITH as a hallmark of tumour-immune co-evolution
along HCC progression.

Methods
Patients. Ninety-five tumour sectors from two to five regions per tumour (T), 28
matched adjacent non-tumour liver tissues (N) and pre-surgical blood were
obtained fresh from 28 HCC patients underwent surgical resection at Singapore
General Hospital, National Cancer Centre Singapore and National University
Hospital (Supplementary Table 1). This is part of the on-going Prospective Cohort
Study on the Clinical Trajectory of Resected Hepatocellular Carcinoma (PLANET)
(NCT03267641), an observational cohort study following standard of care- liver
cancer resection and routine follow-up with primary outcome measured as time to
recurrence. The study was approved by the Central Institution Review Board
(CIRB) of SingHealth, of which all National Cancer Center Singapore, Singapore
General Hospital and National University Hospital were constituent members
(CIRB Ref: 2016/2626 and 2018/2112). Each patient gave informed written consent.
Patients received no pre- or post-surgical treatment until recurrence, consistent
with current standard of care. This allows us to study the natural progression of
disease without the influence from treatment. Patients were monitored pro-
spectively with regular imaging and other clinical investigations. Strict protocol of
multi-sector tumour sampling was followed (Supplementary Fig. 1a, b) and each
sector was divided for CyTOF, WGS and RNA sequencing (Fig. 1a). TILs and non-
tumour tissue-infiltrating leukocytes (NILs) were isolated by enzymatic digestion
and peripheral blood mononuclear cells (PBMCs) by Ficoll-Paque layering17.

Cytometry by time-of-flight. TILs, NILs and PBMCs were either unstimulated or
stimulated with PMA and ionomycin (Sigma). Cells were processed and stained
with 38 antibodies (Supplementary Table 2) purchased preconjugated or con-
jugated in-house according to the manufacturer’s instructions (Fluidigm) before
analysis on a HeliosTM mass cytometer (Fluidigm). The generated files were ana-
lysed by FlowJo (v.10.2; FlowJo): live single cells (cisplatin-negative and DNA-
intercalator-positive) were debarcoded to each sample file based on their unique
CD45 barcodes. Each file was then down-sampled to 10,000 cells and further
analysed using our in-house The Extended Polydimensional Immunome Char-
acterization (EPIC) analysis pipeline, which contains the browser-based R Shiny
app’SciAtlasMiner’19 for data visualization. Clustering was performed using the
Phenograph (v.1.5.2)18 algorithm that automatically determines the number of
clusters. Dimension reduction was carried out using fast interpolation based t-
distributed neighbour embedding (fi-tSNE, v.1.0.1). Manual gating of 15 immune
subsets was performed with FlowJo (v.10.2).

RNA sequencing. Total RNAs were isolated from tissues using Picopure RNA-
Isolation kit (Arcuturus, Ambion) and cDNAs constructed using SMART-Seq®v4
UltraTM Low Input RNA Kit (Clontech, USA). Illumina-indexed libraries were
generated using Nextera-XT DNA-Library Prep Kit (Illumina, USA). RNA
sequencing was performed on HiSeq High output platform at the Genome Institute
of Singapore (GIS).

The raw reads were aligned via STAR v2.5.2a50 to the Human Reference Genome
hg19 and the expected gene-level counts were calculated using RSEM v1.3.051. Only
protein-coding genes with >1 count/million reads in ≥5% of the samples were
retained. Data were normalized using DEseq2 v1.22.2 and DEGs analysis was
performed using the R package v3.4.4 with Limma v3.38.352 at FDR < 0.01. Pathway
enrichment analyses were performed using DAVID v6.8. For RNA-immune network
and correlation analyses, genes from immune subsets were filtered out according to
the gene list provided by CIBERSORT28 and correlation plots were generated using
ggplot2 v3.1.1 for selected DEGs with p < 0.05 and ρ ≥ 0.4.

Whole genome sequencing. DNA was extracted from tissues using Qiagen All-
Prep kit, DNA fragments were end-repaired, ligated with sequencing adapters,
amplified, and sequenced by Illumina sequencing platform at GIS. Raw reads were
mapped to the Human Reference Genome hg19 using Burrows–Wheeler Aligner
v0.7.12. Duplicated reads were removed, base-quality recalibration and realignment
were performed using Genome Analysis Tool Kit v3.1. Somatic variants were called
by comparing tumour vs. non-tumour samples using Mutect v1.1.753.

ITHs quantification and immunohistochemistry. The proportions of immune
clusters from tSNE analysis or manual gating (Supplementary Fig. 2a) in each
tumour sector were calculated. The ITH scores were calculated for patients with ≥2
tumour sectors using pairwise comparison of all sectors for: (i) DNA, as ratio of the
number of unique DNA mutations to the total number of DNA mutations; (ii)
RNA, as 1 minus the Spearman correlation coefficient’s ρ of RNA expression of
each gene; and (iii) immune, as 1 minus the Spearman’s ρ of proportions of the
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immune subsets. The median values were taken as the patient-level ITH scores.
Phylogenetic trees were constructed based on the distance matrix defined between
the samples using the neighbour-joining algorithm54. For DNA, we used the
hamming distance between mutational profiles of the samples. For RNA, we used 1
− Spearman’s correlation as the distance measurements between samples.

Multiplex IHC (mIHC) on representative formalin-fixed paraffin-embedded
tissues (n= 26), was performed with anti-human CD4 (Abcam, clone EPR6855, 1 :
200), CD8 (DAKO, clone C8/144B, 1 : 200) and Foxp3 (Abcam, clone 236 A/E7, 1 :
100) antibodies using OpalTM 7-Color IHC Kit (Perkin Elmer) according to the
manufacturer’s instructions. The density of CD4+ and CD8+ was quantified as
number of cells/mm2 from 10 × 3mm2 representative fields. We then calculated the
SD of cell density across tumour regions, which reflects the heterogeneity or
similarity, for each tumour. The degree of fibrosis were also scored according to
Metavir scoring system55 using standard haematoxylin and eosin staining on the
adjacent non-tumour liver tissue sections.

CNV analysis and non-silent mutations. Somatic CNVs were called and seg-
mented with Sequenza v2.1.2. Gene-level copy numbers were obtained with GIS-
TIC(v2.0) using segmented copy numbers56. Altered genome fraction was
calculated by considering the segments with integer copy number greater or less
than the median copy number. The fraction was calculated as total length of
aberrant segments/total length of all segments. To compare the altered genome
fractions in two immune-ITH groups, a two-sided Wilcoxon’s rank-sum test was
used. The CNV frequency differences were identified by comparing the cytoband
level copy numbers between two immune-ITH groups using Fisher’s exact test with
adjusted Benjamini–Hochberg p-values.

Non-silent or nonsynonymous mutations were computed from mutations
resulting in both missense (mutations in a single nucleotide that result in
alternation in amino acid encoded) and nonsense (mutations in the DNA sequence
resulting in a stop codon) mutations53.

HLA-LOH analysis, neoantigen prediction and immunoediting scoring
MHC class I. HLA-A, -B, -C genes were determined by Polysolver v1.057, purity
and ploidy values by Sequenza v2.1.258 and HLA copy number calling by
LOHHLA59. Minor allele copy number < 0.5 was considered as HLA-LOH.
Neoantigen prediction was performed using personalized Variant Antigens by
Cancer Sequencing (pVacSeq v4.0.10)60 and variants calling information were
obtained from MuTect v.1.1.753. The variant calls were annotated using VEP v86:
8- to 11-mer epitopes with <500 nM binding affinity. Total, clonal (expressed by all
tumour sectors) and subclonal (expressed by at least one but not all sectors)
neoantigens were computed. The immunoediting scores were computed as the
ratio of observed neoantigen/expected mutations as previously described16. Briefly,
the expected number of non-silent mutations and neo-peptides were calculated
based on mutational spectra estimated empirically16 and compared to the observed
number of non-silent mutations and neoantigens.

Survival analysis. Kaplan–Meier analysis of RFS was performed with the log-rank
(ManteleCox) test (GraphPad Prism v7). Univariate and multivariate analyses were
performed using Cox proportional hazards model.

Two public HCC datasets were analysed to assess the survival impact of the
immune-ITH (using n= 1,709 DEGs) and FDR was estimated by 1000-time
bootstrap. Specifically, we segregated the patients based on the differential expression
level of 1709 DEGs associated with immune-ITH from our current cohort, i.e., the
patients showing high expression of low immune-ITH-associated genes was grouped
as low immune-ITH group and those with high expression of high immune-ITH
associated genes was grouped as high immune-ITH group (Supplementary Fig. 8a).
We then examined the survival profile between these two groups of patients by
Kaplan–Meier. The raw counts for the Japanese Liver Cancer from the International
Cancer Genome Consortium (Liver Cancer-RIKEN, Japan; Project Code LIRI-JP) and
the TCGA dataset (Liver HCC, The Cancer Genome Atlas) were downloaded from
the International Cancer Genome Consortium Data Portal39 and FireBrowse40,
respectively. Only protein-coding genes with fragments per kilobase of exon model
per million reads mapped >1 (Japanese dataset) or raw counts > 1 (TCGA dataset) in
≥5 samples were retained, and data were normalized using DEseq2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data used in the study has been deposited at the European Genome–phenome
Archive (EGA), which is hosted by The European Bioinformatics Institute (EBI) under
the accession code: EGAS00001003814. The remaining data are available within the
Article, Supplementary Information and Source data provided with this paper.
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