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Abstract

Background: First-generation gene signatures that identify breast cancer patients at risk of recurrence are confined to
estrogen-positive cases and are driven by genes involved in the cell cycle and proliferation. Previously we induced sets of
stromal genes that are prognostic for both estrogen-positive and estrogen-negative samples. Creating risk-management
tools that incorporate these stromal signatures, along with existing proliferation-based signatures and established
clinicopathological measures such as lymph node status and tumor size, should better identify women at greatest risk for
metastasis and death.

Methodology/Principal Findings: To investigate the strength and independence of the stromal and proliferation factors in
estrogen-positive and estrogen-negative patients we constructed multivariate Cox proportional hazards models along with
tree-based partitions of cancer cases for four breast cancer cohorts. Two sets of stromal genes, one consisting of DCN and
FBLN1, and the other containing LAMA2, add substantial prognostic value to the proliferation signal and to clinical measures.
For estrogen receptor-positive patients, the stromal-decorin set adds prognostic value independent of proliferation for
three of the four datasets. For estrogen receptor-negative patients, the stromal-laminin set significantly adds prognostic
value in two datasets, and marginally in a third. The stromal sets are most prognostic for the unselected population studies
and may depend on the age distribution of the cohorts.

Conclusion: The addition of stromal genes would measurably improve the performance of proliferation-based first-
generation gene signatures, especially for older women. Incorporating indicators of the state of stromal cell types would
mark a conceptual shift from epithelial-centric risk assessment to assessment based on the multiple cell types in the cancer-
altered tissue.
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Introduction

After a decade of development and early success, the enterprise

of building gene-based classifiers for breast cancer risk assessment

is entering a period of review and integration/consolidation

[1,2,3,4,5,6,7]. Gene-based studies have delivered insights into the

complexity of breast cancer, especially the recognition that breast

cancer consists of multiple distinct diseases at the molecular level

[8], but to date the process of translating these insights into clinical

practice has been halting and incomplete [9], though gene-based

diagnostics have demonstrated sufficient value as aids to the

prognostication of early breast cancer for estrogen-positive patients

to be cleared for clinical use by the FDA [10,11] and, in the case of

the OnctotypeDX 21-gene Recurrence Score, to be approved by

ASCO and NCCN [12]. Compared to available indices and scores

such as Adjuvant! Online and the St. Gallen guidelines, gene

signatures have demonstrated greater accuracy in discriminating

‘‘good’’ from ‘‘poor’’ prognoses, at least for estrogen-positive

patients within a near-term (five year) time frame, though the

improvement over optimized clinicopathological measures or over

indices such as the Nottingham Prognostic Index may be modest

[13,14,15].

First-generation gene signatures, most prominently the Am-

sterdam70-gene, Rotterdam 76-gene, and Genome Grade Index

(GGI) [16,17,18] are driven principally by proliferation and cell-

cycle genes [19,20,21]. In fact, several of the gene signatures

become more sensitive and specific when all but the proliferation

genes are removed [22]. Moreover, in a proof of concept Haibe-

Kains and colleagues have shown that the signal in a single

proliferation gene, AURKA, performs nearly as well as several of

the best-studied gene signatures despite the fact that they are

comprised of dozens or hundreds of genes [23]. Since proliferation

genes are mostly up-regulated for estrogen-negative tumors, they

may not exhibit the variance needed to discriminate low risk from

high risk patients in this subpopulation [22,24,25].Gene signatures

that appear to apply to both estrogen-positive and estrogen-

negative subsets, for example the 3D model-based signature
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developed by Martin et al. [26,27], rely on separate subsets of

genes, one prognostic for estrogen-positive samples, the other for

those that are estrogen-negative.

In addition to prognostic and predictive gene signatures, the

principal contribution of microarray-based studies has been the

delineation of breast cancer subtypes. A consensus has emerged

that at least three subtypes exist, one that expresses markers for

estrogen receptor a, but not for HER2, one that expresses HER2,

and a residual subtype that expresses neither [28]. General

agreement as to how these subtypes might be further elaborated

has yet to emerge, though a strong case has been made that the

estrogen receptor-positive or luminal subtype can be further

divided by the expression of proliferation genes or biomarker for

proliferation such as Ki67 [18,29].

Against this backdrop, among the efforts to refine and extend

gene-based classifiers, two lines of research stand out. One involves

efforts to define subsets of estrogen-negative or HER2-positive on

the basis of sets of immune-related genes [30,31,32,33]. The

second involves stromal signatures [34,35,36,37], some of which

appear to be driven, again, largely by the proliferation signal.

Important exceptions to this include West et al.’s Desmoids-Type

Fibromatosis (DTF) signature [38,39,40] and a stromal metagene

derived by Bianchini et al. [41]. Prominent on both of these gene

lists are collagen-related genes including SPARC, CSPG2, FBLN2,

FBN1, and type-I, type-III, and type-VI collagens. The DTF

signature was devised as a proof of concept for a larger, on-going

program that exploits the mono-cellular property of soft tissue

tumors to inductively define subtypes (or states) of fibroblastic

stroma cells [38,39,42]. It is significantly prognostic of increased

survival for breast cancer [40].

From an earlier investigation of the stromal sets as prognos-

ticators of survival there is evidence that the stromal genes add

information to estrogen and proliferation expression and to such

clinical measures as lymph node involvement [43]. Specifically

N The stromal set consisting of DCN and FBLN1 adds prognostic

value for near-term events (,2.5 years) for both lymph node-

positive and lymph node–negative patients.

N This stromal-decorin set adds substantial prognostic value for

near-term events for samples both up-regulated and down-

regulated on proliferation genes.

N A second stromal set, in which LAMA2 figures prominently,

may add prognostic value to both estrogen-positive and

estrogen-negative cohorts, though for this dataset the number

of estrogen-negative samples and events is very small [44].

These initial findings suggest, on the one hand, that the stromal

sets might possibly improve the performance of first-generation,

proliferation-based gene signatures. On the other hand, these

genes might be incorporated into the definitions of sub-subtypes in

a future breast cancer typology. To establish whether the stromal

gene sets add significant independent information to the pro-

liferation signal and to clinical descriptors, we built Cox pro-

portional hazards models to investigate disease free survival as

functions of combinations of these factors. We fit these models to

the data as a whole and, separately, to estrogen-positive and

estrogen-negative patients for each of the four breast cancer

datasets listed in Table 1. In addition to the Cox regressions, we

searched for prognostic gene sets using a visualization device that

in effect builds decision trees from partitioned heatmaps of

expression values. The predictors in the Cox models, and the

partitioned gene sets in the figures, include three sets of genes

(proliferation, stromal-decorin, and stromal-laminin), along with

clinical measures, principally lymph node status and tumor size.

Estrogen Gene Set
In the effort to determine whether the stromal signal was

substantial and independent of both estrogen and proliferation

when adjusting for clinicopathological measures, we applied

univariate and multivariate Cox regression using stepwise back-

ward elimination with a inclusion cutoff of p=0.10. In two of the

four datasets estrogen receptor status is available for each patient.

For the MAINZ and STOCKHOLM cohorts only the total

number of estrogen-positive and estrogen-negative samples is

reported. In those cases, as a surrogate for estrogen-status we used

a dichotomous variable based on expression levels for the genes in

the estrogen gene set discovered by the partitioning algorithm.

That estrogen gene set, which includes ESR1, GATA3, CA12,

JMJD2B, FOXA1, TBC1D9, SLC7A8 closely matches a number of

lists reported in the literature, including, for example, the

Sensitivity to Endocrine Therapy (SET) index, a list of genes

whose expression correlates with ESR1 [45].

Proliferation Gene Set
To render proliferation as a continuous variable in the Cox

proportional hazards models we used a set of proliferation genes

we found previously [43]. The genes in this set coincide closely to

lists of proliferation and cell cycle related genes that have been

reported in several microarray-based studies of breast cancer

[18,22,25,46,47]. Genes prominent in this set include: UBE2C,

TPX2, FOXM1, BIRC5, TOP2A, and AURKA aka STK6. Of

the forty-one distinct genes in the proliferation set, all but four

belong to the list of 97 genes that define the GGI index (while one

of the remaining four is found in the less stringent version of the

GGI list) [18]. The genes in our proliferation set also constitute

a proper subset of a second proliferation list developed by Wirapati

et al. [22] using a supervised method.

Selecting Two of Four Stromal Sets as Representative
As previously reported, there are at least four stromal gene sets

[43]. Although formal tests for separation indicate that these sets

induce distinct patterns of partitions of breast cancer samples into

subgroups, a case can be made that the four can be reduced to two

pairs of sets, and, consequently, can be represented by just two of

the original sets. Specifically, the ordering induced on the breast

cancer samples by expression levels for the genes in the large

collagen set, which closely resembles West et al.’s DTF signature,

is quite similar to the ordering on the samples induced by the small

set consisting of only decorin and fibulin-1. Similarly, the two

remaining stromal sets induce similar orderings on breast cancer

samples when expression levels across the genes are ranked. These

two gene sets characterized, respectively, by LAMA2 and CAV-1,

might be jointly represented by the laminin set, which is comprised

of: LAMA2, IGF1, C10orf56, MFAP4, COL14A1, ZNF423, and

ABCA8. (It should be noted that unlike gene lists assembled on the

basis of a correlation, the ordering of the genes is not informative,

reflecting only the ordering of the probe sets on the Affymetrix

HG-U133A platform. Also, since each gene in a particular set

induces essentially the same ordering and partitioning on the

breast cancer samples, proper subsets of a gene set may be

functionally substituted for the set as a whole.).

Beyond the convenience of small size, a justification for

choosing the stromal-decorin and stromal-laminin sets is that they

are, at least in univariate models, among the most prognostic of

increased survival [43]. A second justification concerns possible

biological relevance due to biological function and cell type. That

is, it may be the case that these two sets, though related in the

pattern of partitions expressed, may reflect changes in the state of

aberration of two different cell types. The loss of decorin and
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laminin expression may be part and parcel of the de-differentiation

of myoepithelial and myofibroblast cells in the case of decorin, and

of myoepithelial cells, in the case of laminin. The loss of expression

of these decorin and laminin gene sets could signal the extinction

of the myoepithelial cell layer and the de-differentiation of stromal

fibroblasts (reactive stroma). These sets may, therefore, potentially

function as markers for the state of cell types in the stromal

compartment. They might serve as indicators of the extent or

degree of tissue change reflecting progression of the disease. If this

is the case, then the choice of the stromal-decorin and stromal-

laminin sets could be justified by their potential roles as indicators

of the aberrant state of at least two cell types within the cancer-

affected tissue.

Results

Uppsala
The UPPSALA dataset as reported in [44] is a population-

based cohort of 251 consecutively presented breast cancer patients

obtained from Uppsala county, Sweden, in the years 1987 to 1989.

The Affymetrix HG-U133A expression data is available at Gene

Expression Omnibus (GEO) [48] as series GSE3494, along with

clinical descriptions, including Breast Cancer Specific Survival

events and times for 236 of the samples.

Using Kaplan-Meier product limit estimations we previously

reported that the proliferation and four stromal sets are significant

univariate predictors of disease specific survival for this cohort.

This is the case when events are censored at five and ten years, and

with full follow-up [43]. This finding prompts the question of

whether these sets remain significant in combination and in the

presence of clinicopathological parameters, such as estrogen-

status, lymph node involvement, and tumor size and grade. Of

particular interest is that the univariate results suggest that at least

one of the stromal sets, that containing LAMA2, may be prognostic

for estrogen-negative breast cancer. If this proves to be truly the

case, then stromal factors might be usefully incorporated into the

next generation of breast cancer classifiers/disagnostic functions

since first-generation signatures fail to discriminate good from

poor prognosis for women with estrogen receptor-negative disease.

Table 2 records the results from a series of univariate and

multivariate Cox models for this dataset. The object is to discern

whether the predictors in the models (rows) add independent

prognostic value for the population of samples indicated by the

columns. Several of the multivariate models appear twice, once

with one predictor in bold font and a second time with a second

predictor in bold, e.g., ‘‘proliferation + decorin’’ and ‘‘decorin
+ proliferation’’. The entries in the table are the z values of the

corresponding predictor. Z values with a p value less than 0.05

appear in bold. The purpose of the table is to provide a summary

view of the sets or clinical measures that add prognostic

information, and in which combinations, for the cohort restricted

to estrogen receptor-positive samples, and for the cohort restricted

to estrogen receptor-negative samples. Each entry in the table is

taken from a Cox proportional hazards model which is presented

in full as a table in File S1.

Focusing on the models for the estrogen-positive and estrogen-

negative subsamples the essential finding for the Uppsala cohort is

that proliferation and stromal-decorin are independently prognos-

tic for estrogen-positive tumors, but not for estrogen-negative ones,

whereas stromal-laminin is either significant or marginally

significant for the estrogen-negative subpopulation. In more detail,

for the 202 estrogen-positive samples in the Uppsala cohort, of the

four clinical measures (age, grade, tumor size and nodal status),

only size and nodal status remain significant in multivariate

models selected by backwards elimination. For these estrogen

receptor-positive samples, proliferation is prognostic at full follow-

up and with events censored at five years, as a single predictor and

in combination with stromal-decorin and with clinical variables,

but not with both. In contrast, for these estrogen receptor-positive

samples stromal-decorin is prognostic at full follow-up and with

events censored at five years, as a single predictor and in

combination with proliferation and clinical descriptors. For the 34

estrogen-receptor negative samples, only stromal-laminin is

significant, and only with censoring at five years and in

combination with clinical variables, though stromal-laminin is

marginally significant as a single predicator for full follow-up and

with events censored at five years. Among the Cox models

summarized in Table 2, the two models extracted to Tables 3 and

4 are of particular interest. The domain for the first is estrogen

receptor-positive samples, using as predictors proliferation, stro-

mal-decorin, and clinical descriptors (nodal status and tumor size).

The domain for the second is estrogen receptor-negative samples,

using as predictors proliferation, stromal-laminin and nodal status

and tumor size. The stromal sets in these two models are

significant while the proliferation set is not, as reflected in the

hazard ratios and p-values.

In summary, for the Uppsala cohort, the regressions, supple-

mented by the visual check of the partitions, provide evidence that

Table 1. Datasets.

Dataset Samplesa ER+/ER2b Agec LNN/LN+d Sizee Gradef Endpointg Data source rf

Uppsala 251/236 202/34 64+/214h 158/84/9 22+/213h 69/126/54/2 BCSS SE3494 [44]

Mainz 200/200 156/44i 60+/212i 200/0 21+/210h 29/136/35/0 DMFS GSE11121 [32]

San Francisco 118/117 74/43 51+/215h 71/66 27+/214h 14/46/65 DMFS E-TABM-158 [50]

Stockholm 159/159 130/29 56+/214h 94/60 22+/12h 28/58/61/12 BCSS GSE1456 [49]

aNumber of samples/Number of samples with survival data.
bEstrogen receptor status.
cMedian age in years; mean age for Mainz.
dLymph Node status: LNN/LN+/unknown.
eAverage tumor size in cm.
fHistological Grade: 1/2/3/unknown.
gEndpoint: Breast Cancer Specific Survival, Distant Metastasis Free Survival.
hsource = [57].
iAs reported in [32], but not available in GSE11121.
doi:10.1371/journal.pone.0037646.t001
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N In multivariate models with proliferation, stromal-decorin is an

independent predictor of disease specific survival.

N While there are too few events in the Uppsala cohort to be

confident of the pattern, visual inspection of the data suggest

that the stromal-laminin gene set may be prognostic of disease

specific survival of estrogen-negative patients, which is not the

case for the proliferation set.

Stockholm
Our first attempt to confirm the UPPSALA results on a second

dataset was somewhat disappointing. The STOCKHOLM dataset

provides evidence that stromal-decorin is prognostic for estrogen

receptor-positive samples and stromal-laminin for the estrogen

receptor-negative samples, but in both cases the association does

not reach statistical significance. The STOCKHOLM dataset

consists of 159 breast cancer patients treated at the Karolinska

Hospital between January 1994 and December 1996 [49]. As an

unselected, population-based study of Swedish women it resembles

the UPPSALA cohort. The logged and normalized Affymetrix

HG-U133A expression data is available at GEO as series

GSE1456, along with clinical descriptions (version 2, revised June

12, 2009). The GEO expression data does not include estrogen-

status, though the overall proportion of estrogen receptor-negative

samples to estrogen receptor-positive samples (29/130) can be

inferred from a summary table in the published article [49]. To

assemble ER+ and ER- groups we split the 159 samples at the 18.2

quantile using the estrogen-related gene set described earlier. As

summarized in Table 5, the same series of Cox proportional

hazards models as in the UPPSALA analysis reveals that:

N Stromal-decorin is prognostic as a univariate predictor of

disease specific survival for the dataset as a whole with full

follow-up, but only marginally so for the estrogen-receptor

positive samples, (z =21.55, 95CI 0.38–1.11, p=0.11).

N For the estrogen-negative subset only stromal-laminin is

prognostic, and then only marginally so (z =21.68, 95CI

0.1–1.18, p = 0.09).

Inspecting the multivariate models for the STOCKHOLM data

there is not strong evidence that the stromal-decorin gene set adds

prognostic information to proliferation. The stromal-laminin set

may add prognostic value for estrogen-receptor negative samples,

but at a level that falls below statistical significance.

Table 2. Cox proportional hazards models for the UPPSALA cohort.

Cox proportional hazards models
Uppsala 202 ER+
full follow-up

Uppsala 202 ER+
censored@5 years

Uppsala 34 ER-
full follow-up

Uppsala 34 ER-
censored@5 years

Proliferation 3.71 3.36 1.31 0.24

proliferation + clinical 2.67 2.36 1.12

proliferation +decorin 2.17 2.15 0.43 0.69

proliferation + decorin + clinical 1.37 1.44 0.03 0.57

proliferation + laminin 2.06 2.38 20.55 20.52

proliferation + laminin + clinical 1.72 2.11 20.79 20.02

Decorin 24.36 23.75 21.73 21.19

decorin + clinical 23.65 22.89 21.56

decorin + proliferation 22.97 22.44 20.99 20.44

decorin + proliferation + clinical 22.74 22.09 21.44 21.1

laminin 23.43 22.5 21.92 21.74

laminin + clinical 22.97 21.16 21.97

laminin + proliferation 21.35 20.38 21.56 21.47

laminin + proliferation + clinical 20.53 0.47 22.09 21.77

Column labels indicate subsets of samples and follow-up period, e.g., ‘‘ER+@5’’ stands for estrogen-receptor positive samples with events censored at five years. Rows
specify the predictors in a Cox proportional hazards model. Table entries report the z value of the first predictor of the model in the corresponding row for the samples
in the corresponding column. Entries with p-values less than 0.05 appear in bold.
doi:10.1371/journal.pone.0037646.t002

Table 3. Multivariate Cox proportional hazards model with stromal-decorin for UPPSALA estrogen receptor-positive samples.

UPPSALA estrogen receptor-positive samples (n=202) with full follow-up

log(HR) HR Z p 95CI-lower 95CI-upper

nodal status 1.15 3.17 3.755 0.0001 1.73 5.8

tumor size 0.02 1.02 2.324 0.02 1.004 1.05

proliferation 0.38 1.46 1.37 0.17 0.84 2.53

stromal-decorin 20.67 0.5 22.748 0.005 0.31 0.82

likelihood ratio test = 47, 4 df, p = 1.41E-09

doi:10.1371/journal.pone.0037646.t003
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The difference in the findings for the two datasets, UPPSALA

and STOCKHOLM, might be ascribed to differences in the

number of samples or to the composition of the samples in terms of

clinical descriptors. With only 130 and 29 samples in the ER+ and

ER2 groups, it could well be the case that the multivariate Cox

proportional hazards models built for the STOCKHOLM cohort

lack the statistical power to discern the relationship between the

stromal sets and proliferation observed in the UPPSALA data.

Alternatively, or in addition, though in both UPPSALA and

STOCKHOLM studies patients were accrued consecutively and

in an unselected manner from the population, a comparison of the

clinical descriptions of the women may show a bias, e.g.,

a disproportionate number of older or more progressed cases.

With this possibility in mind, we investigated the association

between the stromal gene sets and clinical descriptors in the

UPPSALA data. Of the five clinical variables available (histologic

grade, ER-status, PgR-status, age, lymph node-status and tumor

size) after backward elimination only lymph node-status and tumor

size remained significant in the multivariate Cox models with

proliferation and stromal-decorin or stromal-laminin (File S1).

Lymph Node-status
Investigating the association between stromal set expression and

lymph node status in the estrogen receptor-positive and estrogen

receptor-negative subcohorts in the UPPSALA data, it is amply

clear that the stromal sets add prognostic value to lymph node-

status. This is visibly apparent in Figure 1 which arranges the

UPPSALA patients by lymph node- and estrogen-status, then

orders the samples by stromal-laminin expression. As evidenced by

how the attached Disease Specific Survival events (censored at 2.5

and 5 years) cluster at the low end of stromal-laminin expression, it

would appear that stromal-laminin adds considerable prognostic

information to lymph node-status, in particular to the subset of

samples that are lymph node-positive. The same is the case for

stromal-decorin. If the prognostic value of the stromal sets depend

on the presence (and relative proportion) of lymph node-positive

samples in a dataset, then the discrepancy in the results between

the UPPSALA and STOCKHOLM cohorts might be explained

by a difference in the proportion of lymph node-positive patients.

Unfortunately, though the overall number of lymph node-positive

samples in the UPPSALA dataset can be inferred from a summary

table in [49], the lymph node status of the individual samples is not

supplied in the public version of the dataset.

Table 4. Multivariate Cox proportional hazards model with stromal-laminin for UPPSALA estrogen receptor-negative samples.

UPPSALA Estrogen receptor-negative samples (n =34) with full follow-up

log(HR) HR Z p 95CI-lower 95CI-upper

nodal status 1.2 3.33 1.23 0.21 0.48 22.8

tumor size 0.05 1.06 0.915 0.36 0.93 1.2

proliferation 21.71 0.17 20.797 0.42 0.008 12.26

stromal-laminin 22.6 0.07 22.099 0.03 0.006 0.84

likelihood ratio test = 8.58, 4 df, p = 0.07

doi:10.1371/journal.pone.0037646.t004

Table 5. Cox proportional hazards models for the STOCKHOLM cohort.

Stockholm
130ER+ full

Stockholm
130ER+ @5

Stockholm29
ER- full

Stockholm 29
ER- @5

proliferation 3.46 2.79 0.83 0.75

proliferation + clinical 2.29 1.81 0.61 0.104

proliferation + decorin 3.14 2.78 20.76 0.49

proliferation + decorin + clinical 2.01 1.87 20.31 0.13

proliferation + laminin 2.6 2.1 20.64 20.34

proliferation + laminin + clinical 1.73 1.35 20.76 20.54

decorin 21.55 20.88 20.85 20.608

decorin + clinical 21.11 20.44 20.71 20.54

decorin + proliferation 0.83 1.08 21.26 20.02

decorin + proliferation + clinical 0.38 0.77 20.9 20.24

laminin 22.39 21.91 21.68 21.32

laminin + clinical 21.5 21.21 21.26 21.05

laminin + proliferation 0.23 0.15 21.73 21.22

laminin + proliferation + clinical 0.004 20.03 21.43 21.14

Column labels indicate subsets of samples and follow-up period, e.g., ‘‘Stockholm130ER+@5’’ stands for estrogen-receptor positive samples with events censored at five
years. Rows specify the predictors in a Cox proportional hazards model. Table entries report the z value of the first predictor of the model in the corresponding row for
the samples in the corresponding column. Entries with p-values less than 0.05 appear in bold.
doi:10.1371/journal.pone.0037646.t005
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Pursuing the notion that the prognostic value of the stromal sets

might be confined to lymph node-positive samples, we examined

two additional datasets, SAN FRANCISCO [50] and MAINZ

[32], selected because they differ substantially in the proportion of

lymph node positive tumors, one with an abundance of lymph

node positive samples, and a second with none at all. For both of

these cohorts we built the same series of Cox proportional hazards

models as for the UPPSALA and STOCKHOLM data.

San Francisco
The third dataset consists of 118 tumor samples collected at the

University of California San Francisco and Pacific Medical Center

between 1989 and 1997 [50]. It is enriched in lymph node-positive

samples (66 of 118), and in comparison to the UPPSALA cohort

contains a greater proportion of samples with larger tumor size

and higher histologic grade. The Affymetrix HG-U133A expres-

sion data is downloadable from ArrayExpress [51], accession

number E-TABM-158. One sample lacks Distant Metastasis Free

Survival (DMFS) event and time, leaving 117 samples for survival

analysis. Under backwards elimination with a cutoff p-value of 0.1,

none of the clinical predictors (age, nodal-status, histologic grade,

tumor size or sizing) proved significant in multivariate models. The

Cox models summarized in Table 6 show that:

N Stromal-decorin is a significant predictor in multivariate

models with proliferation for the the estrogen receptor-positive

subset with full follow-up and with dmfs events censored at five

years.

N The stromal-laminin gene set is prognostic as a single predictor

for the estrogen-positive subset with full follow-up.

N None of the three gene sets, proliferation, stromal-decorin, or

stromal-laminin, is prognostic for the estrogen receptor-

negative cohort, in either univariate or multivariate models.

Essentially the SAN FRANCISCO data confirms the finding in

UPPSALA regarding the prognostic value of stromal-decorin for

estrogen receptor-positive subcohort, but it does not confirm the

finding regarding the value of stromal-laminin for the estrogen

receptor-negative sub-cohort.

Mainz
Further pursuing the possible association between the prognos-

tic value of the stromal sets and lymph node-status, to set up

a contrast with the SAN FRANCISCO data, we built our series of

Cox models for a dataset in which the samples are exclusively

lymph node-negative. Like the UPPSALA cohort, the 200 samples

in the MAINZ dataset represent a population-based consecutive

series, in this case accrued at Mainz between 1988 and 1998 [32].

The normalized Affymetrix HG-U133A expression data is avail-

able at GEO as series GSE11121, which includes clinical variables

for histological grade and tumor size, but not for estrogen-status,

though the overall proportion of estrogen-negative to estrogen-

positive patients is reported in the original article: (44 (22%)

estrogen-negative and 156 (78%) estrogen-negative. To form the

estrogen receptor-positive and estrogen receptor-negative subpo-

pulations we ordered the samples on the estrogen-related gene set,

dividing at the 22nd quantile. The endpoint for this dataset was

Distant Metastasis Free Survival. The results for the MAINZ data,

as summarized in Table 7, show that:

N For the estrogen receptor-positive subset, stromal-decorin adds

independent prognostic information to proliferation with dmfs

events censored at five years, and marginally with full follow-

up.

N For the estrogen receptor-negative subset, stromal-laminin in

combination with proliferation is prognostic of dmfs with

events censored at five years and for full follow-up.

Figure 1. Uppsala samples partitioned by lymph node status and estrogen-status, ordered on stromal-laminin gene expression.
Yellow signifies up-regulation; blue signifies down-regulation. Rows represent probe sets on the Affymetrix HG U133A platform. Black bars record
Breast Cancer Specific Survival events censored at 2.5 years. Blue bars record BCSS events that occur between 2.5 and 5 years.
doi:10.1371/journal.pone.0037646.g001
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The results for the MAINZ cohort, in which all samples are

lymph node-negative, suggests strongly that the prognostic value of

the stromal sets is not confined to lymph node-positive tumors.

Therefore, the contrast in the results for the UPPSALA and

STOCKHOLM cohorts is likely due to some other factor.

Comparing the clinical descriptions of the samples in the four

datasets, the most striking difference is the distribution of patients

by age, as tabulated in Table 8. The principal contrast is between

the UPPSALA and MAINZ cohorts, with median age of 64 and

mean age of 60, respectively, and the STOCKHOLM and SAN

FRANCISCO datasets, with median ages of 56 and 51. Also

telling is the fact that 46% of the SAN FRANCISCO patients are

50 years of age or younger and perhaps premenopausal. The

proportion of younger and premenopausal women in the

STOCKHOLM dataset cannot be determined, but, given the

median age of those patients, is perhaps significantly larger than in

the UPPSALA cohort where only 22% are less than fifty years of

age. Hence, the difference in results for UPPSALA compared to

STOCKHOLM may be attributed to the larger proportion of

older women in the UPPSALA cohort. If the stromal sets are

prognostic for older women but not for younger, this would

account for a separate finding reported in [43], namely that the

Table 6. Cox proportional hazards models for the SAN FRANCISCO cohort.

SanFrancisco74
ER+full

SanFrancisco74
ER+@5

SanFrancisco43
ER- full

SanFrancsico43
ER-@5

proliferation 2.29 1.19 0.24 0.76

proliferation + clinical

proliferation + decorin 1.77 0.82 20.09 0.86

proliferation + decorin + clinical

proliferation + laminin 0.89 0.29 0.608 0.51

proliferation + laminin + clinical

decorin 22.92 22.23 20.88 0.37

decorin + clinical

decorin + proliferation 22.54 22.08 20.86 0.54

decorin + proliferation + clinical

laminin 22.7 21.65 0.62 20.87

laminin + clinical

laminin + proliferation 21.93 21.28 0.84 20.69

Column labels indicate subsets of samples and follow-up period, e.g., ‘‘SanFrancisco74ER+@5’’ stands for estrogen-receptor positive samples with events censored at
five years. Rows specify the predictors in a Cox proportional hazards model. Table entries report the z value of the first predictor of the model in the corresponding row
for the samples in the corresponding column. Entries with p-values less than 0.05 appear in bold.
doi:10.1371/journal.pone.0037646.t006

Table 7. Cox proportional hazards models for the MAINZ cohort.

Cox proportional hazards models
Mainz 156
ER+ full

Mainz 156
ER+ @5

Mainz 44
ER- full

Mainz 44
ER- @5

proliferation 4.22 5.3 2.68 2.65

proliferation + clinical 3.19 4.32

proliferation + decorin 2.86 3.61 2.33 2.51

proliferation + decorin + clinical 2.33 3.16

proliferation + laminin 3.09 3.68 3.24 3.28

proliferation + laminin + clinical 2.43 3.21

decorin 22.87 23.38 21.27 21.04

decorin + clinical 22.31 22.77

decorin + proliferation 21.67 22.32 0.33 0.63

decorin + proliferation + clinical 21.57 22.03

laminin 22.23 22.63 21.27 20.01

laminin + clinical 21.77 22.09

laminin + proliferation 20.56 21.06 1.99 2.18

laminin + proliferation + clinical 20.63 20.79

Column labels indicate subsets of samples and follow-up period, e.g., ‘‘Mainz156ER+@5’’ stands for estrogen-receptor positive samples with events censored at five
years. Rows specify the predictors in a Cox proportional hazards model. Table entries report the z value of the first predictor of the model in the corresponding row for
the samples in the corresponding column. Entries with p-values less than 0.05 appear in bold.
doi:10.1371/journal.pone.0037646.t007
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stromal-decorin set is not prognostic for the TRANSBIG cohort

[52], which has a median age of 49, with 76% younger than 55,

and only 1% older than 70, as reported in [32].

To test whether the prognostic value of the stromal sets is

dependent on age, we split the UPPSALA cohort at age sixty and

built Cox proportional hazards models to test the two propositions:

1. That the stromal-decorin gene set adds prognostic information

to proliferation for estrogen receptor-positive women with

invasive breast cancer.

2. That the stromal-laminin gene set is prognostic for estrogen

receptor-negative women with invasive breast cancer.

For the estrogen receptor-positive women the models recorded

in Table 9 show that stromal-decorin is significantly prognostic

independently of proliferation for the older women (.60 years) in

the UPPSALA dataset, but not for the younger women (,60

years). Testing the second proposition regarding the prognostic

value of stromal-laminin for estrogen receptor-negative women in

the UPPSALA cohort is a challenge given the small number of

samples and events. Nevertheless, there is slight evidence that

stromal-laminin is prognostic for the older women, but not for the

younger (Table 10).

Summarizing results across the four datasets:

N In three of the four cohorts (UPPSULA, SAN FRANCISCO,

and MAINZ), for estrogen-positive patients the stromal-

decorin gene set adds independent prognostic information in

multivariate models that include proliferation expression and

clinicopathological variables.

N In two datasets (UPPSALA and MAINZ) and marginally in

a third (STOCKHOLM), for estrogen-negative patients the

stromal-laminin gene set adds prognostic value.

These results may be conditioned on age, holding for older, but

not younger women.

Discussion

The expression of the genes in the stromal-decorin and stromal-

laminin sets appear to be switch-like. For the women most at risk

of metastasis and death the expression of these genes is essentially

absent. Why decorin expression is lost is unknown, but like the loss

of laminin and caveolin expression, it may stem from changes in,

and ultimately from the extinction of, the myoepithelial cell layer.

As SAGE studies of cell type and cell state document, laminin and

caveolin are lost first. Whereas laminin and caveolin are expressed

by normal myoepithelial cells, and subsequently lost by DCIS-

involved myoepithelial cells, the reverse is the case for decorin.

That is, DCN is expressed by the cancer-transformed myoepithelial

cells, and not by the normal [53,54]. The up-regulation of decorin

might be part of a stromal host response similar to foreign body

response which deposits a wall of ECM around an offending

object. If that defensive response succeeds in encapsulating the

tumor while still small, the tumor may never attain detectable size

[55]. In that case the myoepithelial layer remains intact, serving

not only as a physical barrier with the BM (the first line of defense),

but continuing to produce, in sync with fibroblasts, the right

mixture of matricellular proteins, fibrillar collagens, etc. needed for

the dynamic maintenance of the second line of defense, the

interstitial ECM reinforced by the host stromal response. The loss

of the myoepithelial layer might sufficiently alter the mix of gene

expression and products such that, the continuing desmoplastic

reaction assembles an inferior decorin-deficient matrix. The

consequence is that what had functioned as a barrier and

container is progressively transformed into a gateway and

facilitating substrate for the advancing vanguard of infiltrating

Table 8. Age distribution for five datasets.

dataset accession samples median age*
,=50
years

UPPSALA GSE3494 251 64+214 22%

MAINZ GSE11121 200 60+/212 35%

STOCKHOLM GSE1456 159 56+/214 NA

SAN FRANCISCO E-TABM-158 118 51+/215 46%

TRANSBIG GSE7390 198 46+/27 69%

Median age for UPPSALA, STOCKHOLM, SAN FRANCISCO, and TRANSBIG
cohorts. Mean age for MAINZ. Percentage of samples 50 years of age or
younger. Source for median ages = [57]. Source for percentage samples less
than 51 = [58].
doi:10.1371/journal.pone.0037646.t008

Table 9. Cox proportional hazards models for UPPSALA
estrogen receptor-positive older (.60) and younger (,60)
women.

HR 95CI(lower-upper) z score p value

proliferation 2.27 0.91–5.65 1.76 0.07

stromal-decorin 0.48 0.25–0.91 22.22 0.02

Likelihood Ratio Test = 9.51, 2 df, p= 0.008

HR 95CI(lower-upper) z score p value

proliferation 2.19 0.63–7.61 1.24 0.35

stromal-decorin 0.57 0.17–1.86 20.92 0.35

Likelihood Ratio Test = 5.94, 2 df, p= 0.05

Upper model: UPPSALA estrogen receptor-positive, older women (.60 years of
age) n = 117, 19 Breast Cancer Specific Survival events censored @ 5 years.
Lower model: UPPSALA estrogen receptor-positive, younger women (,60 years
of age) n = 83, 13 Breast Cancer Specific Survival events censored @ 5 years.
doi:10.1371/journal.pone.0037646.t009

Table 10. Cox proportional hazards models for UPPSALA
estrogen receptor-negative older (.60) and younger (,60)
women.

HR 95CI(lower-upper) z score p value

stromal-
laminin

0.084 0.008–0.88 22.06 0.03

Likelihood Ratio Test = 6.37, 1 df, p = 0.01

HR 95CI(lower-upper) z score p value

stromal-
laminin

2.13 0.13–34.4 0.53 0.59

Likelihood Ratio Test = 0.28, 1 df, p = 0.59

Upper model: UPPSALA estrogen receptor-negative, older women (.60 years
of age) n = 20, 3 Breast Cancer Specific Survival events censored @ 5 years.
Lower model: UPPSALA estrogen receptor-negative, younger women (,60
years of age) n = 10, 1 Breast Cancer Specific Survival event censored @ 5 years.
doi:10.1371/journal.pone.0037646.t010
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tumor cells. In short, loss of decorin expression is perhaps both

indicator and causal factor of this change.

As we have been most recently reminded by A. Bergamaschi

(personal communication), physiological differences in the struc-

ture and stiffness of breast tissue is associated with aging. Here at

the intersection of the biology of tumor progression and the

biology of ageing, an emerging message from the data analysis is

that the protective value of the expression of the stromal sets holds

for older women, but not for younger. That is, older women with

breast cancer who are capable of mounting a robust stromal

response are those who are most likely to survive their disease.

Monitoring that response as mirrored in the expression of the

stromal-decorin and stromal-laminin sets may be strategic for

patient management in this cohort.

After a decade of development, there has been an increasingly

urgent call for gene signatures that do not rely exclusively on

proliferation to discriminate good from poor prognosis [22].

Incorporating the stromal sets takes a step in a direction which

may lead to a signature that is both grounded in the biology of the

disease and more accurate in identifying patients at greatest risk.

Materials and Methods

The stromal and proliferation gene sets used as predictors in the

multivariate Cox proportional hazards models were induced by

the partition-based algorithm described in [43] as applied to the

Uppsala dataset [44]. For the derivation of the gene sets with

a worked example, see Supplemental Methods in File S2, which

describes instances of the stromal-decorin gene set (Table S1) and

of all gene sets detected in the UPPSALA data (Table S2).

Univariate and multivariate Cox proportional hazards models

with combinations of gene sets and clinicopathological measures

were built using the coxph function in the r survival package [56]

using backward elimination with a p-value cutoff of 0.1 applied to

the Affymetrix HG-U133A expression data for four breast cancer

datasets designated as: UPPSALA [44], MAINZ [32], SAN

FRANCISCO [50], and STOCKHOLM [49]. The full de-

scription and result for each model is tabulated in File S1.

To visually inspect the prognostic value of the stromal genes in

combination with proliferation genes and lymph node status we

partitioned and stacked heatmaps to provide the equivalent of

binary decision trees. These were programmed in Java by the

author.

Supporting Information

Table S1 An Excel workbook that records the gene sets detected

by the partition-based algorithm applied to the UPPSALA data

with partition size = 129, and tolerance for mismatch= 17.

(XLS)

Table S2 An Excel workbook that records all of the gene sets

detected in the UPPSALA data.

(XLS)

File S1 An Excel workbook with twenty-four spread sheets

which record Cox proportional hazards models (six worksheets for

each of four datasets). Each sheet contains six to twelve or more

models grouped by domain (all samples, estrogen-positive samples,

estrogen-negative samples) and by follow-up (censored at five years

and full follow-up).

(XLS)

File S2 Supplemental Methods. A Word document that

describes the derivation of the gene sets.

(DOC)
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