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Abstract

The visual exploration and analysis of biomolecular networks is of paramount importance

for identifying hidden and complex interaction patterns among proteins. Although many

tools have been proposed for this task, they are mainly focused on the query and visualiza-

tion of a single protein with its neighborhood. The global exploration of the entire network

and the interpretation of its underlying structure still remains difficult, mainly due to the

excessively large size of the biomolecular networks. In this paper we propose a novel multi-

resolution representation and exploration approach that exploits hierarchical community

detection algorithms for the identification of communities occurring in biomolecular net-

works. The proposed graphical rendering combines two types of nodes (protein and com-

munities) and three types of edges (protein-protein, community-community, protein-

community), and displays communities at different resolutions, allowing the user to interac-

tively zoom in and out from different levels of the hierarchy. Links among communities are

shown in terms of relationships and functional correlations among the biomolecules they

contain. This form of navigation can be also combined by the user with a vertex centric visu-

alization for identifying the communities holding a target biomolecule. Since communities

gather limited-size groups of correlated proteins, the visualization and exploration of com-

plex and large networks becomes feasible on off-the-shelf computer machines. The pro-

posed graphical exploration strategies have been implemented and integrated in UNIPred-

Web, a web application that we recently introduced for combining the UNIPred algorithm,

able to address both integration and protein function prediction in an imbalance-aware fash-

ion, with an easy to use vertex-centric exploration of the integrated network. The tool has

been deeply amended from different standpoints, including the prediction core algorithm.

Several tests on networks of different size and connectivity have been conducted to show

off the vast potential of our methodology; moreover, enrichment analyses have been per-

formed to assess the biological meaningfulness of detected communities. Finally, a CoV-

human network has been embedded in the system, and a corresponding case study
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presented, including the visualization and the prediction of human host proteins that poten-

tially interact with SARS-CoV2 proteins.

Introduction

The analysis and interpretation of relationships between biological molecules and related con-

cepts is becoming a major bottleneck in systems biology. Typically the pure amount of data

and their heterogeneity and large size provide a challenge for their visualization. Biological

entities, like proteins, are often represented through networks consisting of nodes, denoting

the individual bio-entities, and edges, describing connections between nodes [1]. Interaction

networks are one of the primary visual metaphors for communicating and understanding

-omics data at a systems level. Several methods for the visualization of biomolecular networks

have been recently proposed (see e.g. [2–4]). Nevertheless, as the number of entities and the

interactions among nodes of different types (e.g. physical or genetic interactions) grows, the

resulting networks are often complex and of too large size for a global visual representation.

Moreover, facilities for the visualization and exploration of protein networks at multiple levels

of resolution can be also required.

To contribute to fill this gap, this work presents a network visualization methodology to

render and explore biological networks using different resolution levels by exploiting commu-

nities of highly correlated proteins. The approach relies on a hierarchical community detection

algorithm that decomposes the network into non-overlapping communities: the initial view of

the network plots communities as meta-nodes, and their total inter-connections as meta-

edges, allowing to detect further topological hidden structures in the network. Communities of

nodes highly connected and possibly sharing a common biological function (e.g. belonging to

the same pathway or to connected pathways) can be thereby highlighted; furthermore, beside

standard node-node connections, node-community connections are also displayed, for point-

ing out communities more related to a given target protein. By breaking down massive net-

works into smaller sub-networks, having a more clear topology, the visualization can guide the

user towards unveiling the underlying biological mechanisms. Furthermore, a hierarchical

decomposition is built, so that the navigation can explore individual meta-nodes, visualize

their sub-communities, in a top-down fashion, till the most fine-grained one is reached, and

meta-nodes are expanded to visualize the nodes they contain. Thus, node neighborhoods

might be split by the recursive partition algorithm, so as to avoid the limitation of ‘classical’

vertex-centric visualizations. The user can also squeeze the expanded communities in a bot-

tom-up manner, to make the exploration bi-directional. We named this novel visualization

methodology community-based navigation, and embedded it in the UNIPred-Web service,

recently introduced as one of the state-of-the-art tools for integrating biological networks in a

user-customizable setting, and to predict the Gene Ontology protein functions [5] (https://

unipred.di.unimi.it).

Protein function prediction is one of the central problems in Computational Biology, as

witnessed by the CAFA international challenges [6–8]. Differently from other web-tools pro-

posed for the same task, UNIPred-Web integrates protein networks and predicts protein func-

tions by expressly considering the imbalance in protein labels (proteins annotated for specific

functions are usually outnumbered by unannotated ones). Technical details of the integration

[9] and inference algorithms [10, 11] have been published separately. The tool allows us to

select the networks to be integrated from a repository of more than 1900 biomolecular
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networks of nine different organisms. In addition it also supports the inference of novel puta-

tive memberships to Gene Ontology (GO) terms [12] of genes and proteins belonging to the

integrated network. Both integrated networks and predictions can be downloaded from the

web-server, in different file formats. UNIPred-Web supported only vertex-centric exploration,

i.e. centered on a given target protein, that, although being the most appropriate to analyze the

properties of a specific gene/protein [13], in some cases might not supply a global view of the

integrated network and, for large and complex networks with high average node degree, this

visualization could produce a black cloud of points difficult to analyse. We thereby coupled the

vertex-centric with the community-based navigation proposed here, where the user can study

the systemic properties of sets of related genes/proteins starting the navigation from a target

protein, and then benefits from having a general overview of the integrated network, with mul-

tiple views at different granularity levels. Moreover, a CoV-human protein interaction net-

work, recently proposed by Gordon et al. [14] and included in the BioGRID database [15], has

been embedded in the system. Finally, to improve the quality of predictions, a procedure for

the automatic tuning of the hyper-parameters of the inference algorithm has been imple-

mented and included in the amended version.

Table 1 reports the main tasks supported by this enhanced version of the UNIPred-Web

application. The realization of these tasks required both: i) the development of graphical facili-

ties for the rendering of the integrated networks; ii) indexing structures and algorithms for the

preparation of the integrated networks and the communities hierarchy; and, iii) interaction

facilities for supporting the user in the specification of the integration activities and for making

him aware of the processes that are executed on the server. Summarizing, this paper introduces

the following main contributions:

• By means of task T3 and of the developed indexing structures, large PPI networks can be

visualized at multiple levels of resolution;

• Through task T2 a hierarchy of communities is detected and exploited for visualization by

using the facilities developed for the tasks T4 and T5;

Table 1. Main tasks supported by the proposed UNIPred-Web upgrade.

task

id

task name description

T1 integration/prediction Specification of the experiment setting: networks to be integrated,

proteins whose function should be inferred, type of visualization

T2 hierarchical community detection Identification of the hierarchy of communities in the integrated

network and construction of its visual representation

T3 multi-level views Visualization of the integrated network at different resolution levels

according to a community hierarchy

T4 zoom in Starting from a meta-node in the current multi-resolution

visualization, expands the visualization with its content

T5 zoom out Starting from a node in current multi-resolution visualization,

collapses the node in its most specific community along with all the

other nodes belonging to the same community

T6 combination of vertex and

community-based exploration

Integration and easy switching between protein-centric and

community-based visualization and exploration

T7 protein ID mapping Selection of the protein identifiers mapping

T8 export Export a single community of proteins

T9 server status Report the current workload level of the server and user active

processes

https://doi.org/10.1371/journal.pone.0244241.t001
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• By means of task T1, the community-detection approach is integrated with semi-supervised

protein function prediction and data integration algorithms to support explorative and pre-

dictive analysis of biomolecular networks. Since this is a time-consuming operation, an esti-

mation of the time required for the integration is reported;

• The multi-level view made available through task T3 has been combined with the vertex-

centric visualization facilities (already available) in order to explore the community hierar-

chy from a target protein. Therefore, the new web tool can interactively navigate biomolecu-

lar networks using both a vertex-centric and a community-based exploration approach (task

T6);

• Tasks T7, T8, and T9 supply complementary facilities that support the user in the selection

of the preferred protein ID mapping to export single communities of the integrated network,

and monitor the status of the server depending on the assigned workloads;

• Case studies that show the effectiveness of the proposed methodology for the analysis of can-

cer and COVID-19 data.

Related literature

Community-based network visualization and exploration tools. Many approaches have

been proposed for the proper visualization and interactive analysis of complex graphs [16] and

for the proper design of visualization and navigational tools [17, 18]. The key issue in the reali-

zation of these systems is the size of the network to be visualized. Indeed, when the graph size

largely grows, the performances of the visualization facilities turn out to be unacceptable and a

cloud of nodes is drawn making impossible to discern its content. Different clustering/com-

munity detection (CD) approaches have been proposed to reduce the number of visible ele-

ments and thus improving the clarity of the visualization and the performance of the

visualization facilities [19]. These algorithms have been widely used to study the structure of

complex networks and to unveil further levels of organisation at an intermediate scale. The

task is to identify subset of nodes (communities or clusters or groups or modules) more

densely interconnected with one another than with the remainder of the network. Although

no formal definition of community is universally accepted [20], a largely adopted measure to

quantify the quality of communities is the minimization of modularity function [21], allowing

partitioning nodes into communities such that nodes within a community are more likely to

connect to one another than expected in a random network null model [22]. Globally optimiz-

ing the modularity is known to be a NP-hard problem [23], therefore usually some local heu-

ristics are adopted [24–30], mostly based on greedy criteria.

When the clustering is hierarchical, the graph can be visualized according to the structure

imposed by the hierarchy and navigation operations can be implemented for grouping and

ungrouping communities [16]. In this way, a general overview of the graph is provided by

means of the higher levels of the hierarchy, and further details of the graph can be obtained by

descending the hierarchy [31]. Both agglomerative [24, 32] and divisive algorithms have been

provided for this purpose [26], while more sophisticated techniques are based on the construc-

tion of a multi-layer network, where each layer has a dedicated scale parameter [33]. Divisive

methods often poorly scales on large-sized networks, due to the computation of heavy mea-

sures to detect “hot” edges like the edge betweenness, whereas the approach [33] has too many

(hyper)parameters to be tuned, making it impracticable for our purpose, having our web-

interface the need of providing fast responses to user requests. Approaches and systems for the

visual exploration of the hierarchical communities have been proposed [34, 35] as well as
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multi-resolution visualizations of cellular network processes [36] and biological pathways [37].

However, their focus is mainly centered on the rendering of the communities on the canvas,

whereas our focus is on the data and indexing structures adopted for easily retrieving and pre-

paring big graphs to be rendered.

Visualization and prediction web-tools for protein networks. In the last few years, a bunch

of tools for predicting protein functions and exploring protein networks have been designed,

often supporting also their integration. Table 2 reports the most representative web-based

approaches that offer an interactive exploration of the protein networks (many others can be

found in [1]). For each tool, we report: its website; the adopted visualization library; the presence

of a database of imported biological networks from experimentally derived protein–protein inter-

actions available on the Web (db), or if it can work only with external data (ext) that is uploaded

on-demand or both; the possibility to integrate networks in a custom way (on demand) or in a

fixed setting (pre-def); the availability of tools for protein function prediction; the identifica-

tion of communities/clusters of similar biomolecules; and the kind of visual exploration and navi-

gation of the network shown on the screen: a vertex-centric approach (vc) in which the target

protein is shown with its neighbour; the possibility to expand the visualization either based on a

maximum number of nodes to display (exp) or starting from any node of the network (exp?);
and a navigation that exploits the identified communities/cluster of biomolecules (com).

The issue of exploiting a hierarchical community-based exploration of protein networks at

the visual level is currently addressed only by UNIPred-Web 2020 (that builds on the ideas

presented in [38]) and STRING. Nevertheless, UNIPred-Web 2020 shows communities of

nodes at different levels of detail and can expand or collapse community on-demand. On the

contrary STRING can just cluster nodes by coloring them, but without giving the user the pos-

sibility to expand or collapse the displayed communities. Moreover, the combination of the

vertex-centric and community-based exploration facilities are a key characteristics of UNI-

Pred-Web 2020 that is not available in other systems. ZoomOut can apply clustering methods

using a set of computed descriptors for each network and all networks can be visualized as sin-

gle nodes of a super-network, were interconnections among networks are based on the calcu-

lated clustering distances. However, this tool does not identify communities/clusters inside

each network but only clusters of networks, thus defining an alternative clustering concept

with respect to the one adopted in UNIPred-Web.

Results

Network integration, community-based detection and GO prediction

Integration and GO prediction represent one of the main tasks (task T1, Table 1) supported by

our tool: Fig 1 shows the interface by which the user can specify the networks to be integrated,

Table 2. A comparison of visual tools for the exploration of biomolecular networks.

Tool website Vis. Lib. Data Integration GO term Prediction Clustering Navigation

Genemania [2] link cytoscape both pre-def no yes vc,exp

PINV [39] link BioJS ext. no no under dev. vc,exp

ZoomOut [40] link sigma.js ext. no no yes vc

UniHI [41] link cytoscape db pre-def no no vc

Mentha [42] link SPV db pre-def no no vc,exp?

STRING [3] link cytoscape db pre-def no yes vc,exp,com

IMP 2.0 [43] link not spec. db pre-def yes no vc,exp

UNIPred-Web [5] link cytoscape both on-demand yes yes vc,exp?,com

https://doi.org/10.1371/journal.pone.0244241.t002
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the GO term to be predicted, the use of external networks (optional), and the preferred kind

of navigation. When the Community-based option is checked, after integrating networks

through the UNIPred algorithm, a hierarchy of protein communities from the integrated net-

work is created as shown in Section Methods and Models.
The network integration, the subsequent functional prediction, and the construction of the

hierarchy of communities are realized at the server-side; although all the steps are realized

through scalable procedures, the whole process can be time-consuming when integrating big

networks. For this reason, an estimation of the time required for the integration is reported

within the form. Moreover, a scheduler has been realized in the back-end for the management

of the queue of experiment jobs. The scheduler considers the size of the networks to be inte-

grated, the estimation for the time required for their computation, and the number of requests

to be handled, so as to ensure that all user requests are satisfied.

Other facilities have been realized for supporting the users in the preparation of their exper-

iments (Task T9). First, a semaphore reports the workload status of the server that takes into

account the CPU and main memory occupation, the number of integration jobs that need to

be scheduled, and the estimation of their execution times. In this way, users can take the deci-

sion to visualize other experiments or to wait on-line the end of the process. In any case, when

the process is concluded, an email will be delivered to the user, containing the instructions for

loading the integrated network and thus starting the navigation. Moreover, a log button is

reported in the top right corner of the main interface by means of which they can see the

Fig 1. Specification of the networks integration/prediction and kind of navigation.

https://doi.org/10.1371/journal.pone.0244241.g001
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integration jobs that: i) are currently processed by the server; ii) have been completed and the

navigation to the associated networks can be started; and iii) have been removed from the

server. In this way, the user is made aware of the activities that the server is doing (or has

done) for him. All these ancillary functionalities associated with Task 9 support the user in the

integration/prediction task.

Community-based visualization and navigation

When the integration is completed, the user can start the community-based visualization and

navigation of the integrated network (task T3). As shown in Fig 2, the communities at the first

level (the one after the root) of the hierarchy are shown in the canvas. In this case, two commu-

nities are identified and labeled with C1-L1 and C4-L1 (L1 corresponds to the first layer in

the community hierarchy). Each community is drawn with a different color and the size of the

graphical object reflects the number of biomolecules that they contain (e.g. C4 contains more

biomolecules than C1). Dashed edges can connect pairs of communities and they represent

the existence of relationships between their biomolecules. The thickness of the dashed lines

denotes the number of identified relationships. Popup panels associated with meta-nodes

show information about the number of biomolecules and the kind of evidence from which

they have been annotated; on the other side, by means of popup panels associated with the

edge between the two communities, the user can read the number of relationships existing

among biomolecules of the two communities along with the maximal, minimal and average

weight associated with the relationships. Moreover, in the left bottom corner, a novel feature is

Fig 2. Starting point of the community-based navigation.

https://doi.org/10.1371/journal.pone.0244241.g002
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also added for supporting task T2. A little canvas shows the maptree, that is a visual representa-

tion of the detected overall community hierarchy. The area where the maptree is located can

be collapsed (for reducing space), or enlarged and interactively modified for making clearer

the organization of the hierarchy. This novel feature provides a high-level representation of the

hierarchical structure of the communities.

Another important novel feature in the network visualization is the possibility for the user

to choose among a large set of protein/gene identifiers (task T7). Seven identification mapping

are considered (see menu on the top left corner of Fig 2): gene name (official symbol),

Ensembl gene ID, Ensembl protein ID, Entrez gene ID, Refseq protein
ID, Refseq mRNA ID, Uniprot ID, and in addition existing protein aliases (syno-
nyms). This information is shown even when inspecting the properties of a biomolecule

through the associated popup and can be exploited also when downloading the integrated net-

work, thus the user can receive the network in the identification scheme desired. It is worth

pointing out that a correspondence among the Ensembl identification scheme and other

schemes is not always available. In this case, the Ensembl identifier is used.

Exploring the communities at multiple levels of resolution

By applying zoom-in and zoom-out operations, we can can explore the communities at multi-

ple levels of resolution. For instance the user can choose the meta-node to be inspected and

expand its content. The view obtained introduces the child communities of the selected meta-

node in the visualization along with their relationships with the other meta-nodes and (eventu-

ally) the proteins currently present in the canvas. Moreover, the size of the communities is re-

arranged to provide a comparison with respect to the size of the communities just introduced.

For example, consider the multi-resolution representation of the biomolecular network

reported on the left part of Fig 3, in which the communities C1 and C4 of the first layer are dis-

played, and suppose the user is interested in expanding the community C4. By selecting the

zoom in option (task T4) among the operations that can be invoked on the meta-node, the

community C4 is substituted by the communities C5, C6, and C7 (see the representation in

the center of Fig 3). Furthermore, the relationships that exist among them and the community

C1 are shown. The user can easily note that only the communities C5 and C7 present relation-

ships with C1 and that C6 has relationships only with C5.

Fig 3. Zoom in/out of the multi-resolution representation of the integrated network.

https://doi.org/10.1371/journal.pone.0244241.g003
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The community C7 is a leaf in the hierarchy (see the maptree in the left corner of Fig 2),

and hence includes only proteins and no other communities. In this way, the canvas contains

two kinds of nodes: those representing communities and those representing biomolecules (Fig

3). As a consequence, three kinds of edges can be identified: solid lines represent relationships

among biomolecules, dashed lines relationships with communities, and dotted lines between

communities and biomolecules. Moreover, the border of the biomolecules has the same color

of the community C7, to highlight their membership to this community. We remark that, as

reported in [5], when biomolecules are drawn as white circles, no prediction has been required

for the integrated network. By contrast, when the prediction option is activated, nodes are

internally colored with different gradation of red, reflecting the prediction score assigned to

the biomolecule (the higher the score, the more intense the color provided). Moreover, their

shape is: a) a square, when the biomolecules are annotated with the selected GO term; b) a star,
when they are predicted to be annotated with it; c) a circle, otherwise.

As opposite, the zoom out operation (task T5) can be invoked on a single biomolecule or

a meta-node to substitute it with its community (the same operation is simultaneously applied

to the other nodes belonging to the same community). For example, by zooming out on the

protein SOC1 in the right part of Fig 3, the visualization of the central part of Fig 3 is proposed.

By further zooming out on one of the community C5, C6, or C7, we can move back to the ini-

tial visualization. The zoom in and zoom out are thus operations that allow us to easily

navigate up and down in the community hierarchy, as depicted in Fig 3.

Combining vertex-centric and community-based exploration

The vertex-based exploration of the network, already available in the previous version of the

system, can be now combined with the community-based exploration (task T6). The user can

select at any point of the navigation a specific biomolecule to investigate and at the same time

continue the exploration of the communities towards the leaf community containing it. The

“path to node” button (left upper corner of the main interface) allows to select this modality.

Once selected the biomolecule to be searched, the system highlights in yellow the border of the

community that contains it. By zooming in, the user can expand the view till the lowest resolu-

tion is reached. Moreover, in the maptree, the corresponding path from the root to the leaf

community is highlighted in yellow. This navigation option offers the possibility to identify

relationships among the search node and the communities. For example, in Fig 4 the protein

DET1 is searched, and the community C4 is highlighted. Then, zooming in C4, the commu-

nity C7 is highlighted. Finally, by zooming in C7, the protein DET1 is marked.

Exporting subnetworks of communities

Task T8 provides the possibility of exporting the sub-networks included in one or more com-

munities. In this way the user can extract portions of the integrated network that can be pro-

cessed by other analytical tools. The “save data” button on the right panel displays the interface

in Fig 5, to select and export communities/sub-networks in tsv or json format, along with

prediction scores associated with its vertices. Hence the user can further analyze the exported

data with other available tools, as shown in the following case studies.

Case study 1: Cancer pathway networks

To assess the potentialities, the reliability, and the robustness of the novel hierarchical commu-

nity detection introduced, two human pathway networks already provided in UNIPred-Web

have been selected for a case study:
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• Pathway.NCI_NATURE (|V|: 2126, |E|: 10122) [44]

• Pathway.CELL_MAP (|V|: 408, |E|: 598) [45]

The Cancer Cell Map (CCM) [45] contains cancer-related signalling pathways while the

National Cancer Institute/Nature Pathway Interaction Database (PID) [44] is a curated and

peer-reviewed collection of human molecular signaling and regulatory events and key cellular

processes. We integrated these two networks with the goal of supplementing the general pur-

pose PID database with additional signalling pathways from the CCM database, thus obtaining

a final network suitable to study cancer-related pathways. We selected the biological process

term GO:0038066 (p38MAPK cascade) for our analysis. Indeed, the p38 MAP kinase sig-

nalling pathway is known to be deregulated in different tumors [46, 47]. The achieved inte-

grated network consists of 2255 nodes and 10673 edges.

The hierarchical algorithm returned a three layers hierarchy with 52 total communities and

42 of them were leaves. All the leaf communities have a number of proteins between 14 and

156 (mean 52.5), which is a fair community size to conduct further functional analysis. We

sorted in a decreasing order the communities on the basis of the number of nodes, and we per-

formed an over-representation analysis for KEGG pathways using the R package RDAVID-

WebService [48] on the first 10. Moreover, we considered as enriched only the pathways with

a Bonferroni corrected p-value <0.05. Table 3 reports for each community the top 3-enriched

pathways with the corresponding literature evidence.

The idea of applying enrichment methods to identify relevant subnetworks from a biologi-

cal standpoint is a well-known approach performed in literature using: a) ontology-based

enrichment analysis [62], b) de novo enrichment analysis [63], c) community-based algorithms

followed by semantic rule induction [64] to link biological explanations to each discovered

subgroups. Similarly, in our work we used community detection followed by enrichment anal-

ysis to dissect our biomolecular network in subgroups described by enriched pathways coher-

ent and correlated inside each community. For instance let us consider the community C30,

containing the KEGG terms TNF signaling pathway, NF-kappa B signaling
pathway and Apoptosis. Literature evidence (reported in the last column of Table 3),

Fig 4. Combination of the vertex-based and community-based navigation.

https://doi.org/10.1371/journal.pone.0244241.g004
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confirmed the strong correlation among terms associated with the same community. Indeed,

TNF signaling pathway mediates its pro-inflammatory response by activating NFK-kappa B,

while by activating a caspase, induces apoptosis instead. Furthermore, sustained activation of

NFKB inhibits apoptosis.

Thus the detected communities analysed resulted coherently enriched in the pathway

enrichment analysis, suggesting a correlation/structure among nodes identified and empha-

sized by the CD algorithm and by the corresponding graphical visualization.

Case study 2: CoV-human network

With the goal to help the scientific community in addressing the ongoing global health crisis

related to the rapid spreading of the SARS-CoV2 infection [65], UNIPred-Web 2020 includes

in the large set of already available networks a novel Human-virus protein interactions network,

named CoV-human, recently proposed in [14] and retrieved from the BioGRID database [15]

Fig 5. The option for exporting sub-networks according to the detected communities.

https://doi.org/10.1371/journal.pone.0244241.g005
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(3.5.185 release). CoV-human includes only physical (i.e. Affinity Capture-MS, Affinity Cap-

ture-Western, Biochemical Activity, Co-crystal Structure, Co-localization, PCA, Reconstituted

Complex, Two-hybrid) interactions between human (taxonID: 9606) and three different

viral strains, SARS-CoV (taxonID: 694009), SARS-CoV2 (taxonID: 2697049) and

MERS-CoV (taxonID: 1335626). The CoV-human network includes 418 nodes and 412

edges, of which 123 nodes and 108 edges are found in SARS-CoV-human sub-network, 320

nodes and 298 edges in the SARS-CoV2-human and 9 nodes and 6 edges are found in the

MERS-CoV-human. Since all interactions are of high quality (i.e. predicted interactions are not

present), we considered all of them as equally informative unitary edges in the network tuple

format. From the Gene Ontology Annotation (GOA) database [66] we downloaded the protein-

GO term associations (May 2020 release) for the proteins present in the CoV-human network.

For the three virus strains we considered all the annotation types provided by GOA (i.e. IDA,

Table 3. Top 3-enriched pathways with literature evidence.

Community Proteins in community Enriched pathway Bonferroni Involved Genes / Total Gene References

C30 156 TNF signaling pathway 3.23−37 24.16% [49]

[50]NF-kappa B signaling pathway 6.07−34 21.48%

Apoptosis 4.13−32 18.79%

C31 148 hECM-receptor interaction 5.38−57 30.82% [51]

Focal adhesion 6.80−48 35.62%

PI3K-Akt signaling pathway 9.17−36 35.62%

C19 103 Cell cycle 7.21−03 8.25% [52]

HTLV-I infection 2.20−02 10.31%

C28 84 Axon guidance 1.18−17 23.46% [53]

[54]Sphingolipid signaling pathway 1.19−05 12.35%

Regulation of actin cytoskeleton 1.55−04 13.58%

C7 80 Cell cycle 6.61−08 13.92% [55]

Progesterone-mediated oocyte maturation 1.28−06 11.39%

Ubiquitin mediated proteolysis 4.44−05 11.39%

C11 80 TGF-beta signaling pathway 3.30−35 35.53% [56]

Hippo signaling pathway 1.13−07 17.11%

Signaling pathways regulating pluripotency of stem cells 1.02−03 11.84%

C13 76 Wnt signaling pathway 1.19−18 26.67% [57]

[58]Basal cell carcinoma 7.78−06 10.67%

Melanogenesis 3.86−05 12.00%

C20 69 Adherens junction 7.26−06 13.43% [59]

Cell adhesion molecules (CAMs) 1.38−05 16.42%

Regulation of actin cytoskeleton 3.71−03 14.93%

C25 68 TNF signaling pathway 1.81−05 13.64% [60]

Osteoclast differentiation 1.21−02 10.61%

C26 66 Cell cycle 9.21−15 27.42% [61]

Small cell lung cancer 8.15−06 14.52%

Hepatitis B 4.93−04 14.52%

List of top-3 enriched pathways for each considered community with Bonferroni corrected p-value< 0.05. Literature references connecting the pathways found in the

community are provided. For community C19 and C25 we show only the first top-2 enriched pathways since the third one was not statistically significant with a

Bonferroni corrected p-value> 0.05.

https://doi.org/10.1371/journal.pone.0244241.t003
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IEA, IEP, IMP, IPI). Instead, for the human organism we extracted just the experimentally

supported annotations i.e. the annotations with the following experimental evidence codes:

EXP, IDA, IPI, IMP, IGI, IEP, HDA, HEP, HMP. The full description of these experimental

evidence codes can be found at http://geneontology.org/docs/guide-go-evidence-codes/. Since

the GOA database provides annotations according to the UniprotAC identification scheme (the

same that we used in our “CoV-human” network), we did not lose any annotated protein.

Finally, we propagated the annotations by transitive closure obtaining an annotation matrix

with 418 proteins and 4788 functional terms, by gathering all the three GO sub-ontologies: bio-

logical process (BP), molecular function (MF) and cellular component (CC).

UNIPred-Web predicts a specific GO term for each protein in the network, aiding the pro-

cess of finding new candidate targets for drug repositioning or novel insights about unknown

disease mechanisms. For instance, suppose a researcher is interested in finding new proteins

involved in the adhesion of the virus to the host cell surface, which could be candidate targets

for drug repurposing to prevent cell infection. In UNIPred-Web the investigator can visualize

the network and predict protein annotations for the GO BP term “adhesion of symbiont to

host cell” (GO:0044650), whose description is “The attachment of a symbiont to a host cell
via adhesion molecules, general stickiness etc., either directly or indirectly”. It is worth noting

that this functional term was initially annotated only with three proteins. This intrinsic lack of

information supports the application of bioinformatic tools (as UNIPred-Web) to predict

potential protein-GO term associations. By means of the “Integration and Prediction” panel in

Fig 6, the user can select the SARS-Homo sapiens as organism and the CoV-human as network

and require the prediction of all proteins with respect to the term GO:0044650.

The visualization has been centered on the viral Spike glycoprotein (Fig 7), since it is

known to promote the entry of virions in the host cells through the binding with the human

receptor ACE2 [67].

The prediction scores of the network shown in Fig 7(a) can be visualized by opening the

“Prediction panel” (Fig 7(b)). It is worth noting that the two viral proteins (SPIKE_SARS2
and ACE2_HUMAN) were already annotated with the considered functional term

(GO:0044650) and are labelled with a star in the graph (Fig 7(a)). Instead, the other human

proteins (TMPS2_HUMAN, FURIN_HUMAN, BASI_HUMAN, GOGA7_HUMAN, ZDHC5_HU-
MAN) were predicted to be annotated with the functional term GO:0044650 by UNIPred-

Web (prediction score’1, the maximum, and labelled with a square in Fig 7(a)), which means

they are strong putative candidate proteins for this GO term. Furthermore, always from the

“Prediction Panel”, we can visualize the predictions for the whole network, which shows another

predicted human protein SFTPD_HUMAN (score 0.97). By opening the popup panel associated

with the node FURIN_HUMAN and exploiting the option ‘one step from here’, we can observe

that this protein interacts with the viral protein SPIKE_CVHSA, which in turn interacts with

the human protein SFTPD_HUMAN (Fig 8). Interestingly, the human surfactant protein D inter-

acts with the Spike glycoprotein (S) of the viral strain SARS-CoV (taxonID: 694009), which

in turn interacts with three different human proteins (TMPS2_H,UMAN, ACE2_HUMAN and

FURIN_HUMAN), and these last ones interact with the Spike glycoprotein of the viral strain

SARS-CoV2 (taxonID: 2697049). These ‘two-steps’ networks of interactions suggest that

the Spike glycoproteins of the two SARS strains are closely related, as confirmed in [68].

To further validate the predictions made by our system, Table 4 has been created. It reports

the list of currently unannotated human proteins, predicted as potential candidate annotations

for the functional term GO:0044650 by our tool, and that have been confirmed in the most

recent literature works. Only for the human protein SFTPD_HUMAN no clear evidence that sup-

ports its association with the functional term considered has been found. Starting from this table

and exploiting the “Community-based” option in Fig 6, the protein-protein interaction network
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is visualized in Fig 9, where the communities containing the proteins predicted as “positive” by

our method have already been exploded in order to visualize the entire community.

The information related to the community C12 (the one containing the top scored pro-

teins) have been downloaded (nodes, edges, predictions) to conduct the pathway enrichment

analysis, as described in the previous section. The results showed that the KEGG term having

the lowest p-value (0.017 using Benjamin-Hochberg correction) is “hsa05164:Influenza A”

and includes the following 7 genes: TMPS2_HUMAN, IKKB_HUMAN, RAE1L_HUMAN,

NLRP3_HUMAN, TRI25_HUMAN, NUP98_HUMAN, FURIN_HUMAN. Interestingly, this

KEGG term contains two of the proteins predicted as ‘positive’ by UNIPred-Web (i.e. FUR-
IN_HUMAN, TMPS2_HUMAN) and related to Spike glycoprotein of viral strain SARS-CoV2. In

addition, in the literature we found a clear correlation evidence between Influenza A and

SARS-CoV2 [75]. We also found that the other coding genes that turn out to be involved with

the selected KEGG term, are also correlated with SARS-CoV2 [14, 70, 76–78].

Methods and models

Network integration and protein function prediction

The integration of multiple biological networks for a given organism and protein function

consists in providing a consensus network G = hV, Ei, embedding information of all individual

Fig 6. “Integration and prediction” panel for CoV-human protein-protein interaction network.

https://doi.org/10.1371/journal.pone.0244241.g006
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networks. V = {v1, v2, . . ., vn} is the set of proteins, E� V × V the set of edges, which are associ-

ated with a symmetric weight matrix W, with Wij 2 [0, 1] denoting the “consensus strength” of

connection (vi, vj)2E; moreover, Wij = 0 if (vi, vj)=2E. The integration algorithm already

employed by the previous version of the server is UNIPred, an imbalance-aware integration

method which obtained competitive results on the MOUSEFUNC I challenge [79] for

Fig 7. (a) CoV-human subnetwork centered on Spike glycoprotein (highlighted using “color shape settings” to obtain a better

visualization). Stars represent proteins already known to be annotated for the GO term considered in our study (i.e. GO:0044650);

squares represent proteins predicted to be annotated with a high score. The thickness of the links between proteins is proportional to

the edge’s weight. (b) Prediction panel with scores sorted in a decreasing order for the subgraph shown in panel (a).

https://doi.org/10.1371/journal.pone.0244241.g007

Fig 8. CoV-human subnetwork including all the 10 “positive” annotated or predicted proteins for the GO term considered in

our study (GO:0044650). Stars refer to proteins already annotated and squares refer to proteins predicted and annotated with a

high score. Thickness of the links between proteins is proportional to the edge’s weight.

https://doi.org/10.1371/journal.pone.0244241.g008

PLOS ONE Multi-resolution visualization and analysis of biomolecular networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244241 December 22, 2020 15 / 28

https://doi.org/10.1371/journal.pone.0244241.g007
https://doi.org/10.1371/journal.pone.0244241.g008
https://doi.org/10.1371/journal.pone.0244241


predicting the function of mouse proteins [9]. The prediction algorithm embedded in UNI-

Pred, COSNet, has been improved in this update by adding a tuning procedure for the cost
hyper-parameter of COSNet (see [80]), through a two levels grid-optimization procedure,

whereas its default value was used in the previous server version. These two algorithms are the

base for the realization of task T1.

The hierarchical community detection algorithm

For the identification of the hierarchy of non-overlapping communities (required for the reali-

zation of the task T2), we have adopted a fast divisive approach that relies on an extended

adaptation of the Louvain algorithm [24], which is one of the fastest and the most effective CD

algorithms on benchmark evaluations [20]. Furthermore, it is also particularly well-suited to

detect meaningful communities on biological networks [81]. Notwithstanding, its direct appli-

cation is not suitable here, because the hierarchy built after the first phase (vertex-moving)

often leads to a large number of communities (mostly singletons), thus limiting the advantages

of exploiting a hierarchical visualization. The hierarchy of meta-nodes, instead, constructed in

the second phase of the algorithm, might show communities with thousands of nodes, thus

making unfeasible their visualization.

To overcome these limitations, we designed a divisive variant of the Louvain algorithm,

where it is possible to control the size of communities in the deepest level, in order to obtain

sufficiently small communities to be used in our hierarchical multi-resolution visualization.

Algorithm 1 contains the pseudocode of our hierarchical CD procedure. At first, the Louvain

method is applied to get the set of non-overlapping communities VC � PðVÞ at level 1 (0 is

the root level), that is [c2VC
c ¼ V, and c \ �c ¼ ; for each c;�c 2 VC and c 6¼ �c (line 1). Here

PðVÞ denotes the power set of V. In other words, we kept only the communities obtained in

the last step of the Louvain method, the partition of V ensuring the highest modularity. It is

worth noting that we consider the communities obtained as (meta)nodes in our hierarchy,

thus (V, c) is a directed edge denoting the inclusion relationship of c in V, and accordingly an

edge in our tree, meaning the root V is the parent of (meta)node/community c.
Algorithm 1 Divisive hierarchical Louvain algorithm

Input: The protein network G = (V, E) minsplit, minimum number of
nodes to further split a community
Output: The community hierarchy C = (VC, EC)
1: VC  Louvain(G)
2: EC  ;
3: EC  EC [ {(V, c)}, 8c 2 VC
4: S  VC
5: while S 6¼ ; do
6: c  Extract(S)

Table 4. List of potential novel associations predicted with a high score and confirmed by the most recent literature works.

UniProt

KB-AC
UniProt

KB-ID
Description Score Literature Evidence

P35247 SFTPD_HUMAN Surfactant Protein D 0.971 not found

O15393 TMPS2_HUMAN Transmembrane Serine Protease 2 0.952 [69, 70]

P09958 FURIN_HUMAN Paired Basic Amino Acid Cleaving Enzyme 0.952 [71, 72]

P35613 BASI_HUMAN Basigin (Ok Blood Group) 0.917 [73]

Q7Z5G4 GOGA7_HUMAN Golgin A7 0.917 [14]

Q9C0B5 ZDHC5_HUMAN Zinc Finger DHHC-Type Palmitoyltransferase 5 0.917 [14, 74]

https://doi.org/10.1371/journal.pone.0244241.t004
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7: if GainModularity(Gc) and |c| � minsplit then
8: Construct subgraph Gc
9: �V  LouvainðGcÞ

10: S S [ �V
11: VC  VC [ f

�Vg
12: for �c 2 �V do
13: EC  EC [ fðc;�cÞg

Fig 9. Hierarchical communities obtained from CoV-human network using the “community-based” visualization option provided by UNIPred-

Web. The user can press the button “path to a node” and search in the opened panel “Select node” for a protein of interest (e.g. SPIKE_SARS2). In the

maptree, the cluster containing the protein of interest C12-L1 and its ancestor clusters are highlighted in yellow. Finally, by exploding the cluster

C12-L1, the subnetwork contained in the cluster is displayed. The subgraph with the protein of interest is highlighted in the red rectangle.

https://doi.org/10.1371/journal.pone.0244241.g009
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14: end for
15: end if
16: end while
17: return (VC, EC)

Then, to build up the next levels in the hierarchy tree, to deal with our graphical require-

ment of having smaller communities to be explored in the browser, and to still exploit the

effectiveness of the Louvain method, we first constructed the set of undirected subgraphs Gc

induced by the subsets of nodes c 2 VC (line 8), then applied the Louvain algorithm to each

subgraph separately (line 9)—by still keeping only the communities at level 1 of the obtained

hierarchy, for the same reasons mentioned above. This produces the level 2 of the tree, where

again the communities form a partition of V. In lines 5-16, iteratively in a top-down fashion,

each subgraph/community is then further split if its size is sufficiently large and the local mod-

ularity increases with the split (line 7), otherwise no split is carried out. The while loop at lines

5-16 ends when no community can be further split. For graphical reasons, we have set the min-

imum number of nodes to split a community (minsplit) according to the size of the network

(ranging from 50 for the CoV-human network to 350 for the largest ones—more than 15K

nodes). We remark that the number of resulting communities in the hierarchy can be large,

since it is possible to obtain very small communities. The time complexity of this procedure

depends on the complexity of the Louvain algorithm, which can be computed in Oðh � EÞ time

when efficiently computing the modularity update, which in practice reduces to OðEÞ, due to

the fast convergence behaviour of the algorithm [82]. Our extension iterates the application of

the Louvain algorithm down to the leaves on communities that at each level of the tree at most

cover the original graph (some communities might not be split due to their size or to no fur-

ther possible gain in modularity). Thus at each level of the tree, the complexity of the algorithm

is still OðEÞ, and Oðl � EÞ for the whole execution, where l is the number of levels in the tree. l
in turn depends on n and on the minsplit parameter. In practice, we have observed that l tends

to be much small (often lower than 10), thus making the overall complexity in practice still

OðEÞ.
Hereafter, with little abuse of notation for the sake of readability, we denote by VC the set of

communities detected (those at the lower and higher levels of the hierarchy). The resulting

hierarchy is structured as a tree C = (VC, EC), where we recall EC� VC × VC represents the

inclusion relationship, that is ðc;�cÞ 2 EC it means that �c is contained in c (lines 3, 13). The

reader can refer to the top part of Fig 9 for an example of the hierarchy represented as a map-

tree. Accordingly, two communities in the tree are disjoint when they do not belong to same

path to the tree root, and one is included in the other one when a path from the former to the

root exists that contains the latter. The meaningfulness of the communities detected by this

extension of the Louvain method has been experimentally validated in Section Results.

Multi-resolution representation of an integrated network

The obtained community tree C allows to expand or compress communities to supply differ-

ent visualization resolutions needed in task T3. On the other side, fixed a resolution level, the

view might contain at the same time meta-nodes and individual proteins, and their reciprocal

relationships. In particular, connections among two communities denote the presence of at

least one edge (in G) adjacent to a protein in one community and to a protein in the other

community. Whereas, an edge between a single protein v and a community means that there

exists at least one edge in G whose extremes are v and one protein in that community. More

formally, a view at a given resolution level can be represented as a graph GL = (VL, EL) where

two kinds of nodes can be present: meta-nodes, denoted (Vmeta

L � VC), and representing the
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communities; and atomic nodes, denoted (Vnode

L � V), and representing biomolecules occur-

ring in the integrated network G.

Due to the different types of nodes that are present in VL, three kinds of edges can be identi-

fied in EL: those that belong to the integrated network fðv; �vÞ 2 E j v; �v 2 Vnode

L g; those that

represent relationships among communities fðc;�cÞ j c;�c 2 Vmeta

L g, which means that there

exist v; �v 2 V, with v 2 c and �v 2 �c such that ðv; �vÞ 2 E; finally, those that represent relation-

ships among biomolecules and communities: fðv;�cÞ j v 2 Vnode

L ; �c 2 Vmeta

L g, for which there

exists �v 2 �c such that ðv; �vÞ 2 E. Fig 3 reports three views that can be obtained from the inte-

grated network of our running example. The view on the left-hand side contains only two

meta-nodes and an edge between them representing the existence of proteins of the first com-

munity that are in relation with proteins of the second community. The view on the right-

hand side contains both meta-nodes and proteins. Three kinds of edges can be detected: the

dashed line between C1 and C2 represents a relationship between two communities; the dot-

ted line between C5 and the protein SPY represents a relationship between a community and

a biomolecule; whereas, the straight lines represent relationships between proteins.

This multi-resolution representation improves the rendering of the network on the screen

at different levels of resolution, and highlights the relationships existing among communities

and among biomolecules and communities. Moreover, starting from a community in the

multi-resolution representation of an integrated network on the screen, the user can interac-

tively decide to move to lower layer communities by opening its content according to the com-

munity hierarchy C (invoking the zoom_in operation of task T4) or to remove details by

moving to a higher level community in the hierarchy (invoking the zoom_out operation of

task T5). In this way the user can analyse and identify properties of the integrated network and

point out hidden knowledge on the structure, communities and relationships occurring on the

biomolecular network.

Platform architecture, graph visualization and indexes

The visualization facilities so far discussed need the development of different software compo-

nents (network visualization, visual interaction, integration and prediction processing, multi-

resolution navigation and data storage and processing) and accessing strategies with the aim of

smoothly navigating among the communities and easily identifying and retrieving the target

proteins in networks with thousand of nodes.

Our software components exchange messages and minimize the amount of data that need

to be transmitted. Relying on a Client-Server architecture, that moves the time-consuming

operations to the server-side, we achieved very good performances, which are also positively

affected by the implementation of many operations directly within the Mysql DBMS by means

of stored procedures and the use of indexing structures that makes efficient the identification

of edges incident in a node. Mysql, Php, R, Node.js are used for the storage and processing of

data on the server side. Javascript, Cytoscape.js, and AngularJS have been used on the client

side for the visualization and rendering of the biomolecular networks; these libraries allow the

user interaction and network exploration. These technologies are the building blocks on top of

which UNIPred-Web works.

To make feasible an efficient and interactive exploration and navigation of a network at

different levels of resolution, we developed different indexing structures specifically devel-

oped for working with the communities. Each community c 2 C is associated with a triple of

indexes (pre, post, level) corresponding to the pre-order and post-order visit of C, and the

level of the community c in the hierarchy tree. To streamline the notation, in the remainder c
will denote, when not expressly remarked, a community or the index associated with it. In
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addition, each node of the integrated network G = hV, Ei is associated with the pair of

indexes (pre, post), corresponding to the most specific community in which the biomolecule

has been included (i.e. a community that is a leaf in the hierarchy C). Moreover, the graph is

unordered and edges are ordered according to the pre-order indexes of the most specific

community of their vertices (i.e., we do not distinguish between (v1, v2) and (v2, v1), and

pre(v1) is always lower than pre(v2)). In this way, according to [83], the following operations

can be realized in constant time:

• determine when c1 is a descendant of c2 (denoted c1 2 desc(c2)), and the parent of a commu-

nity c (denoted parent(c)),

• determine the leaf community a protein v belongs to (denoted class(v)).

• determine when two communities c1, c2 are disjoint (denoted c1≁c2) and meaning that c1 =2

desc(c2) and c2 =2 desc(c1);

• determine when a protein v belongs to a class c in the hierarchy C (denoted v 2 c).

Algorithm 2 Construction of the index IC
Input: The community hierarchy C = (VC, EC), The protein network G =
(V, E)
Output: the index IC containing the relationships among the communi-
ties in C induced by the edges in G
VI  VC
EI  ;, �EI ¼ ;

1: for each (v1, v2)2E s.t. class(v1)6¼class(v2) do
2: �EI  

�EI [ fðclassðv1Þ; classðv2ÞÞg

3: end for
4: for each (c1, c2)2VC × VC s.t. c1≁c2, pre(c1)<pre(c2) and
5: 9ð�c1 ; �c2Þ 2

�EI s.t. �c1 2 descðc1Þ and �c2 2 descðc2Þ do
6: EI = EI [ {(c1, c2)}
7: end for
8: return ðVI ;EI [

�EIÞ

Starting from these basic indexing structures, a more complex index has been realized for

inducing the relationships existing among non-overlapping communities in C by means of the

edges E of the integrated network. This index (named IC) is a graph (VI, EI) whose nodes are

the communities in VC and EI contains the edges between two non-overlapping communities

(c1, c2) for which at least an edge exists in G among the nodes belonging to the communities c1

and c2. The construction of this index is realized in two steps by means of Algorithm 2. In the

first step (lines between 1 and 3), the edges that occur among the communities in VC that are

leaves of the hierarchy are determined. This is accomplished by selecting the edges whose

source protein and target protein fall in different leaf communities. All the leaf communities of

the hierarchy C should be considered because they are all disjoint.

In the second step (lines between 4 and 7), the edges with the other communities in the

hierarchy C are determined by considering all possible pairs ðc;�cÞ of disjoint communities

(with the exception to those for which c and �c are both leaves). Among them, we include in EI
only the pairs (c1, c2) for which an edge ð�c1 ; �c2Þ were included in �EI in the first step of the algo-

rithm such that �c1 (respectively �c2 ) is a descendant of c1 (respectively c2). By following this

two-step algorithm all the possible edges between two non-overlapping communities are

included in (VI, EI) and can be exploited for the generation of a multi-resolution representa-

tion GL. This two-step algorithm requires to use the edges in E only in the first step (the com-

plexity of this operation is in OðjEjÞ) and, in the second step, only disjoint communities in the

hierarchy are considered (the complexity of this operation is in OðjVCj � jVCjÞ).

PLOS ONE Multi-resolution visualization and analysis of biomolecular networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244241 December 22, 2020 20 / 28

https://doi.org/10.1371/journal.pone.0244241


Since all the operations for checking when an edge belongs to a generic community in C are

executed in constant time, the complexity of the process for inducing the relationships existing

among non-overlapping communities is in OðjEj þ jVCj � jVCjÞ. Usually, the communities

that are identified for an integrated network are much lesser than the nodes in V and the edges

in E, therefore the previous formula can be simplified as OðjEjÞ.
Algorithm 3 Zoom in

Input: the index IC ¼ ðVI; EIÞ,
the multi-resolution representation GL = (VL, EL)
a community c 2 VL
the community hierarchy C = (VC, EC),
the protein network G = (V, E)

Output: a new G0L ¼ ðV
0
L;E

0
LÞ with the node c expanded

1: Vnode

L ðcÞ  fvjv 2 Vnode

L ^ ðv; cÞ 2 ELg

2: Vmeta

L ðcÞ  fvjv 2 Vmeta

L ^ ðv; cÞ 2 ELg

3: if c is a leaf community in C then
4: V(c) {v 2 V|class(v) = c}
5: E(c) {(v1, v2)|(v1, v2)2E^v1, v2 2 V(c)}
6: Enew

L  fðv1; v2Þjv1 2 VðcÞ; v2 2 Vnode

L ðcÞ; ðv1; v2Þ 2 Eg [
fðv1; c2Þjv1 2 VðcÞ; c2 2 Vmeta

L ðcÞ; 9v0 2 c2 s:t: ðv1; v0Þ 2 Eg
7: else
8: V(c) {c0 2 VC|(c, c0)2EC}
9: E(c) {(c1, c2)|(c1, c2)2EI^c1, c2 2 V(c)}
10: Enew

L  fðc1; v2Þjc1 2 VðcÞ; v2 2 Vnode

L ðcÞ;9v0 2 c1 s:t: ðv0; v2Þ 2 Eg [
fðc1; c2Þjc1 2 VðcÞ; c2 2 Vmeta

L ðcÞ; ðc1; c2Þ 2 EIg

11: end if
12: V 0L ¼ VL [ ðVðcÞ n fcgÞ
13: E0L ¼ ðEL n fðv; cÞjðv; cÞ 2 ELgÞ [ Enew

L [ EðcÞ
14: return ðV 0L;E

0
LÞ

Initial multi-resolution graph and zoom_in/zoom_out operations

The initial multi-resolution representation of an integrated network is formed by a single

meta-node (the root of the hierarchy C) and no edges are present (i.e. GL = ({c}, ;), where c =

root(C). The user can thus apply the zoom_in operation for enlarging the visualization start-

ing from the meta-node c. Besides this very particular situation, GL is composed by proteins

and metanodes, and the user can ask to apply the zoom_in operation on any metanodes, or

he/she can apply the zoom_out operation on proteins or metanodes. The effect is to produce

a new multi-resolution representation of the integrated graph in which metanodes are

expanded. Algorithm 3 reports the pseudo-code of the zoom_in operation. Starting from the

current GL, the community hierarchy C, the index IC, the integrated network G = (V, E) and

the community c to be expanded, it allows us to create a new multi-resolution representation

G0L in which the community c and the edges that connect c with other communities/proteins in

GL are substituted with the communities/proteins contained in c. First the algorithm identifies

the communities Vmeta

L ðcÞ and the proteins Vnode

L ðcÞ that are incident with c in GL (lines 1 and

2). When c is a leaf node of the community hierarchy C, c needs to be substituted with its pro-

teins. Therefore, the proteins of the community c, i.e. V(c), and all internal edges in the com-

munity, i.e. E(c), are determined (lines 4 and 5). At this point, the edges between the subgraph

(V(c), E(c)) and the vertices in Vnode

L ðcÞ are determined by exploiting the edges in G, whereas

the edges between the subgraph (V(c), E(c)) and the vertices Vmeta

L ðcÞ are determined by identi-

fying edge between the nodes in V(c) and the proteins in V associated with the communities in

Vmeta

L ðcÞ (line 6). When c is an aggregated community of the community hierarchy C, c needs

to be substituted with its child communities. Therefore, the communities V(c) that are children
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of c in C are determined (line 8). The new edges to be included in G0L are determined in two

steps: first, we determine through the index IC the existing edges among the nodes in V(c);
then, we determine the edges between the proteins associated with the communities in V(c)
and the proteins in Vnode

L ðcÞ and the edges between the communities in V(c) and the commu-

nities in Vmeta

L ðcÞ that are available in the index structure (lines 10). In both cases, the vertices

of G0L are obtained by removing from VL the community c and including the vertices in V(c).
The edges of G0L are obtained by removing from EL all the edges that are incident in c and

including the edges in Enew

L and E(c).
Many of the described operations require to consider the edges E that are present in the

integrated network G and to check properties on them. Since the complexity of the operations

for checking the properties is always constant by using our indexing structures, the complexity

of the zoom_in operation in the worst case is in OðjEjÞ.
Algorithm 4 Zoom out

Input: the multi-resolution representation GL = (VL, EL) c 2 VL\{root
(C)}

the community hierarchy C = (VC, EC),
Output: a new G0L ¼ ðV 0L;E0LÞ with the node c collapsed
1: if c 2 Vnode

L then
2: cp  class(c)
3: VLðcpÞ  fv 2 Vnode

L jclassðvÞ ¼ cpg
4: else
5: cp  parent(c)
6: VLðcpÞ  fc0 2 Vmeta

L jðcp; c0Þ 2 ECg

7: end if
8: Enew

L  fðcp; v1Þjv1 2 VL n VLðcpÞ ^ 9v0 2 VLðcpÞjðv1; v0Þ 2 ELg

9: V 0L ¼ ðVL [ fcpgÞ n VLðcpÞ
10: E0L ¼ Enew

L [ ðEL n fðv1; v2Þ 2 ELjv1 2 VLðcpÞ _ v2 2 VLðcpÞgÞ
11: return ðV 0L;E

0
LÞ

Algorithm 4 reports the pseudo-code of the zoom_out operation. This operation is sim-

pler than the zoom_in operation because it works only on the current multi-resolution repre-

sentation GL by taking into account the community hierarchy C and the node c that needs to

be collapsed. When c is a protein node, this operation has the purpose to remove from GL

the protein c and also all the other proteins of the same class of c. Therefore, at line 3, the set

of proteins VL(cp) of class cp = class(p) are determined. Whenever, c is a meta-node, the

zoom_out operation has the purpose to remove from GL the communities that are children

of the parent community of c (parent(cp)). Therefore, at line 6, the set of metanodes VL(cp)
belonging to the class parent(cp) is determined. Starting from VL(cp), we are able to determine

both the edges in EL to be removed (the edges that are incident in at least a node in VL(cp)) and

those to be included (the edges that substitute an edge (v1, v2) between VL\VL(cp) and VL(cp)
with an edge (v1, cp)). Many operations require to consider the edges EL that are present in GL

and to check properties on them. Also in this case, the checking of the properties can be real-

ized in constant time, then the complexity of the zoom_out operation is in OðjELjÞ. In the

worst case, the size of EL is E, therefore the complexity of the zoom_out operation is in

OðjEjÞ.

Discussion

The novel algorithms and visualization tools proposed in this work introduce the possibility to

explore large and complex networks by means of a hierarchy of protein communities, that

allows a multi-resolution and interactive visualization and analysis of gene and protein net-

works. We showed that through our methodology integrated in UNIPred-Web, we are able to
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visualize and explore protein networks of different size and connectivity. In particular, in

experiment n. 2963 (see S1 File) a network having 17287 and 840950 edges is visualized,

through a three level hierarchy; whereas through the experiment n. 2964, we efficiently navi-

gated a deep hierarchy of dense communities, having 1910239 edges for 13535 proteins

grouped in 265 communities and 7 levels.

As discussed in the comparison with other similar tools, UNIPred-Web does not require

specific computational resources and/or devices, and can be run on standard browsers and

off-the-shelf machines. Furthermore, the analysis performed on two case studies to predict the

GO term p38MAPK cascade exploiting two integrated pathway interaction networks, and

to predict adhesion of symbiont to host cell term in the CoV-human network, has shown the

novel possibilities opened by our tool. Indeed, through the facility for downloading the pro-

teins forming a given community, we can further study the individual communities: for

instance we found that community proteins are enriched in meaningful and coherent path-

ways, highlighting a predominant biological function. Thus, the dissection of networks in

communities can help the biologist to pinpoint interesting biological functions needed to plan

further in vitro studies. Thanks to the novel community-based exploration, in the case study

involving the CoV-human network, we have found that two proteins predicted by our tool

as positive for the GO term adhesion of symbiont to host cell (GO:0044650), namely FUR-
IN_HUMAN and TMPS2_HUMAN, are contained in the KEGG pathway “hsa05164:Influenza

A”, resulted enriched with respect to the community containing the top-scored proteins. Inter-

estingly, it is known that Influenza A and SARS-CoV2 are strictly related [78]. Moreover we

found novel human proteins that could potentially interact with SARS-CoV2 proteins.

We plan to improve the system along several directions. On the user interface side, one

potential extension consists in the integration of external services, like for example CTD—

Comparative Toxicogenomics Database, and HPO—The Human Phenotype Ontology [84]

for enhancing the information associated with proteins, and thus further supporting the users

in conducting their investigations. Moreover, on the algorithmic side, although the already

implemented methods provide state-of-the-art performance in predicting protein functions

[9], the prediction engine will be constantly improved in light of novel research results. From

the results analysis side, state-of-the-art methods for enrichment analysis could also be embed-

ded in the system, to provide relevant complementary information about proteins and their

biomolecular functions directly integrated within the tool. A further development is the appli-

cation of the visualization facilities here described to manage networks of patients [85], in

order to visualize and manage communities of patients to stratify them according to their bio-

molecular profiles.

Supporting information

S1 File. Data availability and experiment codes for testing the application.

(PDF)
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