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Simple Summary: Genetic rearrangements of the ROS1 gene account for up to 2% of NSCLC patients
who sometimes develop brain metastasis, resulting in poor prognosis. This review discusses the
tyrosine kinase inhibitor crizotinib plus updates and preliminary results with the newer generation of
tyrosine kinase inhibitors, which have been specifically conceived to overcome crizotinib resistance,
including brigatinib, cabozantinib, ceritinib, entrectinib, lorlatinib and repotrectinib. After introducing
each agent’s properties, we provide suggestions on the best approaches to identify resistance
mechanisms at an early stage, and we speculate on the most appropriate second-line therapies for
patients who reported disease progression following crizotinib administration.

Abstract: The treatment of patients affected by non-small cell lung cancer (NSCLC) has been
revolutionised by the discovery of druggable mutations. ROS1 (c-ros oncogene) is one gene with
druggable mutations in NSCLC. ROS1 is currently targeted by several specific tyrosine kinase
inhibitors (TKIs), but only two of these, crizotinib and entrectinib, have received Food and Drug
Administration (FDA) approval. Crizotinib is a low molecular weight, orally available TKI that inhibits
ROS1, MET and ALK and is considered the gold standard first-line treatment with demonstrated
significant activity for lung cancers harbouring ROS1 gene rearrangements. However, crizotinib
resistance often occurs, making the treatment of ROS1-positive lung cancers more challenging.
A great effort has been undertaken to identify a new generation or ROS1 inhibitors. In this review,
we briefly introduce the biology and role of ROS1 in lung cancer and discuss the underlying acquired
mechanisms of resistance to crizotinib and the promising new agents able to overcome resistance
mechanisms and offer alternative efficient therapies.
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1. Introduction

Lung cancer is a leading cause of cancer mortality in both men and women worldwide, despite
major recent therapeutic breakthroughs in the field [1]. Non-small cell lung cancer (NSCLC) accounts
for the vast majority (85%) of lung malignancies. NSCLCs can be divided by their histological subtypes
such as squamous cell carcinoma, large cell carcinoma and adenocarcinoma, with the latter the most
diagnosed histological subtype. Two out of three advanced NSCLC patients harbour driver genetic
alterations, including KRAS, BRAF, EGFR, MET and ERBB2 mutations or ALK, ROS1, RET and NTRK
genomic rearrangements [2]. Currently, the vast majority of these alterations are therapeutically
targetable, with KRAS the most commonly altered gene in NSCLC (approximately 13%) and currently
being targeted in a phase I clinical trial with sotorasib, a low molecular weight, highly selective
KRASG12C inhibitor [3]. The recent administration of TKIs as a first-line regimen for ALK-rearranged
and EGFR-mutated NSCLC outperformed the platinum-base chemotherapy in terms of response rates,
progression-free survival (PFS) and overall survival (OS) [4]. Malignancies harbouring ROS1 gene
rearrangements can be targeted by TKIs. Crizotinib, a tyrosine kinase inhibitor of ALK, ROS1 and
cMET, is the first agent to report clinical efficacy in this subgroup of patients according to preclinical,
phase I, retrospective and prospective studies [5–7]. Unfortunately, following initial positive responses
to crizotinib, a large number of ROS1-rearranged patients show progression of disease (sometimes
with brain metastasis) due to the occurrence of resistance mechanisms, such as the bypass of signalling
pathways and novel mutations affecting the kinase domains of ROS1 [8]. However, given the relatively
long survival of ROS1-positive NSCLC patients, a more recent ROS1 inhibitor generation is currently
under investigation, with an encouraging improvement in the control of central nervous system (CNS)
metastasis and a demonstrated efficacy in both pretreated and naïve crizotinib patients [9].

Here we review the current research involving ROS1-rearranged NSCLC patients, including ROS1
discovery, diagnostics, mechanisms exerted by malignant cells to evade inhibition and strategies to
overcome acquired resistance. In addition, we focus on clinical efforts to target altered-ROS1 with
standard regimens (crizotinib) and the more recent generation of ROS1 TKIs.

2. ROS1 Discovery and Signalling Pathway

ROS proto-oncogene 1 (ROS1), encoded by ROS1 gene located at chromosome 6q22.1, belongs
to the subfamily of tyrosine kinase insulin receptors and was first identified in 1986 during research
involving the chicken sarcoma RNA UR2 tumour virus [10]. The physiological role of ROS1 is still
controversial; its expression has been observed mainly in lung tissue, followed by the cervix and colon.
Tyrosine kinase insulin receptors conceivably play a key role in embryonic development [11]. ROS1
protein shows substantial homology to ALK (both belong to insulin receptor superfamily), particularly
within the ATP binding site (84% homology) and the kinase domains (64% homology) [5,12]. Genomic
alteration of ROS1 is well known and normally leads to gene fusion with several fusion partners
(Table 1) [2,5,11,13–23]; the resulting fusion proteins are robust oncogenic drivers [24]. As a consequence,
ROS1 kinase activity is constitutively activated, leading to increased cell proliferation, survival and
migration due to the upregulation of JAK/STAT, PI3K/AKT and MAPK/ERK signalling pathways [11].
ROS1 has shown tumorigenic potential in vitro and in vivo, with glioblastoma the first human cancer
shown to harbour ROS1 rearrangements [10]. ROS1 fusions have subsequently been observed in
other malignancies including NSCLC [13], melanoma [19] and occasionally cholangiocarcinoma [25],
angiosarcoma [26], ovarian [27], gastric [28] and colorectal cancer [29]. ROS1 alterations can neither be
inherited nor acquired as genetic alteration [30].
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Table 1. Main ROS1 fusion partners in non-small cell lung cancer (NSCLC).

No Gene Alias Description Estimated Frequency in
NSCLC Reference

1 CD74 Cluster of differentiation 74 32–42% [13]

2 SLC34A2 Solute carrier family 34 member 2 gene 12–18% [13]

3 EZR Ezrin gene 6–15% [2]

4 TMP3 Tropomyosin 3 gene 3–15% [2]

5 SDC4 Syndecan 4 gene 7–11% [2]

6 FIG GOPC Fused in Glioblastoma 2–3% [11]

7 TMEM106B Transmembrane protein 106B 1% [11]

8 CCDC6 Coiled-coil domain containing 6 gene 1% [14]

9 LIMA1 EPLIN LIM domain and actin-binding 1 gene 1% [5]

10 WNK1 Lysine deficient protein kinase 1 1% [20]

11 LRIG3 Leucine-rich repeats and
immunoglobulin-like domains 3 gene 1% [2]

12 TDP52L1 Tumour protein D52 like 1 gene 1% [11]

13 CLTC Clathrin heavy chain gene 1% [16]

14 MSN Moesin gene 1% [5]

15 KDELR2 ELP-1
ERD2.2

Endoplasmic reticulum protein retention
receptor 2 gene 1% [14]

16 MYO5C Myosin VA (heavy chain 12, myoxin) 1% [19]

17 TFG TRK-fused gene 1% [23]

18 RBPMS RNA-binding protein with multiple splicing 1% [21]

3. ROS1 in Lung Cancer and Brain Metastasis

First described in 2007 [13], ROS1 rearrangements account for 1–2% of NSCLC patients with
an estimated 10,000–15,000 new cases every year worldwide (Table 1) [24,30]. Patients are often
light smokers or non-smokers, and tend to be young. Adenocarcinoma is the most common
histological subtype identified, but large-cell and squamous histology have also been reported [16,31].
ROS1-positive cancers show overlapping clinical features with ALK-rearranged NSCLC, although
genetic rearrangements in ROS1, EGFR and ALK tend to be mutually exclusive [32]. Additionally, some
ROS1-positive cancers demonstrate a second driver mutation, mainly KRAS and EGFR, after initial
treatment with a TKI [16,33,34]. In clinical practice, ROS1-positive patients responded better to
chemotherapy (CT) than NSCLC patients harbouring other driver mutations, with an estimated 60%
objective response rate (ORR), 89.5% disease control rate (DCR) and a 7 month PFS. The better response
described is likely due to the sensitivity of ROS1-positive cancers to pemetrexed (Alimta) [14,35–38].
It has been speculated that this significant pemetrexed susceptibility might arise from the limited
number of thymidylate synthetase (TS) transcripts in ROS1-positive patients [39–42]. Additionally,
the response of ROS1-positive cancers to immunotherapy appears to be infrequent [43]. Furthermore,
receptor tyrosine kinases (RTKs) found in ROS1-positive cancers are druggable targets and TKIs (such as
crizotinib) therefore emerged as promising agents for the treatment of these cancers [8]. TKIs do
not target fast-growing cells (as CT agents normally do), but only cells harbouring specific genomic
alterations, and as a result, they lead to fewer side effects than CT agents. However, the development
of resistance mechanisms to TKIs can be expected [5,30].

Brain Metastasis

Metastases affecting the CNS are commonly observed in patients with lung cancer and
ROS1-positive cancer patients are no exception. One study observed that approximately 40% of
stage IV ROS1-positive lung cancer patients were diagnosed with brain metastasis [44]. Crizotinib
is not the preferred agent for patients with brain metastasis due to its inability to penetrate the
blood–brain barrier (BBB) [45]. Newer TKIs including repotrecninib, ceritinib, lorlatinib and entrectinib
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have been developed to penetrate the BBB. Entrectinib is the only agent approved by the FDA for
NSCLC patients harbouring ROS1 alterations and is currently the preferred agent in those with brain
metastasis [46,47]. Despite the encouraging results with entrectinib, radiation therapy is the preferred
technique to treat brain metastasis; ROS1-rearranged cancers have shown significant sensitivity to this
approach [8,48]. When multiple brain metastases are diagnosed, whole-brain radiation is the common
approach. Alternatively, when fewer lesions are observed (three or four), stereotactic radiation, which
includes gammaknife, cyberknife and linear accelerator (LINAC)-based radiotherapy approaches,
is preferred; this results in fewer side effects and better control of potential in situ relapse when
coupled with whole brain irradiation [49–52]. The full list of current clinical trials using TKI against
ROS1-rearranged lung cancer is reported in Table 2.

Table 2. Ongoing clinical trials using TKI against ROS1-rearranged lung cancer.

Clinical Trial
Identifier Study Design Intervention/s Setting Primary Endpoint Phase Status

NCT03399487
46 Participants,

Single group assignment,
Non-Randomized, Open label

LDK378 (Ceritinib) Second line ORR 2 Recruiting

NCT03972189
111 Participants,

Single group assignment,
Non-Randomized, Open label

TQ-B3101 Second line ORR 2 Recruiting

NCT02927340
30 Participants,

Single group assignment,
Non-Randomized, Open label

Lorlatinib First or later
line DCR 2 Recruiting

NCT01639508
68 Participants,

Single group assignment,
Non-Randomized, Open label

Cabozantinib Second line ORR 2 Recruiting

NCT01970865 334 Participants, Non-Randomized,
Open label

PF-06463922
Crizotinib

First or later
line

DLT (phase 1)
OR (phase 2) 2 Active, not

recruiting

NCT04302025
60 Participants,

Single group assignment,
Non-Randomized, Open label

Alectinib
Entrectinib

Vemurafenib
Cobimetinib

Second or
later line MPR 2 Not yet

recruiting

NCT04084717
50 Participants,

Parallel assignment,
Non-Randomized, Open label

Crizotinib Second line RR 2 Not yet
recruiting

NCT03088930
18 Participants,

Single group assignment,
Non-Randomized, Open label

Crizotinib Second line RR 2 Recruiting

NCT03087448
69 Participants,

Single group assignment,
Non-Randomized, Open label

Ceritinib (Phase 1)
Trametinib (Phase 2)

Second or
later line MTD 1–2 Recruiting

NCT02183870

30 Participants,
Single group assignment,

Non-Randomized, Open label Crizotinib Any prior
treatment ORR 2 Active, not

recruiting

NCT01964157

32 Participants
Single group assignment

Non-randomized
Open label

LDK378 Second or
later line ORR 2 Recruiting

NCT04292119

96 Participants
Randomised

Parallel Assignment
Open label

Lorlatinib,
Binimetinib,
Crizotinib

Any prior
treatment MTD, OR 1–2 Recruiting

NCT03608007

69 Participants
Single group assignment

Non-randomised
Open label

X-396 Capsule
(Ensartinib) Second line OR 2 Recruiting

NCT03718117 70 Participants
Cohort, Prospective Crizotinib Any prior

treatment Demographics /
Active, not
recruiting

NCT04005144

18 Participants
Non-randomized

Single group assignment
Open label

Brigatinib +
Binimetinib

Second-line
or later AE, DLT 1 Recruiting

NCT02568267

300 Participants
Non-randomised

Parallel Assignment
Open label

Entrectinib Any prior
treatment OR 2 Recruiting
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4. ROS1 Rearrangement Diagnosis

ROS1-positive patients account for 1–2% of all lung cancer diagnoses, but the clinicopathological
features alone are not robust enough for their detection. As a result, different techniques are
employed to identify ROS1 rearrangements, including immunohistochemistry (IHC), fluorescence
in-situ hybridisation (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR) and next
generation sequencing (NGS) (Table 3) [53]. Immunohistochemistry is considered an efficient tool to
diagnose ROS1 rearrangements. IHC has the benefit of low cost, high sensitivity (ranging from 90% to
100%), low operator requirements and shorter turnaround times when compared to FISH [50,54–57].
However, subjective evaluation, specificity and sensitivity of antibodies and tissue fixation might
negatively influence results [58].

Table 3. Techniques for the detection of ROS1 rearrangements.

Technique Advantages Disadvantages

IHC

High sensitivity
Economic

Easy to use
Short turnaround

Low number of cells required
Employed on conventional AFC

Subjective evaluation
Tissue fixation procedure

Antibody chemical properties

FISH
Long time trustworthiness

Reliability
“Gold standard” tool

Moderately expansive
Difficult to use
Labour intense

False-negative results

RT-PCR
Good specificity
Good sensitivity

Low amount of starting material

FFPE samples only
Error-prone

More validation required
Good quality of starting material

NGS
Detection of novel fusions

Parallel identification
FFPE or biopsy specimen

More validation required
Turnaround time

Specimen depletion

IHC: Immunohistochemistry; FISH: Fluorescent in-situ hybridization; PCR: polymerase chain reaction; NGS:
next-generation sequencing; AFC: alcohol-fixed cytology; FFPE: formalin-fixed and formalin-embedded.

Fluorescence in-situ hybridisation has traditionally been considered the “gold standard”
technique for the detection of ROS1 gene fusions, mainly due to the use of identical tests for
ALK rearrangements [15,50,59]. In FISH, the specimen is deemed “positive” when more than 15% of
evaluated cells, or more than 50 malignant cells [60], show single 3′ (centromeric) or split 3′ and 5′

(telomeric) signal [55,56]. FISH is considered technically challenging, moderately expensive, labour
intensive and prone to false-negative results [58].

Reverse transcriptase-polymerase chain reaction (RT-PCR) requires an RNA sample to be converted
to complementary DNA (cDNA) first and then amplified, allowing specific identification of gene
fusion partners. RT-PCR sensitivity and specificity are good, but it relies on RNA obtained from
formalin-fixed and paraffin-embedded (FFPE) samples, which might limit its use in routine lab
work [61]. An emerging test is currently provided by NanoString, which gives 100% sensitivity and
specificity for ROS1 rearrangement identification [62]. However, this PCR method can introduce
sequence artefacts leading to potential errors when processing highly fragmented or short nucleic
fragments [61]. Lastly, next generation sequencing (NGS) enables the identification, in parallel, of
known or novel ROS1 fusion alterations (and other oncogenic mutations) using either DNA or RNA
as a starting material [63]. Moreover, DNA-based NGS can also detect fusion gene rearrangements
with short intron regions, though it might struggle with long intron regions, and often fusion genes
might differ from the RNA-messenger fusions [64]. It is highly possible that NGS will become the
gold standard test for the identification of ROS1 fusion genes in the foreseeable future, due to its
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capability for massively parallel sequence testing and the detection of both known and novel gene
rearrangements. Nonetheless, exhaustion of specimen and extended turnaround time might hamper
its introduction in routine clinical practice [4]. The full list of the advantages and disadvantages of
each technique is reported in Table 2.

5. Targeting the ROS1 Oncogene with Crizotinib

Crizotinib (Xalkori), originally formulated as an antihepatocyte growth factor receptor (MET)
agent, is a TKI against several targets including ROS1, anaplastic lymphoma kinase (ALK) and
MET [31,65]. Crizotinib inhibits ATP-dependent cellular functions by binding to respective protein
kinase domains leading to potent ROS1, MET and ALK suppression [11]. Its efficacy was firstly
reported in a ROS1-rearranged cell line when the inhibition of ROS1 phosphorylation led to a robust
dose-dependent (IC50 of 60 nM) cell apoptosis; IC50 of 8 nM and 40–60 nM against MET and ALK
respectively [24,65–67]. However, it was only in 2012 that the first report on the use of crizotinib in the
treatment of ROS1-rearranged lung cancers was published. A young, non-smoking male diagnosed
with ALK and EGFR-negative multifocal NSCLC showed disease progression after first-line erlotinib
and developed genomic alteration in ROS1. The patient was treated with 250 mg crizotinib twice per
day, which led to a significant improvement in patient-reported symptoms within 7 days and dramatic
shrinkage of malignant lesions at imaging within 8 weeks [31].

In the phase I PROFILE 1001 clinical trial, 50 patients with ROS1-rearranged NSCLC were
included (as an expansion cohort) alongside ALK-rearranged advance NCLSC patients, all of whom
were treated with crizotinib [5,68]. ROS1-positive patients reported a DCR of 90%, a median PFS of
19.2 months, an ORR of 72% and an OS rate of approximately 85% at 12 months. 5 patients (10%)
showed treatment-related adverse events (AEs) including vomiting, nausea, constipation, diarrhoea,
fatigue, visual impairment and dizziness; the vast majority evaluated as clinically manageable with
only 4% evaluated as grade 3 of 4, and no grade 5 AEs were observed [5]. Based on this study,
in 2016 the FDA and EMA approved the use of crizotinib for advanced ROS1-rearranged NSCLC
patients [69]. Subsequently, in 2019 the updated results of the study showed a final median PFS
and OS of 19.3 months and 51.4 months respectively [68]. Following these results, prospective and
retrospective studies were carried out to confirm crizotinib efficacy in ROS1-rearranged NSCLC. The
EUROS1 Cohort study retrospectively evaluated crizotinib efficacy in 32 ROS1-positive patients and
reported a disease control rate of nearly 87%, a PFS of 44% at 12 months and, remarkably, 5 patients
achieved a complete response [14]. In the Acsè prospective phase II trial, the 39 ROS1-positive NSCLC
patients included showed a DCR of 89% and an overall ORR of 54% with 43% of patients evaluated to
have no-progression of disease after 12 months [70]. Among 34 patients recruited in the EUCROSS
phase II trial, an ORR of approximately 70% was observed [71]. The Asiatic side, a prospective study
recruiting 127 patients, reported a DCR of 89% at 8 weeks, an ORR of 72%, a median PFS and median
OS of 15.9 and 32 months respectively, with 14 patients (11%) achieving a complete response [6].
The overlapping clinical responses between European and Asian studies demonstrated the efficacy of
crizotinib across different ethnicities.

6. Mechanisms of Resistance to Crizotinib

The development of crizotinib resistance in previously sensitive cancer cells is a key cause of
treatment failure and invariably leads to disease progression. Proposed mechanisms of crizotinib
resistance in cancer cells can be broadly split into either the genetic alteration of the drug target or
the activation of other signalling pathways (e.g., bypass signalling; Figure 1) [72,73]. Studies suggest
that point mutations within the ROS1 kinase domain can lead to significant alterations of the drug
target resulting in acquired resistance to crizotinib; such mutations decrease the potency of kinase
inhibition [73,74]. Many examples of point mutations in the ROS1 gene have been identified in
crizotinib-resistant forms of NSCLC (Table 4). A ROS1 D2033N mutation was detected in a patient
with disease progression after a previous crizotinib-sensitive NSCLC CD74-ROS1 fusion diagnosis [75].
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The D2033N mutation generates an aspartic acid to asparagine substitution at the kinase hinge region
of ROS1 (within the ATP-binding site), leading to strong crizotinib resistance in vitro [30,75]. Similarly,
G2032R is a mutation in the ROS1 kinase domain, which has been detected in samples of malignant
cells post-crizotinib treatment, with the mutation not present at the pretreatment stage [76]. G2032R is
thought to be the most common driving mutation of crizotinib resistance and the most difficult to treat
from a pharmacological point of view [8,77]. Other examples include L2026M, which induces resistance
to crizotinib by altering the gatekeeper position of the inhibitor binding pocket of ROS1 [73,78].
Additionally, L2155S is thought to confer crizotinib resistance via protein malfunction, whereas the
S1986F/Y substitution within the kinase domain leads to an obstruction of the key site for activation,
thereby increasing kinase activity [79].Cancers 2020, 12, x 8 of 18 
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Table 4. ROS1 mutations conferring resistance to crizotinib and mechanism of action.

Mutation ROS1 fusion Location Mechanism

D2033N CD74-ROS1 Kinase hinge Modification of
electrostatic forces

G2032R CD74-ROS1 Kinase hinge Steric interference

L2026M CD74-ROS1 Inhibitor binding site Hindrance of drug
binding

L2155S SLC34A2-ROS1 Not known Protein malfunction

S1986F/Y EZR-ROS1 Not known Obstruction of the active
site of the enzyme

Furthermore, the activation of bypass signalling as a method of crizotinib resistance in ROS1 cancer
cells has been described in various studies and identified in approximately 45% of crizotinib-resistant
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ROS1-rearranged NSCLC malignancies (Figure 1) [80,81]. The activation of the EGFR pathway has
been shown to confer crizotinib resistance by reducing the dependence on ROS1 activity and increasing
dependence on EGFR activity [79,82,83]. This signalling switch might lead ROS1-rearranged NSCLCs
to be targeted in the future with EGFR inhibitors such as erlotinib and gefitinib [8]. Similarly, it has
been shown that KIT pathway activation can lead to crizotinib resistance as well as promoting
autophosphorylation and cell proliferation in vitro [72,81]. Consequently, it might be thought that the
addition of a KIT inhibitor such as ponatinib might be beneficial in such cases. Lastly, upregulation of
MAPK signalling plus the amplification of TP53 and HER2 have been reported in crizotinib-resistant
cells and might play a key role in bypass mechanisms [45,80].

7. A New Generation of TKIs to Overcome Crizotinib Resistance and Combination Regimens

A novel and more potent generation of TKIs against genetic ROS1-alterations, which confer
resistance to crizotinib, are currently under clinical investigation. These include brigatinib, cabozantinib,
ceritinib, entrectinib, lorlatinib and repotrectinib. These newer agents have demonstrated clinical
efficacy against ROS1-positive NSCLCs and more robust CNS penetration [8,76], and may be effective
in the case of resistance resulting from a novel ROS1 mutation [4]. Nonetheless, when the resistance
results from the activation of bypass mechanisms (i.e., EGFR or KIT pathways), inhibition is still
possible by targeting both ROS1 and the bypass pathway with the use of a combination therapy such
as crizotinib plus an EGFR/KIT inhibitor [72].

7.1. Brigatinib

The ALK inhibitor brigatinib has demonstrated clinical activity against different mutations
correlated with resistance to crizotinib, including ROS1 gene rearrangements [84,85]. In three ROS1
patients, recruited as an expansion arm of a larger phase II study that included 137 NSCLC patients,
two (66%) had an objective treatment response. Moreover, one patient was crizotinib-naïve and
reported partial response while the other patient was crizotinib pretreated and reported stable disease.
Overall, brigatinib toxicity was reported to be manageable with increased lipase (9%) as primary
grade 3 or 4 AE, while serious treatment-related AEs such as dyspnoea and pneumonia occurred
in 5% of patients [86]. However, brigatinib did not show efficacy for patients harbouring G2032R,
the commonest mutation in crizotinib resistance [12,87].

7.2. Cabozantinib

The multi-kinase inhibitor cabozantinib, which has demonstrated activity against ALX, KIT, MET,
RET, ROS1, VEGFR2 and TIE2 [88], and is already approved for the treatment of medullary thyroid and
renal cell carcinoma [89–91], has been administered by Drilon et al. in a phase II study enrolling lung
cancer patients [75]. Within the aforementioned clinical trial, a daily dose of 60 mg cabozantinib showed
efficacy (in terms of imaging and symptoms) in a young female non-smoker harbouring D2033N-ROS1
genomic alteration who acquired resistance to crizotinib. Additionally, Sun et al. reported clinical
efficacy of cabozantinib in four ROS1-positive NSCLC patients with resistance to crizotinib and ceritinib;
the PFS of patients administered with cabozantinib ranged from 4.9 to 13.8 months with neutropenia,
xeroderma and pulmonary embolism the primary AEs reported [92]. Although cabozantinib has
demonstrated its ability to overcome resistance driven by newer identified secondary mutations, it does
have a challenging side effect profile.

7.3. Ceritinib

Ceritinib, a highly specific and robust ROS1 inhibitor, showed 20 times higher efficacy than
crizotinib in a rat model [93], with a satisfactory BBB penetration ratio [94–97]. Ceritinib was approved
after a phase II study, which included 32 ROS1-positive NSCLC patients administered with a daily
dose of 750 mg. Among crizotinib-naïve and crizotinib pretreated patients, the overall ORR was 62%
with a median PFS of 9.3 months. Among 8 patients with CNS disease, 63% reported disease control,
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while 25% showed an intracranial response [93]. However, patients receiving ceritinib reported critical
rates of toxicities, primarily diarrhoea (78%), nausea (59%) and anorexia (56%) with grade 3 or higher
AEs reported by 12 patients (37%) [93]. Clinical trials investigating different ceritinib combinations
to mitigate toxicity are underway. Notably, ceritinib efficacy is restricted to crizotinib-naïve patients;
it did not show efficacy towards crizotinib-resistant malignancies [95].

7.4. Entrectinib

Entrectinib (ROZLYTREK, Genentech Inc.) is an orally available, low molecular weight TKI,
specifically designed to penetrate the BBB. Entrectinib received FDA approval for lung cancers
harbouring ROS1 alteration in 2019 [46,47,98], having demonstrated robust ALK and ROS1 inhibition,
plus effective TRKA, TRKB and TRKC signalling suppression [99]. However, entrectinib has limited
efficacy against G2032R, D2033N and L2026M ROS1 mutants [87,100]. Entrectinib led to a median PFS
of 19.0 months and an ORR of 77.4% within 53 ROS1-positive NSCLC patients recruited for a phase
I/II trial [98,101,102]. Among those patients with brain metastasis, the intracranial ORR was 55% and
median PFS of 12.9 months, which makes entrectinib advantageous compared to crizotinib in this
cohort; intracranial progression on treatment occurred in three patients (15%). Entrectinib’s overall
toxicity was manageable (primarily grade 1) and reversible with 27% and 4% of patients requiring dose
reduction and treatment discontinuation, respectively. Main entrectinib-related toxicities reported
were dysgeusia (41%), fatigue (28%) and dizziness (25%) [102].

7.5. Lorlatinib

Lorlatinib is a potent oral inhibitor of ALK (FDA approval in 2017) and ROS1 with activity
against several ROS1 mutants (G2032R, D2033N and S1986Y), which confer resistance to crizotinib
and ceritinib, and the ability to penetrate the BBB [78,103,104]. Promising results have recently been
reported by a phase II study that included 47 ROS1-positive NSCLC patients, including both TKI-naïve
and pretreated patients [104,105]. A median PFS of 21.0 months and an ORR of 61.5% were observed
among the 13 crizotinib-naïve patients while a median PFS of 8.5 months and an ORR of 26.5% was
reported among the 34 patients pretreated with crizotinib. Surprisingly, an ORR of 66.7% was observed
among the 6 patients with brain metastasis who received no prior treatment [104]. The overall main
AEs reported were hypercholesterolemia, hypertriglyceridemia and oedema. Of note, lorlatinib was
reported to be efficacious towards resistance mechanisms due to bypass signalling activation, although
it showed limited efficacy in patients harbouring G2032R [105].

7.6. Repotrectinib

Repotrectinib (TPX-0005) is a low molecular weight, potent TKI with demonstrated efficacy
against TRK receptors, ALK and most ROS1 mutants (G2032R, L1951R, S1986F, L2026 and D2033N)
with 90 times higher efficacy than crizotinib [106,107]. In June 2017, repotrectinib received FDA orphan
drug designation for the treatment of NSCLC harbouring the aforementioned oncogenic mutations.
In terms of efficacy, 33 NSCLC patients harbouring ROS1 rearrangements were recruited in a larger
phase I study including patients with different solid malignancies and mutations (e.g., TKR and ALK)
and administered with increasing dosage of repotrectinib [108]. While TKI pretreated patients reported
an ORR of 39% with an intracranial response rate of 75%, TKI-naïve patients reported an ORR of
82% and an intracranial response rate of 100%. Importantly, one patient died following repotrectinib
administration, but tumour regression was achieved by five patients who had received prior crizotinib
therapy. In terms of toxicity, adverse events were observed for the vast majority of patients, with
dizziness (57%) and dysgeusia (51%) being the most frequent AEs [108]. The ability to target the
ATP-binding site of ROS1 and overcome steric interference created by different mutations meant
repotrectinib showed activity against multiple resistance mechanisms, including metastasis, bypass
pathways and different mutations.
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7.7. Other Promising Drugs

It is worth mentioning additional drugs that are thought to be potentially valuable ROS1 inhibitors.
Of these, ensartinib is a low molecular weight, orally available agent currently under evaluation for
paediatric ROS1-rearranged patients [109]. Fortinib, although discontinued since 2015, has been shown
to be a highly effective ROS1 inhibitor and demonstrated activity against crizotinib-resistant ROS1
mutations [110].

8. Discussion

ROS1 inhibitors have demonstrated clinical efficacy against ROS1-rearranged
malignancies [75,85,93,102,104,108]. Crizotinib has been a game-changer for the treatment of
advanced ROS1-positive lung cancers and it is currently the preferred first-line option for these
patients [68]. Unfortunately, the vast majority of patients have reported disease progression and
resistance to crizotinib. A new generation of agents capable of ROS1 inhibition is therefore required,
mainly for more robust delivery of therapy and penetration of the CNS. Preliminary data from
ongoing clinical studies assessing novel inhibitor compounds are very promising, and although
ROS1-rearranged cancers are relatively rare, new therapies might provide clinicians with treatment
suggestions. Agents including repotrectinib and lorlatinib have demonstrated significant efficacy
in the post-crizotinib setting [104,108]. The previously mentioned homology with ALK-rearranged
lung cancers can, moreover, improve understanding of ROS1-driven NSCLC cases under treatment
and drive helpful clinical suggestions [111]. Of the numerous strategies employed by cancer cells to
evade inhibition, the most studied is point mutation of drug targets, whereby a second mutation event
results in resistance to multiple inhibitors [112]. In future, it will be paramount to detect and verify
the different resistance mechanisms employed to allow the avoidance of disease progression in lung
cancer patients administered with ROS1-targeted therapies [112]. Investigation of bypass signalling
pathways, an additional cause of therapy resistance in ROS1 lung cancer, is essential for generation of
superior compounds for combination therapies.

On the clinical side, techniques for early stage identification of resistance mechanisms from tissue
or blood would facilitate more precise treatment plans with a higher probability of preventing cancer
progression and overcoming drug resistance. In this light, it is worth mentioning the first liquid biopsy
effort for detection and monitoring of ROS1 circulating tumour DNA (ctDNA) in ROS1-rearranged
malignancies [80,113]. We hypothesise that a biopsy at the time of disease progression would enable
identification and characterisation of drug resistance mechanisms to permit more informed and precise
treatment regimens.

9. Conclusions

Its inability to penetrate the BBB renders crizotinib unsuitable for ROS1-rearranged NSCLC
patients with CNS metastasis; in such cases, entrectinib, ceritinib, repotrectinib and lorlatinib are more
appropriate options since these agents were specifically engineered to penetrate the BBB. With that
said, although ceritinib and entrectinib are less effective towards crizotinib-resistant malignancies,
they showed increased efficacy towards brain metastasis with entrectinib the current preferred and
FDA-approved first-line treatment for those with metastatic brain involvement [46] According to
the latest results from various clinical trials, repotrectinib and lorlatinib are the most potent ROS1
inhibitors, with good CNS activity and the ability to overcome resistance resulting from bypass
signalling activation and alternative ROS1 mutations. Of note, repotrectinib is currently under
investigation while lorlatinib has recently been approved for ALK-rearranged NSCLC patients and
is the current preferred second-line treatment in case of no evidence of G2032R mutation and/or
bypass signalling [114]. To summarise, early detection of ROS1-rearranged lung cancers is essential
as there are several targeted therapies available, despite the low incidence rate. The understanding
of underlying molecular alterations that lead to drug resistance and disease progression, and the
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development of novel drugs to counteract this, is essential for the design of more precise and effective
combination therapies.
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