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Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is 
a significant contributor to the development of CVD. The relationship between acute 
and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and 
ischemic injury. However, recent evidence in rodent models suggests that acute stress 
can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, 
chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies 
have examined the impact of validated animal models of stress-related psychological 
disorders on the ischemic heart. This review examines the work that has been completed 
using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. 
Utilization of animal models of stress-related psychological disorders is critical in the pre-
vention and treatment of cardiovascular disorders in patients experiencing stress-related 
psychiatric conditions.
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iNTRODUCTiON

The goal of this review is to analyze recent literature utilizing rodent models to examine the impact of 
psychological stress on sensitivity to myocardial ischemia–reperfusion injury (IRI) in the context of 
the well-established relationship between stress, myocardial ischemic injury, and cardiovascular dis-
ease (CVD). Stress is a general adaptive response provoked by stimuli that disrupt homeostasis (1, 2). 
The stress response activates systems responsible for mobilizing the energy and resources necessary 
to overcome this homeostatic disturbance. The main systems activated include the hypothalamic–
pituitary–adrenal (HPA) axis and the sympathetic adrenomedullary (SAM) system (3,  4). Stress 
results in the release of corticotropin-releasing hormone (CRH) from the paraventricular nucleus, 
which then causes the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. 
ACTH acts on the adrenal cortex to synthesize and secrete the glucocorticoid (GC) hormone cor-
tisol (in humans) or corticosterone (in rodents) (3, 5). The hypothalamus also activates the adrenal 
medulla via the sympathetic nervous system (SNS), which results in the release of the catecholamines 
epinephrine and norepinephrine. ACTH, CRH, and GCs provide the negative feedback necessary 
to dampen the stress response and return the body to homeostasis (4, 6). Cessation of the stress 
response is important to prevent damage associated with a prolonged stress response (3, 4, 7). Acute 
stress generally results in an adaptive response to homeostatic changes; the stress response becomes 
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harmful if it persists chronically (8–11). Thus, stress research can 
be roughly divided into research examining the effects of acute or 
chronic stress (3, 4, 7, 9–11).

Physical or psychological stressors can result in the stress 
response. Physical stressors disrupt the internal or external 
environment of an organism and include stimuli such as anoxia, 
heat, cold, or physical strain (exercise or injury). Psychological 
stressors are stimuli that affect emotion and result in fear, anxiety, 
or frustration (8–11). As previously discussed, anything disrupt-
ing homeostasis can be a stressor; however, this review focuses on 
stressors with a psychological component.

Chronic stress can have damaging effects on the whole organ-
ism (4). Stress precipitates psychiatric disease, such as depression 
and post-traumatic stress disorder (PTSD), and worsens physical 
health outcomes, such as CVD (12, 13). Furthermore, patients 
with psychiatric disorders have a higher incidence of CVD and 
cardiovascular risk factors, such as atherosclerosis, hypertension, 
and myocardial infarction (MI) (14–16). Patients with psychiatric 
disorders experience worse outcomes in response to cardiovascu-
lar disorders (e.g., higher mortality). It is suggested that appropri-
ate monitoring for psychiatric disorders could improve outcomes 
in patients with ischemic heart disease (8, 14, 17–21). Thus, 
research directed at minimizing the negative impact of stress is 
important (19, 21–25).

Stress and Cardiovascular Disease
Cardiovascular disease is the leading cause of mortality world-
wide (26, 27), and stress is a well-established contributor to the 
development of CVD (3, 8, 20). Stress is relevant at all stages of 
CVD; stress can increase exposure to risk factors for CVD (e.g., 
smoking), the long-term development of atherosclerosis, and the 
triggering of cardiac events in people with CVD (28).

The most common form of CVD is ischemic heart disease (also 
known as coronary artery disease), which includes disease states 
such as angina, MI, and sudden cardiac death (SCD) (29,  30). 
MI occurs when blood flow to a region of the heart stops. The 
heart is an electromechanical pump; SCD most commonly occurs 
in response to ventricular fibrillation, a disturbance in electrical 
activity, as a result of acute coronary ischemia (31, 32). MI and 
SCD can lead to cardiac arrest and death. Stress may acutely trig-
ger MI or SCD or worsen underling CVD leading to one of these 
events (3). Thus, stress is closely related to ischemic heart disease. 
Research investigating the relationship between stress and the 
cardiovascular system is critical to improve patient outcomes in 
CVD (20, 25, 28).

Myocardial Ischemia–Reperfusion Injury
Myocardial IRI refers to the damage created by the stoppage of 
and the subsequent restoration of blood flow to the heart. Without 
blood flow, an imbalance between oxygen supply and demand is 
created which results directly in irreversible damage to cardiac 
tissue, eventually resulting in apoptosis or necrosis; this oxygen 
imbalance is referred to as ischemia. The duration of ischemia 
and amount of tissue exposed to ischemia are well established as 
the primary determinants of infarct size (IS), or the amount of 
non-viable tissue following ischemia. The mechanisms by which 
damage and protection occur in response to myocardial IRI has 

been described in detail previously (33–39). Thus, myocardial IRI 
is the primary mechanism by which cardiac tissue is damaged 
in MI, SCD, cardiac bypass surgery, and organ transplantation 
(40). Acute and chronic stress has an impact on myocardial IRI 
(3,  41,  42). Because myocardial IRI plays a major role in the 
morbidity and mortality associated with ischemic heart disease 
and MI, direct study of this pathology is desirable (35, 43–46). To 
better elucidate the mechanisms underlying CVD and ischemic 
injury, researchers have utilized animal models.

The Utility of Animal Models in Stress 
Biology and Cardiovascular Disease
Animal models are used extensively to study the relationship 
between stress and CVD. Animal models are especially important 
in studying stress biology, as they allow researchers to standardize 
the conditions of stress. Furthermore, a high level of experimental 
control and the potential to study causal neurobiological and 
behavioral mechanisms (with easier access to tissue samples and 
physiological manipulation) makes animal models advantageous 
for studying cardiovascular function and stress (22, 47, 48). By 
using validated methodology with translational relevance to 
human patients, researchers can use animal models effectively to 
examine underlying mechanisms and potential treatment options 
in CVD and stress (22, 49).

The Langendorff Isolated Heart – An Experimental 
Model of Ischemic Injury
Animal models have been developed to experimentally induce 
and study acute ischemia both in  vivo (50, 51) and ex vivo 
(44, 52, 53). The Langendorff isolated heart preparation is one of 
the most extensively used animal models for the study of heart 
physiology and ischemia (53). In this model, crystalloid perfu-
sates (or blood) is delivered through a cannula inserted in the 
ascending aorta. Retrograde flow closes the leaflets in the aortic 
valve, leading to perfusion of the coronary vasculature (52, 53). 
This model is commonly used to study myocardial IRI. This is 
accomplished by occlusion of a coronary artery (typically the left 
anterior descending artery), leading to regional ischemia, or by 
turning off flow, leading to global ischemia. This model allows 
the generation of data including IS, the recovery of contractile 
function, and electrical activity in response to induced ischemia. 
In regional ischemia, researchers use the IS relative to the area at 
risk (AAR), or the area normally perfused by the clamped artery, 
whereas global ischemia allows measurement of the total amount 
of non-viable tissue [for a complete methodological review of the 
Langendorff isolated heart, see Ref. (52)].

Notably, the Langendorff isolated heart system studies ischemic 
injury in the absence of normal humoral or neuronal stimulation, 
potentially limiting the translation of experimental findings to the 
clinical setting (52, 53). Furthermore, this model has additional 
disadvantages, including a high coronary flow rate, limited supply 
of high-energy phosphate, a reduced oxygen requirement, and a 
degree of technical skill required to perform successfully (53–55). 
These disadvantages have led to the development of alternative 
methods to study cardiovascular injury; other potentially more 
clinically relevant methods include altering the Langendorff 
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procedure (54) or using in vivo models of cardiovascular injury 
(56). Despite its disadvantages, the Langendorff isolated heart 
system has proven invaluable to the study of myocardial IRI 
(52, 53). This model has been used effectively to identify potential 
strategies and pharmacological agents to decrease the amount of 
damage caused to the heart following MI (43, 53).

The Langendorff Isolated Heart Preparation in Rats
The Langendorff heart preparation is appropriate in mammalian 
species. Although this preparation has been used rarely in large 
animals or man (57–61), the most frequently used isolated 
heart model is that of the rat. The rat model allows for relatively 
low costs, easy handling, and uncomplicated equipment (53). 
Furthermore, the consistency of limited collateral circulation 
allows the study of regional ischemia in the rat. This provides 
an advantage over models with significant collateralization 
such as dog (62), guinea-pig (62, 63), and hamster models (63). 
Furthermore, the rat’s consistent coronary structure makes it a 
better model than, for example, rabbits, whose coronary struc-
ture varies significantly between animals (64). However, it is 
important to recognize that the rat suffers distinct disadvantages 
in cardiovascular study because of its short action potential dura-
tion, which lacks a plateau phase. This makes this animal a poor 
choice for study of arrhythmogenesis and antiarrhythmic drugs 
(60, 65–68). Similarly, dogs have been shown to have elevated 
levels of troponin and creatine kinase, markers of cardiac damage, 
in response to cardiac injury (69). However, rats have only shown 
elevations in troponin, making them relatively poor candidates 
to study drug-induced injury using these markers (69, 70). Thus, 
one must remain mindful of the potential clinical relevance of 
studies in the context of the species being utilized (52).

Both myocardial ischemic injury and cardiovascular 
responses to stress have been described in detail in both human 
patients and animal models; however, only several recent studies 
have focused directly on the sensitivity to myocardial ischemic 
injury in response following acute or chronic psychological stress 
exposure.

ACUTe STReSS AND CARDiOvASCULAR 
DiSeASe

The association between acute stress and cardiac rhythm, acute 
MI, SCD, and stress cardiomyopathy has been supported by 
epidemiological studies (71–75). Cardiac rhythm changes in 
response to acute stress has been evidenced by a marked increase 
in tachyarrhythmia among patients with implanted cardioverter 
defibrillators in the New York area of the USA during the attacks 
on the World Trade Center on September 11, 2001 (71). An asso-
ciation between intense emotional stress or anger and the trig-
gering of acute cardiac events, such as acute MI or SCD, has been 
demonstrated by multiple studies demonstrating a significant 
number of patients experiencing an emotional episode roughly 
2 h before cardiac arrest (72–75). This increased incidence of MI 
has been evidenced in individual patients following a significant 
acute stressor, such as the loss of a loved one. Moreover, acute 
cardiac event incidence is increased in geographical areas where 

a major trauma, such as an earthquake, serves as an acute stressor 
(8, 20, 76). SCD and MIs are rare in patients with no underlying 
coronary heart disease, whereas stress cardiomyopathy can occur 
with no underlying disorder (77–79).

Acute Stress and Myocardial  
ischemic injury
The association between intense emotional stress and ischemic 
heart disease, specifically the incidence of SCD, has been 
researched for over 50 years (80, 81). Acute psychological stress 
in human patients leads to ischemia, stress cardiomyopathy, MI, 
and SCD (8). Stress cardiomyopathy is induced by intense stress 
that results in heart weakness without underlying pathology. 
Thus, stress cardiomyopathy is a recently identified disease state 
mirroring MI with symptoms, such as chest pain and ECG abnor-
malities, but without concomitant coronary spasm or ischemia-
induced enzymatic release (82, 83). Mental stress elicits regional 
ischemic damage due to epicardial or microvascular constriction, 
as evidenced by changes in regional perfusion. Interestingly, this 
ischemia is not associated with the angina and ECG changes 
that are associated with exercise-induced stress (84–89). This 
transient myocardial ischemia and coronary artery constriction 
have been shown to occur in patients with advanced coronary 
artery disease in response to mental stress (89–91). Furthermore, 
mental stress has been shown to lead to ECG alternans, a predic-
tor of ventricular arrhythmias and SCD (92–94).

Acute mental stress has been shown to alter the action poten-
tial duration of cardiac tissue in humans. Adrenergic stimulation 
with isoprenaline and adrenaline increases the steepness of the 
slope of action potential duration restitution; this suggests that 
adrenergic stimulation can lead to electrical instability, which 
could lead to ventricular fibrillation or arrhythmias (95). In an 
elegant study, Child et  al. showed that a mental challenge was 
able to elicit this effect on action potential duration independent 
of the respiration or heart rate changes that occur in response 
to mental stress (96). Ventricular fibrillation has been shown to 
occur in response to both regional myocardial ischemia and elec-
trical instability. Ventricular fibrillation leads to global cardiac 
ischemia, which can lead to cardiac death (97, 98). The ability of 
mental stress to cause cardiac ischemia and electrical instability in 
the heart is supported by epidemiological studies. The underlying 
risk factors inherent in clinical study complicate cardiovascular 
research. As previously discussed, the standardization of stress 
conditions makes animal models advantageous for investigating 
the underlying pathology of disease, including CVD.

experimental Acute Stress and 
Cardiovascular Disease
Experimental work using animal models supports the effects of 
acute psychological stress on the cardiovascular system seen in 
human patients. Psychological stress has been shown to reduce 
the ventricular fibrillation threshold in dog (42, 99–103) and 
porcine models (104). Verrier and colleagues have demonstrated 
the ability of acute stress to precipitate ventricular arrhythmias in 
dogs exposed to anger and fear in both healthy hearts and hearts 
exposed to coronary artery occlusion (99–103, 105–108). Acute 
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stress was able to precipitate ventricular fibrillation and cardiac 
arrest; albeit, these studies did not utilize dogs exposed to a single 
acute stressor but rather an acute stress session following aver-
sive conditioning (99–101, 103). These researchers found that 
behaviorally induced changes in vulnerability to fibrillation are 
mediated by the direct effects of catecholamines on beta receptors 
(109, 110). Further supporting the centrally mediated nature of 
cardiac arrhythmias generated by acute stress, Skinner and Reed 
were able to prevent an increase in ventricular fibrillation by 
cryogenic blockage of the forebrain, posterior hypothalamus, or 
fields of Forel (104). Thus, acute psychological stress has the ability 
to generate and exacerbate ischemia and ventricular arrhythmia.

Stress-limiting endogenous systems have been identified with 
the ability to abolish or reduce cardiac arrhythmias in response 
to sympathetic stimulation, acute stress, or ischemic injury 
(4, 7). The endogenous hormones utilized by these systems with 
protective effects on the cardiovascular system include GABA 
(111, 112), opioids (113), or vagal stimulation with cholinergic 
agonists (114, 115). Furthermore, it has been suggested that 
electrical instability does not necessarily disturb cardiac contrac-
tility (4, 116). Supporting the role of stress-limiting systems in 
cardiovascular injury, recent work in rodents demonstrates that 
acute stress may decrease damage in response to induced regional 
ischemia, possibly as a compensatory mechanism.

Experimental Acute Stress and Myocardial  
Ischemic Injury
Recent rodent studies looking at the effect of acute psychological 
stress on the impact of myocardial ischemic injury have found acute 
stress to be cardioprotective and reduce IS [see Table 1 (45, 117)]. 
The identified relevant studies utilized cold-restraint stress (117) 
and forced swim stress (45) before using the Langendorff method 
to induce regional ischemia. Acute swim stress and acute restraint 
stress are validated psychological stressors that have been used 
in combination with other stressors to model PTSD and depres-
sion (118–121). These stressors, individually or in combination, 
have resulted in anxiety-like and fear-related behavior in rodents 
as assessed by tests such as the elevated plus maze (EPM) and 
contextual fear conditioning (CF) (119, 122, 123). The decreased 
sensitivity to myocardial IRI provided by acute psychological 
stress is supported by similar findings in studies utilizing acute 
physiologic stressors, such as exercise or hyperthermia (124–128). 
The existence of endogenous signaling pathways that protect the 
heart from ischemic injury is well evidenced (46, 129–131).

Research has previously shown that short-term stress is accom-
panied by enhanced contractile function and resistance to hypoxia 
in hearts isolated from stressed animals, while long-term stress 
resulted in the opposite effect (4, 7). Additionally, acute stressors 
seem to result in the redistribution of the immune system to the 
site of inflammation, which could provide an adaptive response 
to stress (137–139). Interestingly, opioid antagonists were able to 
eliminate the cardioprotection afforded by cold-restraint stress, 
supporting this stress-limiting system’s role in decreased sensitiv-
ity to ischemic damage (113, 117, 140).

Though acute psychological stress decreases the sensitivity of 
ischemic damage in response to myocardial IRI, the work does not 

necessarily contradict the previously discussed,  well-established 
effects of acute stress in both animal models and clinical research, 
including triggering MI or independently leading to ischemic 
damage (72–75, 100–103). While electrical instability of the 
heart occurs in response to acute stress, it is possible that protec-
tive pathways exist to reduce the sensitivity to ischemic damage 
(4,  7,  116, 140). Additionally, it is important to recognize that 
while removing the additional stressors and underlying pathol-
ogy found in humans adds experimental control, it does diminish 
the clinical translatability of this work (33, 52, 53). Furthermore, 
while investigators look at the myocardial ischemic injury of all 
rodents exposed to acute psychological stress, MI data in humans 
in response to acute stressors typically only represent patients 
who experienced an MI or symptoms of an MI (72–75). As a final 
potential limitation, rodent models look at the same ischemic 
injury in all subjects, whereas human patients can present with 
very different ischemic damage due to underlying disease and the 
possible collateralization of vessels over many years (135).

Contrasting the protective effects of acute stress, chronic stress 
in rodent models has impacted sensitivity to myocardial ischemic 
injury in rodent models by decreasing recovery of cardiac 
contractility and increasing ischemic injury (10, 132, 133, 134). 
The effect of chronic psychological stress is especially relevant 
because of the numerous stressors facing human patients, which 
have effects on cardiovascular outcomes (8, 14, 17–22, 141, 142). 
Thus, diminishing the negative effects of chronic stress on the 
heart has the ability to reduce cardiovascular morbidity and 
mortality. Therefore, the effect of chronic stress on the cardiovas-
cular system has been an emerging area of research with several 
recent studies looking directly at myocardial ischemic injury.

CHRONiC STReSS AND 
CARDiOvASCULAR DiSeASe

Chronic stress has been implicated to cause or worsen CVD 
in human patients (20, 141–145). Chronic stress has been 
linked to increased risk of ischemic heart disease (20, 28). The 
INTERHEART case–control study showed that significant long-
term stress over the course of 12  months more than doubled 
the risk of acute MI, even after adjusting for conventional risk 
factors such as diabetes mellitus, hypertension, and smoking 
(146). Prospective cohort studies have supported the effect of 
long-term stress on risk of coronary heart disease. Studies have 
linked coronary heart disease risk with work-related stressors, 
specifically when an imbalance between effort and reward is 
experienced (147–151). Furthermore, the effects of long-term 
stress may persist long after the cessation of the chronic stressors. 
Survivors of the siege of Leningrad were found to have increased 
blood pressure and increased mortality from CVD, relative to 
Russians who were not in the besieged city, over 50 years after 
the event (152).

Chronic Stress and Cardiovascular Disease
Psychological conditions related to chronic stress and CVD 
include depression, anxiety, and PTSD (3). As previously 
discussed, psychiatric disorders can worsen outcomes in CVD. 
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TABLe 1 | Studies examining myocardial ischemic injury in rodent models of psychological stress.

Subjects Stress protocol Reperfusion injury (Ri) protocol Primary finding Reference

Acute psychological stress

Adult male Wistar rats Forced swim for 10 min 30 min ischemia Decreased infarct size  
(IS)/area at risk (AAR)%

Moghimian  
et al. (45)RI 10 min after 60 min reperfusion

Adult male Sprague-Dawley 
rats

Individual immobilization, placed in a cold room for 3 h at 4 ± 0.3°C 30 min ischemia Decreased IS/AAR% Wu et al. (117)
RI immediately after 120 min reperfusion

Chronic psychological stress

Adult male Sprague-Dawley 
rats

1–1.5 h daily restraint stress for 8–14 days 30 min ischemia Increased IS/AAR% Scheuer and 
Mifflin (132)RI 24 h later 180 min reperfusion Increased # of fatal 

arrhythmias

Adult male Sprague-Dawley 
rats

2 h daily restraint stress for 11–12 days 30 min ischemia Increased IS/AAR% Scheuer and 
Mifflin (132)RI 24 h later 180 min reperfusion Increased # of fatal 

arrhythmias

Adult male Wistar-Kyoto 
(WKY) rats

Crowding stress (living space 200 cm2/rat) for 8 weeks 30 min ischemia Decreased LVDP recovery Ravingerova  
et al. (133)RI unspecified 120 min reperfusion (reperfusion-induced tachyarrhythmias and 

contractile function measured 40 min after reperfusion initiation)
Increased duration of 
ventricular tachycardia (VT)

Adult male spontaneously 
hypertensive (SHR) rats

Crowding stress (living space 200 cm2/rat) for 8 weeks 30 min ischemia Increased LVDP recovery Ravingerova  
et al. (133)RI unspecified 120 min reperfusion (reperfusion-induced tachyarrhythmias and 

contractile function measured 40 min after reperfusion initiation)
Decreased duration of VT

Adult male Wistar rats 10 s electrical shock, 50 s rest for 1 h daily for 7 days 30 min ischemia Increased IS/AAR% Rakhshan  
et al. (10)RI 24 h later 120 min reperfusion

Adult male Wistar rats Witnessed rats receive but did not receive 10 s electrical shock, 50 s rest 
for 1 h daily for 7 days (psychological shock)

30 min ischemia
120 min reperfusion

Increased IS/AAR% Rakhshan  
et al. (10)

RI 24 h later

5-week-old male  
Wistar-Kyoto (WKY) rats

Crowding stress (~70 cm2 living space per 100g body mass) for 14 days 30 min ischemia No significant difference 
between stress and no 
stress groups

Ledvenyiova-
Farkasova  
et al. (134)

RI unspecified 120 min reperfusion (reperfusion-induced tachyarrhythmias and 
contractile function measured 40 min after reperfusion initiation)

5-week-old female  
Wistar-Kyoto (WKY) rats

Crowding stress (~70 cm2 living space per 100 g body mass) for 14 days 30 min ischemia Decreased VT duration Ledvenyiova-
Farkasova  
et al. (134)

RI unspecified 120 min reperfusion (reperfusion-induced tachyarrhythmias and 
contractile function measured 40 min after reperfusion initiation)

5-week-old female 
spontaneously hypertensive 
(SHR) rats

Crowding stress (~70 cm2 living space per 100 g body mass) for 14 days 30 min ischemia Increased VT duration Ledvenyiova-
Farkasova  
et al. (134)

RI unspecified 120 min reperfusion (reperfusion-induced tachyarrhythmias and 
contractile function measured 40 min after reperfusion initiation)

5-week-old male 
spontaneously hypertensive 
(SHR) rats

Crowding stress (~70 cm2 living space per 100 g body mass) for 14 days 30 min ischemia Increased VT duration Ledvenyiova-
Farkasova  
et al. (134)

RI unspecified 120 min reperfusion (reperfusion-induced tachyarrhythmias and 
contractile function measured 40 min after reperfusion initiation)

Adult male Sprague-Dawley 
rats

31 days chronic social instability (randomized paired housing) 20 min ischemia Increased IS/AAR% Rorabaugh  
et al. (135)1 h immobilized predator exposure on days 1 and 11 120 min reperfusion Decreased RPP

See Zoladz et al. (136) for complete PTSD paradigm RI 48 h later Decreased + dP/dT

Adult female  
Sprague-Dawley rats

31 days chronic social instability (randomized paired housing) 20 min ischemia
120 min reperfusion

No significant effect Rorabaugh 
et al. (135)1 h immobilized predator exposure on days 1 and 11

See Zoladz et al. (136) for complete PTSD paradigm
RI 48 h after
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However, this relationship may be bidirectional. For example, 
it has been shown that coronary heart disease leads to a higher 
incidence of depression, and depression leads to worse outcomes 
in coronary heart disease (14, 15, 17, 49, 153). Furthermore, 
the association between depression and coronary heart disease 
occurs independent of comorbid risk factors such as high cho-
lesterol, hypertension, or obesity (13, 49, 154, 155). PTSD also 
increases a patient’s risk for developing coronary heart disease. 
This association is independent of comorbid depression, genetic 
influences, and other confounding factors (156–158). The nega-
tive cardiovascular outcomes exhibited in both depression and 
PTSD have been attributed to underlying dysfunction in the 
autonomic nervous system and HPA axis (13, 22, 48, 49, 135). 
However, precisely defining the contribution of long-term stress 
to CVD is difficult due to potential confounding factors including 
the aforementioned psychological disorders (28). Thus, animal 
models provide an acceptable means to study chronic stress in the 
controlled experimental setting (22).

experimental Chronic Stress and 
Cardiovascular Disease
Animal models support the negative effects of chronic stress on 
the cardiovascular system evidenced by epidemiological studies. 
Experimental studies have found exposure to chronic stress 
results in enhanced development of atherosclerosis and plaque 
destabilization (3, 159, 160). Chronic stress has also been shown 
to lower the threshold for ventricular arrhythmias (103, 107–109, 
161, 162). In a landmark study, Verrier and Lown conditioned 
dogs to associate a sling with an aversive shock for 3 days. On days 
4 and 5, these researchers found that coronary occlusion in dogs 
re-exposed to the sling environment (in the absence of shock) led 
to ventricular fibrillation, whereas dogs in a non-aversive cage 
environment did not experience ventricular fibrillation. Research 
has continued to focus on this ability of chronic psychological 
stress to result in cardiac instability (101, 102, 107).

Researchers have used validated models of psychological dis-
orders to study the relationship between psychological disorders 
and the cardiovascular system. For example, the relationship 
between depression and CVD has been studied using chronic 
stress models [e.g., chronic mild stress (CMS) and social isola-
tion] of depression in rodents. The CMS model of depression 
involves exposure to mild and unpredictable stressors, including 
changing cage mates, cage tilt, and periods of water or food 
deprivation, for a period greater than 2  weeks (49, 153, 163). 
These models of depression decrease rodent intake of a sweet 
solution, suggestive of anhedonia. Rodents exposed to these 
well-established animal models display depressive-like behavior, 
and have a decreased threshold for arrhythmias and tissue fibrosis 
(22, 49, 153, 163–167). Although animal models have been used 
to study stress biology and cardiovascular outcomes, few studies 
exist using validated models of psychological disorders to study 
the effect of stress on sensitivity to myocardial ischemic injury.

Experimental Chronic Stress and Myocardial 
Ischemic Injury
In several recent rodent studies, researchers have found greater 
ISs, decreased cardiac output, and decreased recovery of 

contractile function in response to chronic psychological stress 
[see Table 1 (10, 132, 133, 134, 135)]. Chronic physiologic stress 
has previously shown mixed results; both decreased (168) and 
increased (169) sensitivity to myocardial ischemic injury have 
been reported. Evidencing only negative effects of chronic stress 
on myocardial ischemic injury, the impact of chronic psychologi-
cal stress represents an emerging area of research to minimize the 
detrimental effect of chronic stress (135, 170). The disruptive 
effect of chronic psychological stress exposure on myocardial 
ischemic injury has been demonstrated using several different 
chronic stressors, including chronic restraint stress (132), daily 
foot shocks or witnessing rats receiving those foot shocks (10), or 
crowding stress (133, 134).

These stressors are frequently utilized in modeling psy-
chological disorders that result from stress. Restraint stress 
has been used as a psychological stressor in rats and has been 
utilized in combination with other stressors to model PTSD 
and depression (119, 122, 123, 136). Inescapable footshock is 
used to model depressive symptoms in rodents. Rats exposed 
to inescapable footshock have demonstrated anxiety-like 
behavior on an EPM, impaired growth rates, decreased rear-
ing in an open field, and decreased locomotion (50, 171–173). 
Crowding stress is a well-known and ethologically valid model 
of psychological stress in rats which causes social competition 
for resources, such as space, food, and water. Crowding stress 
results in behavioral and physiologic data reflecting psycho-
logical stress (174–178). These chronic psychological stressors 
resulted in disruption to the cardiovascular system follow-
ing induced myocardial ischemic injury, either by causing 
increased IS and decreased contractile function recovery (10, 
132) or only decreased contractile function recovery (133, 134). 
These studies suggest that chronic stress not only increases the 
likelihood of a MI or SCD but also exacerbates the damage in 
response to ischemic injury.

A potential limitation of these studies is that researchers 
did not take behavioral measures of stress prior to myocardial 
ischemic injury. Although the methods of stress used to stress 
these animals are validated as methods of inducing psychological 
stress, individual susceptibility may play a role in the response of 
the animal to a psychological stressor (10, 132, 133, 134). Stress 
exposure may affect animals differently, and thus, measurement 
of the stress response at the behavioral level is important. The only 
known published study utilizing a model of a chronic psycho-
logical disorder where animals’ response to stress was validated 
prior to myocardial ischemic injury is utilizing a predator-based 
psychosocial model of PTSD (135).

A Predator-Based Psychosocial Model of PTSD and 
Myocardial Ischemia–Reperfusion Injury
A predator-based psychosocial model of PTSD has been utilized 
to study sensitivity to myocardial ischemic injury. This model 
involves two 1-h cat exposures, during which rats are restrained 
while they can see, smell, and hear a cat but cannot be physi-
cally harmed. The two exposures are separated by a period of 
10  days. Starting on the day of the first cat exposure, rodents 
experience chronic social instability by having their housing 
partner changed daily for 31 days. After the 31-day paradigm, 
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rats exhibit a fear memory associated with the cat exposures 
(evidenced by freezing in response to conditioned context and 
cues), heightened anxiety-like behavior on the EPM, an exagger-
ated startle response, and impaired memory for newly learned 
information. Furthermore, rats exposed to this paradigm have 
demonstrated physiological changes reflecting elevated SNS 
activity and HPA axis abnormalities, including elevated heart rate 
and blood pressure, decreased baseline corticosterone levels, and 
enhanced negative feedback of the HPA axis (135, 136, 179–181). 
Replicating and expanding on these results, researchers utilizing 
this model have shown stressed rats exhibit decreased serotonin, 
increased norepinephrine, and increased measures of oxidative 
stress and inflammation in the brain, adrenal glands, and sys-
temic circulation (182, 183).

Recently, we found that, subsequent to this chronic psycho-
logical stress paradigm, male rats exposed to myocardial ischemic 
injury exhibited greater ISs and decreased recovery of contractile 
function [Figure  1 (135)]. The disruptive effect of this PTSD 
paradigm on the heart is further strengthened by anxiety-like 
behavior in rats on the EPM prior to myocardial ischemic injury. 
These data suggest that the psychological stress induced by the 
PTSD paradigm is having an effect directly on the heart, causing 
the heart to be more susceptible to damage following a MI (135). 
The ability of chronic stress to worsen the extent of ischemic 
injury and decrease the recovery of cardiac contractility further 
exacerbates the supported negative effects of stress in CVD, 

which make rodents exposed to chronic stress more susceptible 
to ventricular fibrillation and MI (13, 22, 48, 49, 135).

THe iMPORTANCe OF THe eFFeCT OF 
PSYCHOLOGiCAL STReSS ON 
MYOCARDiAL iSCHeMiA–RePeRFUSiON 
iNJURY

Shown presently, acute and chronic psychological stress affects 
sensitivity to myocardial ischemic injury in opposite direc-
tions; acute psychological stress decreases, whereas chronic 
psychological stress increases sensitivity to myocardial ischemic 
injury (45, 117). It is possible that protective mechanisms exist in 
response to an optimal level of acute stress, but these mechanisms 
are eventually overcome by more intense levels of stress (4).

Physiologically, a possible explanation for this differential 
effect is that acute psychological stress causes norepinephrine 
release and acute alpha stimulation, which results in ischemic 
preconditioning (184, 185). Chronic psychological stress may 
result in chronic beta stimulation, worsening the ischemic injury 
(186–190). The previously discussed advantages of the isolated rat 
heart (66), the wide variety of validated psychological stressors in 
rodents (119, 122, 123, 136, 174–178), and the existence of rodent 
models of psychiatric disorders (49, 153, 181) add weight to the 
presently discussed findings. However, it is important to qualify 

FiGURe 1 | effects of a predator-based psychosocial model of PTSD on anxiety-like behavior, growth rate, and myocardial sensitivity to ischemic 
injury. Rats exposed to the 31-day psychosocial stress paradigm spend less time in the open arms on the EPM (A) and exhibit reduced growth rats (B). Following 
20-min ischemia, hearts from psychosocially stressed animals exhibit larger infarcts (C), white regions of representative tissue (samples in the insets) and impaired 
recovery of contractile function (D). Data are means ± SEM. *p < 0.05 relative to no stress. Adapted from Rorabaugh et al. (135).
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