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A B S T R A C T   

Modular proteins are regulatory proteins that carry out more than one function. These proteins upregulate or 
downregulate a biochemical cascade to establish homeostasis in cells. To switch the function or alter the effi-
ciency (based on cellular needs), these proteins require different facilitators that bind to a site different from the 
catalytic (active/orthosteric) site, aka ‘allosteric site’, and fine-tune their function. These facilitators (or effec-
tors) are allosteric modulators. In this Review, we have discussed the allostery, characterized them based on their 
mechanisms, and discussed how allostery plays an important role in the activity modulation and function fine- 
tuning of proteins. Recently there is an emergence in the discovery of allosteric drugs. We have also emphasized 
the role, significance, and future of allostery in therapeutic applications.   

1. Introduction 

Proteins are versatile biomacromolecules that are involved in almost 
every cellular process: genome repair and maintenance, molecules 
transportation, energy generation, cellular movement, cell division, host 
immunity and defense, and so on. The cellular functions operate in a 
pathway fashion or a cascade of reaction for which the protein requires 
more than one binding partner that either (i) binds to the same site at a 
different time to confer different functions or (ii) bind to different sites at 
the same time to regulate a function. For instance, proteins involved in 
genomic regulations - transcription, replication, repair, and mainte-
nance, have multiple regulators that bind to the same protein to switch 
and fine-tune its function. An excellent example of such regulation is 
DNA helicase, which binds ATP (adenosine triphosphate) and DNA at 
two different sites and utilizes ATP-driven energy to unwind the DNA [1, 
2]. Similarly, there are pathways that are controlled by the end product 
through the allosteric regulation of proteins involved in it. One such 
example is the regulation of tryptophan (trp)-repressor by tryptophan in 
the trp-operon, where tryptophan, if present in excess, binds to 
trp-repressor protein and holds it on the operator region on the DNA and 

stops the further expression of trp-genes required for trp-biosynthesis [3, 
4]. These regulations are due to the presence of more than one binding 
site in protein and such regulations are called “allosteric” regulations. 
The term “allostery”, first coined by Jacques Monod and Francois Jacob 
in 1961 [5], is a combination of two Greek words: allos meaning “other” 
and stereos meaning “solid”, which in the biological context, translates to 
regulation by other sites. The allosteric sites can either be in close 
proximity to the orthosteric (active/substrate binding) site or at a dis-
tance (Fig. 1A). A timeline of evolution of allostery has been nicely 
reviewed by Liu and Nussinov [6]. 

Allostery is a phenomenon where the binding of a molecule at one 
site of a protein affects the activity of a distinct functional site. Allostery 
is quite common in proteins involved in, but not limited to, signal 
transduction, epigenetics regulation, enzymatic activity, etc. In protein 
biochemistry, allostery can be observed in two major scenarios: (i) 
protein has a single domain that contains more than one binding pocket 
or site, and (ii) protein contains more than one domain (Fig. 1A). 
Modular proteins contain multiple domains which work in synergy for 
their efficient productivity and fine-tuning the activity. In multi-domain 
proteins, every domain may have its distinct role or binding partner 
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(effectors) which can efficiently tune the role of the same protein in 
multiple cellular processes. These effectors are called “allosteric regu-
lators/ligands”. 

Allostery is, however, not restricted to regulation by small molecule 
effectors (substrate, co-factors. inhibitors, etc.). Macromolecules, such 
as DNA, RNA, and proteins also act as allosteric regulators. For example, 
in the case of DNA repair, one protein senses the DNA damage through a 
distinct domain and relays the signal to other regulatory or repair pro-
teins through its other domain, via inter/intra-domain contact or spatial 
domain rearrangement or crosstalk. Similarly, the protein involved in 
chromatin methylation maintenance recognizes methyl-cytosine on one 
DNA strand and methylates specific lysine on histone through its other 
domain [7–11]. The activity of these proteins depends on the pre-
sence/absence of a specific effector molecule(s) like damaged DNA is an 
effector for DNA damage response (DDR) proteins. 

Structural studies of complex biomacromolecular assemblies have 
paved the way to study the mechanism of allosteric regulation and 
explore the potential of allostery [12], which has been harnessed for 
quite some time for target-specific drug designing and industry-scale 
custom biosynthesis of small molecules, mostly active pharmaceutical 
ingredients (APIs) [13–16]. Allostery can also be exploited to treat dis-
eases [17]. For example, allosteric drugs against G-protein coupled re-
ceptors (GPCRs) are widely used to treat neurological diseases [18]. To 
date, several allosteric drugs have been approved by different regulatory 
agencies such as FDA and are being used to treat some major diseases 
like epilepsy, hypertension, neuropathic pain, dementia, HIV, acute 
leukemia, melanoma, insomnia, and dyslexia, among many others 
[18–20]. 

In this review, we discuss the allostery-mediated crosstalk in 
modular proteins with an emphasis on the role of allostery in (i) the 
accurate functionality of modular proteins and (ii) drug design. 

2. Allosteric effectors 

Allosteric regulators have a functional outcome that is observed as a 
change in: (i) enzyme-catalyzed reaction (for enzymes), (ii) recognition 
of a binding partner (for non-enzymatic proteins), and (iii) regulation of 
ion flux (neither enzymatic nor substrate-binding). While biochemical 
assays help address the allosteric regulation of enzymes, biophysical 
studies assist in unraveling the allosteric regulation of non-enzymatic 
proteins. Macromolecular structural studies not only complement 
biochemical and biophysical studies but also provide mechanistic in-
sights, such as local and global conformational changes and dynamics, 
into the allosteric regulation of proteins at atomic resolution. 

For the proteins with catalytic activity, the effectors affect (i) their 
rate of reaction, either favorably or unfavorably, in terms of product 
formation, or (ii) alter their substrate/product specificity. Biochemical 
kinetics assays (enzyme assays) give a detailed insight into how much 
the effector affects the rate of an enzymatic reaction, and whether they 
increase or decrease the reaction. These effects can be monitored by 
measuring rate constants and apparent rate constants, such as Vmax 
(maximum velocity of the reaction), KM (Michaelis constant), and kcat/ 
KM (catalytic efficiency) for the reaction in the presence and absence of 
the effector. Based on how the reaction is affected, the allostery can be 
classified into two categories:  

(a) Positive Allostery: It is when the binding of a molecule at an 
allosteric site enhances the enzyme or receptor activity at the 
orthosteric site. Positive allostery is widely known as “allosteric 
activation” and the effectors are called “positive allosteric mod-
ulators (PAMs)”. The agonists or partial agonists induce positive 
allostery (Fig. 1B).  

(i) Agonist - An effector molecule that binds to a protein at a specific 
site (other than the catalytic/active site) and stimulates/increases 

Fig. 1. (A) Proximity of allosteric and orthosteric sites in proteins. (B) Effect of different allosteric effectors (PAM: Positive allosteric modulator; NAM: Negative 
allosteric modulator) on enzyme activity. 
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the protein activity at the catalytic site to the highest possible 
reaction rate. It can also be called an ‘activator’ or ‘full agonist’.  

(ii) Partial agonist - An effector molecule that activates the enzyme 
but not to its maximum efficiency.  

(b) Negative Allostery: Also known as allosteric inhibition, it is when 
the binding of a molecule at the allosteric site restricts or inhibits 
the enzyme activity at the orthosteric site. Such effectors are 
called “negative allosteric modulators (NAMs)” which include 
antagonists or neutral antagonists, partial antagonists, and in-
verse agonists (Fig. 1B).  

(i) Inverse agonist - The effector that shuts even the basal or 
constitutive activity of the enzyme or receptor. These antagonists 
preferentially stabilize the inactive conformational state, result-
ing in a reduction in basal receptor activity.  

(ii) Neutral antagonist – These antagonists can inhibit the effects of 
both agonist and inverse agonist, thereby reducing the agonist- 
activated receptor signaling or increasing the receptor signaling 
in the concurrent presence of an inverse agonist. These 

antagonists are believed to bind both active and inactive con-
formations of the receptors or enzymes  

(iii) Partial antagonist - The effector that reduces the enzyme activity, 
but not to the basal level. 

Below, we have discussed, with examples, how allosteric regulators 
affect the functional outcomes of proteins. 

Enzymes involved in signal transduction are best suited to describe 
the functional outcomes of allostery, as they are dependent on signaling 
molecules (effectors) for their further course of action. For example, the 
proteins involved in DNA damage repair are highly regulated by allo-
steric regulators. The sensor proteins in these systems have multiple 
domains - (i) the sensory/regulatory domains that recognize the DNA 
damage at the site; (ii) the catalytic domain that catalyzes the formation 
of signaling molecules and (iii) the flag-bearer of the signaling molecule 
that invites the repair proteins to the affected site. One such example is 
the Poly(ADP-ribose) polymerase (PARP) family of proteins. The 
founding member of the PARP family is the PARP1 which senses the 
DNA breaks through the zinc-finger (ZnF) domains at the N-terminal and 
relays a signal to the C-terminal catalytic domain to synthesize poly 
(ADP-ribose) (PAR) on the centrally positioned auto-modification 

Fig. 2. Effect of allosteric regulators on the functional outcome of proteins. (A) Signal (DNA damage)-induced PARP1 recruits repair proteins to initiate the DNA 
repair pathway. Schematic representation of allosteric regulation of PARP1 by DNA (agonist) and PAR (both partial agonist and partial antagonist). (B) Schematic 
representation of RNA degradation cascade by type III CRISPR-Cas system, where Cas10 and Csm6 are allosterically regulated by RNA and cOAs, respectively. The 
operon system and the genes associated with the type III CRISPR-Cas system is shown at the bottom of the panel. The left side of the panel represents the recognition 
of the viral RNA by the type III CRISPR-Cas system. (C) Schematic representation of DNA-induced allosteric activation of cGAS protein in cGAS-STING pathway. 
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domain (AD). PAR acts as a signaling molecule to recruit repair proteins 
such as XRCC1, Ligase 4, etc. [21,22] In this case, the damaged DNA, 
which has no direct contact with the catalytic domain, yet elicits its 
catalytic activity, serves as an allosteric agonist or PAM (Fig. 2A). 
Recently, our group has shown that PAR also independently activates 
the catalytic activity of PARP1, but not as much as DNA [23,24], which 
makes PAR a PAM (partial agonist) (Fig. 2A). PARP1 recognizes DNA 
and PAR through a distinct set of domains, which further indicates that 
PAR and DNA could simultaneously affect PARP1’s activity [23,24]. In 
the presence of PAR, the DNA-dependent activity of PARP1 gets 
reduced, which further makes PAR a NAM or partial antagonist [23,24]. 
The study revealed a mechanism that showed that the same compound 
has both enhancing and diminishing effects based on the other effector’s 
presence (Fig. 2A). 

Another important example comes from the bacterial anti-phage 
system, CRISPR-cas (clustered regularly interspaced short palindromic 
repeats (CRISPR)–CRISPR-associated (Cas)). In the type III CRISPR 
system, the dynamics of cas10 and csm6 proteins play an important role 
in providing innate immunity to the bacteria against infective phage 
[25,26]. Upon recognition of the target RNA by CRISPR-RNA-guided 
effector complex (also includes cas10), the PALM domain of cas10 
synthesizes a second messenger molecule, cyclic-oligoadenylates (cOAs) 
using ATP. Here, the RNA acts as an allosteric regulator (agonist or 
PAM) that induces cOA formation. The CRISPR-cas type III system is 
further regulated by cOAs. cOAs consist of a different number of ade-
nylates, ranging from two (cyclic diadenylate; cA2) to six (cyclic 
hexa-adenylate; cA6) (Fig. 2B). Further, cOAs bind to the 
CRISPR-associated Rossmann fold (CARF) domain of the csm6 protein 
and activate its HEPN nuclease domain. In the absence of cOA, the HEPN 
domain of csm6 remains in an inactive conformation. The binding of 
cOA to CARF induces a globular active conformational change in the 
csm6 so that HEPN domains come into functional conformation and 
degrade the RNA [25,27]. Here, cOAs can be regarded as PAM (agonist) 
(Fig. 2B). 

In eukaryotes, the presence of cytosolic nucleic acid indicates path-
ogen invasion. The Chen group discovered that to clear the cytosolic 
DNA, eukaryotes use the cGAS-STING (cyclic GMP-AMP synthase- 
Stimulator of interferon genes) pathway [28–31]. The detection of 
cytoplasmic dsDNA induces global conformational change in cGAS 
leading to its dimerization and subsequent activation to synthesize cy-
clic GMP-AMP (cGAMP) from GTP and ATP substrates (Fig. 2C) 
[31–34]. The cGAS possess three DNA binding sites - site A, site B and 
site C. The dsDNA binding to site A and site B leads to cGAS dimerization 
(Fig. 2C) [33]. The DNA bound to the ‘site C’ causes the clustering of 
cGAS-DNA complex, leading to the formation of the molecular 
condensate, which further activates the innate immune signaling 
(Fig. 2C) [33,35]. The active site, including the ‘helix spine’ and ‘acti-
vation loop’ of cGAS which remains disordered in the absence of dsDNA, 
becomes ordered upon DNA binding and facilitates cGAMP synthesis 
[36]. cGAMP then binds to STING and causes the release of C-terminal 
tails (CTT) and STING polymerization. Upon polymerization, STING 
translocate from the endoplasmic reticulum to Golgi, where it initiates 
the autophagy, for the clearance of cytosolic dsDNA and pathogens. The 
mechanism of the cGAS-STING pathway has been extensively reviewed 
by Hopfner and Hornung [35]. 

3. Agonist, neutral antagonist and inverse agonist: Role in 
therapeutics 

Apart from the standard functional aspects, PAMs have extended 
their branches to pharmaceuticals, where they are designed for treat-
ment. Being a major class of sensory proteins, G-protein coupled re-
ceptors (GPCRs), are highly potent drug targets. GPCRs are one of the 
major membrane proteins involved in cellular environmental sensing 
and downstream signaling. Robert J. Lefkowitz and Brian K. Kobilka 
shared the Nobel Prize in Chemistry (2012) for their studies on the 

GPCRs. GPCRs are highly regulated by allosteric effectors as they possess 
multiple allosteric sites (Fig. 3A). One such PAM is a class of drugs called 
benzodiazepines that act as a GABA (Gamma-aminobutyric acid; an 
inhibitory neurotransmitter) agonist. GABA binds to the GABA receptor, 
a class C G-protein coupled receptor (GPCR) protein embedded in the 
synaptic membrane, which regulates the chloride flux [37–40]. Benzo-
diazepines bind to the allosteric site of the GABAA receptor and promote 
the chloride influx (thus, an agonist) causing reduced neuron excit-
ability, thus are used as a sedative, hypnotic (sleep-inducing), and 
anxiolytic (anti-anxiety) drug (Fig. 3B). Regulation of GABAA receptor 
by effector molecule to alter the ion flux is an excellent example of 
allosteric regulation of non-enzymatic and non-substrate-binding pro-
tein with high therapeutical importance. Another such allosterically 
regulated GPCR is the metabotropic glutamate (mGlu) receptor that has 
a modulatory activity to L-glutamate, a major excitatory neurotrans-
mitter in the central nervous system and is therefore essential in the 
fine-tuning of synapses [41]. mGlu receptor is highly dynamic in nature 
and rapidly oscillates between active and inactive states. Structural and 
functional studies by Pin and Margeat groups have shown that BINA, a 
PAM of mGlu receptor binds to its allosteric site in the transmembrane 
region and stabilizes the mGlu receptor in the active state [42]. Allo-
steric activation of mGlu receptors is linked to the treatment of 
neuro-disorders such as autism, Parkinson’s disease, schizophrenia, and 
Fragile X disease, among others and thus PAMs for these receptors have 
a wide range of therapeutic interest (Fig. 3C). 

The effect of agonist, antagonist, and inverse agonist has been nicely 
reported in the study from the Shao group, where they have studied the 
allosteric activation and inhibition of the ghrelin receptor, another 
GPCR. The role of the ghrelin receptor has a vast range, including 
appetite regulation, alcohol consumption, adipocyte metabolism, and 
glucose homeostasis [43–46], due to its broad distribution and multiple 
signaling pathways through divergent G-protein coupling or β-arrestin 
recruitment [47]. The ghrelin receptor has a basal constitutive activity 
of 50%, which increases to 100% in the presence of acetylated-ghrelin, 
thus acetylated-ghrelin acts as an agonist for the ghrelin receptor. 
Structural studies have shown that the constitutive activity of the 
ghrelin receptor is due to the interaction between the WFF (Trp-Phe--
Phe) cluster. Ghrelin induces favorable conformational displacement in 
the WFF cluster resulting in an increase in its activity. This makes 
ghrelin a potent agonist for the ghrelin receptor compared to compound 
21, which acts as a NAM or neutral antagonist and brings its activity to 
the basal level, i.e., this inhibitor neither increases nor decreases the 
basal activity of the ghrelin receptor [48,49]. On the other hand, the 
conformational change imposed by another NAM, PF-05190457, which 
pushes apart the WFF cluster resulting in the inhibition of its basal ac-
tivity [49], makes it an inverse agonist (Fig. 3D). Inhibition of the 
ghrelin–ghrelin receptor signaling axis and deacylation of ligands or 
deletion of receptors could potentially prevent obesity and type 2 dia-
betes. Thus, blockade of the ghrelin receptor by NAMs has been proven 
to be a great therapeutic approach for the treatment of related diseases 
[50–54]. 

4. Biased allosteric modulators for therapeutics 

Recently, a novel class of allosteric modulators called biased allo-
steric modulators (BAM), has been discovered that bias the GPCRs to-
wards specific functions [56–59]. It is also referred to as “biased 
agonism” for its feature of functional selectivity of multi-function pro-
teins. A ligand-activated GPCR can selectively couple to different 
transducers (i.e., G protein or β-arrestin) and regulate diverse processes 
in the nervous system. Thakur and Laprairie’s groups first discovered the 
BAM for cannabinoid 1 receptor (CB1R) as a result of the “magic-methyl 
effect” on a known agonist PAM, GAT211 [56]. Methylation at the alpha 
position of the nitro-group, yielded two diastereomers, (-)-(S,R)− 13 
conformer (GAT1600) and (+)-(R,S)− 14 conformer (GAT1601). Out of 
the two, GAT1600 exhibited enhanced PAM potency, whereas GAT1601 
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exhibited biasing towards G-proteins and drastically reduced CB1R 
coupling to β-arrestin1/2 (Fig. 3D). Another such BAM is PNR-4–20 
which biases the G-protein coupling to CB1R [60]. Cannabinoid 
signaling has been considered the therapeutic target for treating glau-
coma, pain, addiction, obesity, inflammation, and other diseases. 
G-protein-biased modulation of CB1R offers a safe therapeutic candidate 
for these diseases [56]. The cannabinoid receptor signaling mediated by 
allosteric PAM and BAMs has been extensively reviewed by the Zhou 
group [61]. Besides G-protein coupling BAMs, β-arrestin1/2 coupling 
BAMs have also been identified for another set of GPCRs, β-adrenergic 
receptors (β-ARs), primary regulators of cardiac function and a potent 
drug target for cardiac disease [57]. Lefkowitz and Rockman’s group has 
identified that a molecule called Cmpd-6, which was primarily discov-
ered as a PAM for β2-ARs, selectively enhances the affinity and cellular 
signaling of carvedilol, a known β-arrestin–biased β-blocker for β1-ARs 
[57]. In vivo, Cmpd-6 provides an enhanced β-arrestin–dependent car-
dioprotective effect of carvedilol during ischemia/reperfusion injur-
y–induced apoptosis. Their study identifies the potential therapeutic 
application of Cmpd-6 for enhanced clinical benefits of carvedilol in 
cardiac disease treatment [57]. Therefore, exploring the biased allostery 
of the therapeutically relevant receptors has tremendous potential in 
tuning physiology to develop safer and targeted therapeutics. Regula-
tion of GPCRs by allosteric modulators has been extensively reviewed by 
several groups [42,55,62–64]. 

5. Allostery based on the direction 

As discussed in the above examples, the binding of a molecule at a 
distal site alters the active site dynamics. This is also possible in the 
reverse order, that is, the changes at the active site, due to the presence/ 
absence of a binding partner, can affect the allosteric site binding dy-
namics. Thus, based on the direction of cause-and-effect, the allostery 

can be classified into - (i) forward allostery, (ii) reverse allostery, and 
(iii) bi-directional allostery. 

Forward allostery: It is when the binding of an effector at the allo-
steric site alters the catalytic activity of the enzyme. 

Reverse allostery: It is when the binding of an effector at the active 
site regulates the effectiveness of the non-catalytic binding site. 

Bidirectional Allostery: Some proteins show both forward and 
reverse allostery. This is referred to as bidirectional allostery. 

As we have seen in the example of PARP1, the binding of DNA by N- 
terminal ZnF domains increases the catalytic activity of the catalytic 
domain at the C-terminal, which is a necessary step for the initiation of 
DNA repair. This is the case, where the effector (DNA) binding at the 
non-catalytic site regulates the functional dynamics of the catalytic sub- 
unit, it is a favorable “forward allostery” [21–24] (Fig. 4A). PARP1 has 
great clinical significance as it is overexpressed in several types of 
cancer, including breast cancer, ovarian cancer, pancreatic cancer, 
prostate cancer, etc., which makes it a very potent drug target. PARP 
inhibitors (PARPis) block the DNA-repair function of PARP in cancer 
cells and kill them. Most of the clinical PARPis are NAD analogs that 
target the catalytic site in PARP1. Studies from the Pommier group 
identified that these clinical PARPis not only inhibit the PARP1 activity 
but also impose an effect on DNA binding [65,66], suggesting a 
PARPi-induced alteration in the interdomain crosstalk in PARP1. A 
further investigation carried out by the Pascal group has shown that the 
PARPis causes either (i) strong allosteric pro-retention of PARP1 and 
PARP2 on DNA, (ii) no or mild allosteric pro-retention of PARPs on DNA, 
or (iii) allosteric pro-release of PARP from DNA [67,68]. Such regulation 
by inhibitors that bind to the catalytic site and affect the allosteric roles 
of the proteins are examples of “reverse allostery” (Fig. 4A). 
PARPis-mediated PARP trapping on DNA is an example of bidirectional 
allostery. Structural studies from the Pascal group have shown that DNA 
binding at the N-terminal ZnF domains activates the leucine switch at 

Fig. 3. (A) Representative GPCR with ligands bound at different experimentally validated allosteric sites. Schematic representation of allosteric regulation of 
different GPCRs - (B) GABAA receptor, (C) mGlu receptor, (D) ghrelin and cannabinoid 1 receptors. The effect of agonist, antagonist, and inverse agonist on the 
ghrelin receptor is shown by a representative kinetic plot. The effect of PAM and BAM on the cannabinoid receptor is shown by a representative histogram. 
(Panel A is adapted from Wakefield et al. [55]). 
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the C-terminal which favors the NAD+ binding at the C-terminal CAT 
domain [22]. Activated leucine switch, in the presence of DNA, can also 
facilitate high-affinity binding of the orthosteric inhibitors (NAD+ ana-
logs) to the CAT domain. Based on the inhibitor category, PARPi can 
further modulate the DNA retention at the N-terminal region of PARP1. 
These two activities: (i) DNA binding-mediated PARPi binding (forward 
allostery), and (ii) PARPi-mediated DNA retention (reverse allostery), 
are co-dependent phenomena, thus this mechanism can be classified as 
“bi-directional allostery” (Fig. 4A). Due to this co-dependency, such 
PARPis are identified as more effective drug molecules in cancer treat-
ment [65,66,69]. However, there are non-NAD analog PARPis, which do 
not bind to the CAT domain, yet inhibit the PARP activity. The Tulin and 
Skorski groups have identified one such non-NAD analog allosteric 
PARPi, (called 5F02) that prevents the H4-induced PARP1 activation 
and has a significant effect in the treatment of BRCA-deficient leukemia 
[70–72]. This type of inhibition can be classified under unfavorable 
“forward allostery”. 

Protein kinases are another abundant protein that is highly regulated 
at both allosteric and orthosteric (active) sites. Phosphoinositide- 
dependent protein kinase 1 (PDK1) is another example in which bidi-
rectional allostery has been reported. PDK1 consists of an active site that 
binds ATP and an allosteric site called PDK1-interacting fragment (PIF) 
pocket that binds PIFtide, a 24 residues polypeptide sequence. The 
binding of PIFtide activates PDK1. An interesting mechanism of PDK1 
inhibitor has been revealed by the Biondi group [73], where an 
orthosteric inhibitor (PS653) locks the active site in an open confor-
mation, rigidifies the allosteric PIF pocket, and inhibits PIFtide binding. 
This can be classified as unfavorable “reverse allostery”. Another in-
hibitor (adenosine), then binds to the active site and relaxes the PIF 
pocket facilitating the binding of PIFtide, thus exhibiting a favorable 
“reverse allosteric” mechanism (Fig. 4A). 

6. Reversible and irreversible effectors 

The retention time of an effector at the binding site is decided by the 
binding affinity, aka molar equilibrium dissociation constant (KD), 
which is the ratio of the dissociation (koff) and association (kon) rate 
constants of the effector for the protein. Most potent effectors have high 
kon and low koff rate constants, indicating a higher rate of complex 
formation than their dissociation. These effectors are reversible effectors 
which bind to the protein with non-bonded interactions, such as 
hydrogen bonds, electrostatic interactions, salt bridges, water bridges, 
hydrophobic, and van der Waal interactions and are called non-covalent 
inhibitors. Some allosteric effectors, on the other hand, can permanently 
lock the protein in a certain conformation by binding irreversibly 
through a covalent bond, along with other non-bonded interactions, 
which provided selectivity and target site specificity. Such effectors are 
called ‘covalent inhibitors’ or ‘suicidal inhibitors’. Most of the allosteric 
drugs available in the market are non-covalent effectors, development of 
covalent allosteric inhibitors is in the nascent stage. 

Cee and group used a structure-based drug design approach to 
identify a covalent allosteric inhibitor, AMG510 or Sotorasib, against 
KRAS GTPase, a proto-oncogene with G12C mutation, which has been 
observed in 13% of non-small cell lung cancer (NSCLC) patients [74]. 
The KRAS protein regulates cell proliferation by switching between the 
active (GTP-bound) and inactive (GDP-bound) forms [75]. Sotorasib 
targets the cysteine to bind irreversibly to the KRAS G12C variant and 
ceases it in its inactive form leading to the inactivation of KRAS and 
eventually cell death (Fig. 4B). Sotorasib is the first KRAS granted 
accelerated approval by FDA for the treatment of advanced NSCLC in 
adults with a KRAS G12C mutation. 

7. Feedback regulation by end-product 

A number of cascades/pathways are regulated by their end-products 
that bind to an allosteric site of an enzyme and either activate or inhibit 
its activity. Such a type of regulation is also known as feedback allosteric 
regulation. These feedback regulations are required for the enzyme’s 
selective activation/inhibition based on its demand under a given 
physiological condition. For example, the trp operon is only activated 
under tryptophan-deficient conditions in the cell. Based on the impact of 
the end products on the activity of the enzymes, feedback regulations are 
classified into “positive” and “negative”. 

Positive feedback: Also referred to as “feedback activation”, it is 
when the binding of product/by-product enhances the activity of the 
enzyme. 

Negative feedback: The binding of the product shuts/slows down the 
enzymatic activity or further product formation. It is also known as 
“feedback inhibition”. 

Glycolysis is a pathway highly regulated by the end product, ATP. In 
glycolysis, the enzyme phosphofructokinase (PFK) that utilizes ATP to 
convert fructose-6-phosphate (F6P) to fructose 1,6-bis-phosphate (FBP) 
and produce ADP as a by-product, is allosterically regulated by both ATP 
and ADP (Fig. 5A). PFK exists in two conformational states - R and T, at 
equilibrium. PFK contains an active site that binds ATP and F6P and an 
allosteric site [76]. When the ATP concentration in the cell is high and 
the cell no longer needs to synthesize it more, ATP binds to the allosteric 
site of PFK and traps it in the T state which has a reduced affinity for F6P, 
thus halts/slows the reaction [77] (Fig. 5A). On the other hand, when 
the concentration of ATP drops in cells, the ATP in the allosteric pocket 
of PFK is replaced by ADP which causes a shift in the equilibrium to R 
conformation and accelerates the reaction for FBP production [78]. 
Apart from ADP, AMP also acts as an allosteric activator of PFK (Fig. 5A). 
Such regulation by the end product that leads to the accelerated activity 
of the enzyme is a positive feedback allosteric mechanism. 

End products of enzymes also act as allosteric inhibitors of the same 
enzyme as seen in the PARP case discussed in Section 4 (Fig. 4A). In 
some cases, the end product is both an allosteric inhibitor and an 

Fig. 4. Mechanism of regulation of different proteins by different types of 
allosteric effectors. (A) Schematic representation of forward and reverse allo-
stery in PARP1 (panel-i) and bidirectional allostery in phosphofructokinase 
(PFK) (panel-ii). (B) Schematic representation of active and inactive states of 
KRAS GTPase with G12C mutation, and its allosteric inhibition by suicidal 
(covalent) inhibitor. 
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activator. An interesting case is ribonucleotide reductase (RNR), a two- 
subunit tetrameric enzyme, that reduces ribonucleotide to deoxyribo-
nucleotide. In association with partner proteins, RNR fulfills the dNTPs 
requirement for DNA maintenance in cells. RNR is tightly regulated by 
dNTPs. RNR has non-specificity for substrate, as all four ribonucleotides 
are its substrate. However, for the conversion of a specific substrate, 
RNR requires a specific allosteric effector (Fig. 5B). Structural studies by 
the Ando group showed that the allosteric effectors of class 1b RNR 
cause distinct spatial reorganization of RNR subunits, making them 
either catalytically active or inactive [79]. Their studies showed that the 
binding of dATP, a negative effector, at the allosteric site gives RNR an 
inactive I-shape conformation which further results in the filamentation 
of RNR [79]. On the other hand, the binding of positive effectors gives it 
an active S-shape conformation [80] (Fig. 5B). The extensive structural 
studies by the Drennan group have revealed the allosteric mechanism of 
class Ia RNR functioning [81]. They showed that each allosteric effector 
modulates the active site loop conformation in such a way that the 
catalytic pocket can bind to a specific substrate only. Different effector 
changes the loop conformation differently (Fig. 5B). The flexibility of the 
active site loop gives substrate promiscuity to the RNR [81]. Mechanism 
of RNR is an excellent example of allosteric regulation of an enzyme 
towards substrate specificity. 

The allosteric feedback mechanism is also applicable in the dual- 
enzyme system, where the product of one enzyme regulates the activ-
ity of the other. One such system in the SUVH-CMT enzyme system for 
epigenetic regulation (Fig. 5C). SUVH (Su-(var) 3–9 homolog) is a his-
tone lysine methyltransferase (HKMT) that recognizes 5-methylcytosine 
(5mC) on the hemi-methylated DNA strand through the SRA domain and 
subsequently catalyzes dimethylation of lysine 9 on histone H3 
(H3K9me2) through SET domain. The H3K9me2 mark allosterically 
activates the CMT (chromomethylase) that recognizes the H3K9me2 

mark through the chromodomain and methylates the cytosine at 5th 
carbon (5mC) on the unmethylated DNA strand through MTase (meth-
yltransferase) domain. In such cases, we see that both enzymes are not 
only allosterically regulated by the end-product of one another but have 
allosteric regulation within themselves too. In SUVH protein, 5mC-con-
taining DNA acts as an allosteric regulator for the SET domain to cata-
lyze H3K9me2, and simultaneously, H3K9me2 acts as an allosteric 
activator of the MTase domain of CMT [9,11,82–85]. These allosteric 
regulations are co-dependent and work in a cyclic fashion, thus are 
known as the “reinforcement feedback loop” (Fig. 5C). 

8. Regulation via multiple allosteric sites for function fine- 
tuning 

Proteins involved in more than one pathway require different ef-
fectors to tune their function. These effectors either bind to the same site 
at different times or at different sites. Structural studies of signaling 
proteins like GPCRs have revealed multiple effector binding sites which 
regulate the signaling processes. GPCRs have 7 allosteric regulatory sites 
(microswitches), which include PIF motif, CWxP motif, DRY motif, hy-
drophobic patches, NPXXY motif, and Na+ binding site located within 
the transmembrane region, and an intracellularly located transducer 
binding site (Fig. 3A,D). The allosteric regulation of GPCRs has been 
reviewed in detail by the Christopoulos group [63]. 

PARP is another multi-domain protein that is regulated by multiple 
effectors that bind to PARP1 at different sites. Apart from DNA that 
binds to the N-terminal ZnF domains (as discussed in Section 1; Fig. 2A) 
and elicit self-PARylation of PARP1, there are other effectors, such as 
HMGN1 (High mobility group - nucleosome binding protein 1), HPF1 
(Histone PARylation factor 1), YB-1 (Y-box-binding protein 1), etc. that 
either affects the self-PARylation of PARP1 or alters its substrate 

Fig. 5. Allosteric regulation by end-products. (A) Allosteric regulation of PKF by substrate (ATP) and end by-product (ADP). (B) Allosteric regulation of RNR enzymes 
by their end-products, where the end-products provide substrate specificity to RNR, whereas the last end-product (dATP) acts as an inhibitor of RNR. Schematic 
representation of allosteric regulation of active (S-dimer) and inactive (I-dimer) states of RNR by ATP and dATP. The panel on the right shows the mechanism of 
allosteric activation and inhibition of RNR, through a conformational change in loop 2, by different effectors and substrates. (C) Crosstalk-mediated allosteric 
regulation of SUVH and CMT proteins by their respective end-products for maintenance of epigenetic marks in the genome. 
Panel C is adapted from Abhishek et al. FEBS J [9]. 
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specificity. Bustin group has shown that HMGN1 binds to the catalytic 
domain of PARP1 (but not at the NAD+ binding site) and increases its 
DNA-dependent self-PARYlation activity by 10 folds [86]. HPF1 also 
interacts with the catalytic domain of PARP1 and redirects its 
self-PARylation activity to trans-PARylation of histone, specifically 
targeting serine [87–90]. YB-1, on the other hand, competes with DNA 
to bind to PARP1 and restricts its self-PARylation activity [91,92]. 

Advancements in computational approaches have revolutionized 
protein pocketome prediction. Programs such as SiteMap [93], FTMap 
(http://ftmap.bu.edu/), FTSite (http://ftsite.bu.edu/), molecular prob-
ing and docking, and others have revealed the previously not known 
allosteric sites, some of which have been experimentally validated in 
due course of time [94]. 

Multiple allosteric sites in a target protein provides an opportunity to 
design multivalent ligand switch that can help in designing “program-
mable effector” to tune the protein’s activity. In recent studies, using 
nucleic acids as a substrate, several groups have successfully outlined 
the framework of developing programmable molecular switches [95, 
96]. This approach can have a tremendous application in designing 
“specialized/programmable” drug to monitor and regulate the 
active-inactive states of the target protein. This approach can also be 
used in designing a programmable machinery with applications in 
synthetic biology, biosensors development, and so on. 

9. Kinetics of allostery 

The kinetics of allostery is measured in two aspects: (i) enzyme/re-
ceptor activity, and (ii) substrate/ligand binding. 

Enzymes with one substrate follow Michaelis-Menten kinetics, which 
describes the change in the rate of reaction (v) with respect to the 
substrate concentration ([S]) through the equation: v = (Vmax[S])/(KM +

[S]), where v is the rate of reaction, i.e, rate of substrate depletion (d[S]/ 
dt) or rate of product (P) formation (d[P]/dt); Vmax is the maximum 
achievable rate of reaction; and KM is the Michaelis-Menten (MM) 
constant that denotes the substrate concentration at which the rate of 
reaction is half of the Vmax. This equation represents a non-linear rect-
angular hyperbolic function. The allosteric modulator, based on its 

positive or negative effect, can help the reaction attain equilibrium 
faster or slower. Either way, it makes the enzyme disobey the Michaelis- 
Menten kinetics and transforms the function to sigmoidal. The mathe-
matics behind the kinetics of allosteric enzymes has been nicely 
reviewed by Einav et al. [97]. In terms of inhibition, non-competitive 
and uncompetitive inhibition are the types of allosteric inhibition, 
where inhibitor [I] binds to the allosteric site in an enzyme [E] either (i) 
in the presence of the substrate [S] (uncompetitive inhibition: [I] binds 
to [ES] complex), or (ii) irrespective of the presence of substrate 
(non-competitive inhibition: [I] binds to either [E] or [ES] complex). A 
non-competitive inhibitor doesn’t affect the KM, as it is not dependent on 
the substrate, but reduces the Vmax. On the other hand, an uncompetitive 
inhibitor reduces both KM and Vmax of the reaction. 

Apart from the non-competitive and uncompetitive allosteric inhi-
bition mechanisms, we propose a new type of inhibition, called ‘allo-
steric competition’, which has a mechanism of ‘competitive inhibition’, 
but the kinetics of ‘uncompetitive inhibition’. This would be the case in 
multi-domain enzymes that possess more than one allosteric site or have 
allosteric sites across the domains. In this case, a molecule binding to 
one allosteric site would affect the binding of an activator on another 
allosteric site. Though there would be no direct competition between the 
two allosteric molecules as both molecules bind to distinct sites, the 
binding of one would cause the dissociation of another, possibly due to 
spatial rearrangement of domains (Fig. 6A). Based on the effect on the 
enzyme activity, the allosteric competitor can be a PAM or NAM sub- 
type. Multi-domain proteins involved in multiple pathways have 
numerous regulators that bind to different domains and regulate the 
overall function of the protein. We observed this typical behavior in 
PARP1. Multiple studies have shown that PARP1 is activated by DNA, 
which binds to the N-terminal Zn-finger domains of PARP1 [21–24]. 
Whereas, PAR, the catalytic product of PARP1, binds to the central do-
mains of PARP1 (feedback mechanism) and causes dissociation on the 
activator DNA bound to the N-terminal domains [23,24]. Though PAR 
and DNA are recognized by different sets of domains, the binding of PAR 
affects the DNA binding. This phenomenon can be explained as the 
allosteric competition (not for the same site of binding) between PAR 
and DNA to bind to PARP1. Since the DNA serves as the activator of 

Fig. 6. (A) Schematic representation of inhibition by ‘allosteric competition’. (B) Approaches to determine the effect of the allosteric modulator on substrate binding 
and catalytic activity of proteins. 
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PARP1, dislodging of DNA reduces the catalytic activity of PARP1. Due 
to this, both KM and Vmax would be affected, which is a characteristic of 
uncompetitive inhibition. At this point, mathematical modeling of such 
‘allosteric competitive enzyme kinetics’ would be of great interest as 
that would help develop better allosteric drugs/inhibitors. 

Direct or indirect biochemical assays are routinely employed to 
measure enzyme kinetics by exploiting the spectroscopic signatures like 
absorbance or fluorescence of the compounds (Fig. 6B). Direct assays 
utilize the distinguished spectroscopic properties of the substrate used 
and/or the product formed during enzyme catalysis. Direct measure-
ment depends on the native properties of the substrate and/or product, 
which may not be present in non-native compounds and thus cannot be 
used. In such cases, the indirect kinetics measurement can be taken 
advantage of, by converting the substrate and/or product to some other 
compound using a secondary enzyme or chemicals which can be quan-
tified by its characteristic properties (Fig. 6B). 

Isothermal titration calorimetry (ITC) is one of the direct methods to 
measure enzyme kinetics [98]. ITC measures the heat change (produced 
or absorbed) during the reaction in real time. Single injection and 
multiple injection assays can be performed to characterize enzyme 
allosteric interactions. In a single injection ITC kinetic assay, the heat 
change upon enzyme-substrate titration is measured till it reaches back 
to the baseline (indicating exhaustion of the substrate during the reac-
tion). The substrate concentration is taken several folds more than KM 
and the enzyme concentration is chosen so that the reaction ends within 
a few minutes. 

Winzor group used the ITC to measure the kinetics of pyruvate kinase 
(PK) that catalyzes the formation of pyruvate from the phosphoenol-
pyruvate, releasing an ATP [99]. It is believed that the allosteric binding 
of osmolytes, like phenylalanine, inactivates PK, causing cellular dam-
age in phenylketonuria [100,101]. To understand the active/inactive 
transition of PK in the presence of osmolytes, they performed ITC ki-
netics measurement of PK with the native substrate phosphoenolpyr-
uvate in the absence and presence of phenylalanine and observed a 
sigmoidal shape right shift in the standard MM curve in the absence of 
phenylalanine indicating allosteric regulation. Further, with the addi-
tion of proline, the curve shifted back to the MM curve, indicating 
restored active enzyme conformation. 

In multiple injections kinetic assay, low enzyme concentration but 
sufficient to provide a good signal, is used. Substrate concentration is 
adjusted such that during initial injections [S] < < Km and towards final 
injections [S] > > Km. With each injection, a drift in the baseline is 
observed which is directly proportional to the velocity of the reaction. 
Rolfsson’s group used multiple injections approach to characterize the 
kinetics of phosphorylation of gluconate by gluconokinase [102]. It was 
observed that at higher gluconate concentration injected into the 
enzyme at a constant ATP concentration, the enzyme activity reduced 
indicating substrate inhibition. Also, with varying ATP concentration 
inhibition the change noted in the Hanes-Woolf plot confirmed the 
substrate inhibition through ternary complex formation 
Gluconokinase-ADP-gluconate. 

ITC multiple injections assays are advantageous over single injection 
assays: (i) less enzyme is required; (ii) the amount of substrate consumed 
in multiple injections assays is very low (< 5%), therefore the product 
formed is less which is good for assessing the kinetics of enzymes having 
feedback inhibition. There are certain disadvantages also (i) signal-to- 
noise ratio is low since less enzyme concentration is used; (ii) multiple 
injections assay is relatively time-consuming. 

10. Binding kinetics in drug discovery 

Apart from kinetics studies, allosteric modulation can also be 
explained in terms of the effect of effector binding on substrate binding 
by using biophysical techniques like ITC, biolayer interferometry (BLI), 
surface plasmon resonance (SPR), and fluorescence polarization (FP) or 
anisotropy (FA), Microscale thermophoresis (MST) (Fig. 6B). These 

techniques can be employed to understand the effect of allosteric ef-
fectors on the binding parameters of the other binding partner or sub-
strate. The effect can be monitored by analyzing the apparent molar 
equilibrium dissociation constant (appKD) in the presence of an effector. 
Techniques like BLI and SPR which calculate the rate constants of as-
sociation (kon) and dissociation (koff) would provide further detailed 
insight into the mode of allostery. Effector molecules can affect the appKD 
value by altering the apparent kon (appkon) and/or koff (appkoff) (Fig. 4C). 

Allosteric effector primarily locks the enzyme into either active or 
inactive conformation, thus behaving as either an activator or inhibitor. 
The Heitman group studied the effect of PAM, NAM effectors, and an 
antagonist on the substrate (metabotropic glutamate; mGlu) binding 
kinetics of the mGlu receptor 2 (mGluR2) [103]. Their studies showed 
that allosteric modulators, PAM and NAM, affect the binding kinetics 
parameters (kon and koff) of the orthosteric ligands (both agonist and 
antagonist) binding, however, the binding affinity may or may not be 
affected [103]. Apart from in vitro studies, the effect of allosteric 
modulators on GPCRs has also been demonstrated in cells, by live-cell 
imaging [104]. 

The binding kinetics parameters have emerged as a model to improve 
the therapeutic profile of the drugs [105]. Recently, contrary to the 
belief that the side effects of antipsychotic drugs (APDs) are due to their 
high dissociation rate, the Charlton group identified that it is otherwise. 
They discovered that the association rate constants of APDs to dopamine 
receptor 2 were responsible for the side effects [106]. They report that 
the optimization of association kinetics could deliver better results. For a 
drug molecule to be effective, it should have a very low koff value, i.e., 
high residence time (1/koff) in the receptor binding pocket [107]. Since 
the allosteric effectors have a significant effect on the active site dy-
namics, these can be used to optimize the binding kinetics of drugs at the 
active site. An allosteric effector that can significantly increase the appkon 
and reduce the appkoff, of the drug molecule at the active site could 
provide a promising effective way of treatment. 

11. Allostery in drug design 

There are several ways to understand allosteric mechanisms, which 
can be further translated to either direct medical applications or green 
chemistry for the biosynthesis of compounds with agricultural or 
healthcare applications. Apart from the approaches discussed above, 
several computational and experimental approaches to studying allo-
stery have been discussed in detail by the Sattin group [108]. 

The advancements in structure biology, X-ray crystallography, cryo- 
EM, and in silico methods have facilitated an in-depth understanding of 
global and local conformational dynamics of protein allostery (Fig. 4B), 
leveraged for the development of novel allosteric drugs to treat various 
human diseases. Despite the field of allosteric drugs is continually 
growing, there are a few tens of FDA-approved allosteric drugs 
[109–111], as opposed to thousands of approved orthosteric drugs. 

Ganaxolone is one such recently approved (2022) allosteric drug to 
treat seizures in people with cyclin-dependent kinase-like 5 (CDKL5) 
deficiency disorder (CDD). Ganaxolone is a PAM of GABA receptor 
which boosts the action of GABA resulting in a hyperpolarization of the 
neuron making it more resistant to excitation [112]. Unlike benzodi-
azepines which are also PAMs of synaptic GABAA as mentioned earlier, 
Ganaxolone binds to extra-synaptic GABAA receptors further strength-
ening the excitability resistance of neurons. 

Kinase inhibitors comprise a promising class of drugs for the treat-
ment of cancers. There are both orthosteric (categorized as type-I and 
type-II) drugs that target the ATP binding site and allosteric drugs that 
bind to an allosteric site, either adjacent to ATP binding region (classi-
fied as type-III) or distant from the ATP binding pocket (type-IV). MEK1 
and MEK2 are threonine/tyrosine kinases of the mitogen-activated 
protein kinase kinase (MAPKK) involved in the RAS-RAF-MEK-ERK 
signal transduction pathway which regulates cell proliferation, differ-
entiation, apoptosis, etc. A kinase, BRAF, activates MEK by 
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phosphorylating it, and the BRAF V600E/K variant makes it constitu-
tively active. Cobimetinib and trametinib are the FDA-approved type-III 
allosteric drugs against MEK [113,114]. Both these inhibitors are used to 
treat melanoma carrying the BRAF V600E/K mutation. Trametinib 
specifically binds to un-phosphorylated MEK1 and MEK2, whereas 
cobimetinib binds to phosphorylated MEK1 with higher potency, thus 
inhibiting downstream proliferation signaling. 

Combinations of antiretroviral drugs are used to treat HIV (Human 
Immunodeficiency Virus) infection. One of the components of these 
antiretrovirals is non-nucleoside reverse transcriptase inhibitors 
(NNRTI) that inhibit the replication of HIV-1 by binding directly to the 
reverse transcriptase in a non-competitive fashion. Currently, there are 
five NNRTIs (nevirapine, delavirdine, efavirenz, etravirine, and rilpi-
virine) approved by FDA. Rilpivirine is another such second-generation 
NNRTI that brings conformational changes in the reverse transcriptase 
by binding to an allosteric pocket adjacent to the DNA polymerizing 
processing site and thus hampering its functions [115,116]. 

The discovery and development of drugs is an expensive and time- 
consuming process. The development of in silico interventions aids to 
accelerate the screening and cut down on extravagant costs. Enasidenib 
is an example of a drug that was discovered entirely using in silico ap-
proaches against mutated isocitrate dehydrogenase-2 (IDH2) for the 
treatment of adult patients with relapsed or refractory acute myeloid 
leukemia (AML) [117,118]. IDH2 is a homodimer mitochondrial 
enzyme that converts isocitrate to ⍺-ketoglutarate (αKG) in Kreb’s cycle. 
The mutated IDH2 further converts αKG to 2-hydroxyglutarate, an 
oncogenic compound that inhibits αKG-dependent dioxygenases, 
causing aberrant chromatin modifications that subsequently lead to 
leukemia. Enasidenib binds to the allosteric site and locks the homo-
dimer a conformation that prevents the oncogenic 2-hydroxyglutarate 
formation and thus helps to treat AML. 

Many orthosteric and a few allosteric drugs, independently have 
proven to be effective to treat a large number of diseases. But sometimes 
the therapeutic effectiveness of drugs reduces due to off-target effects 
and drug resistance. Therefore, a novel approach to use a combination of 
both allosteric and orthosteric drugs has been proposed and is under 
clinical trials to overcome the shortcomings [119]. One such combina-
tion therapy is approved for treating human epidermal growth factor 
receptor 2 (HER2) positive breast cancer. Orthosteric drugs, pertuzumab 
and trastuzumab, target the HER2 receptor which inhibits the PI3K-Akt 
signaling pathway and the allosteric drug docetaxel prevents microtu-
bule polymerization, which together prevents cell proliferation and thus 
treats cancer [120,121]. 

For non-small-cell lung cancer (NSCLC), gefitinib, erlotinib, and 
lapatinib are widely used first-generation orthosteric EGFR (epidermal 
growth factor receptor) drugs. However, eventually, patients have 
developed drug resistance through EGFR T790M mutation which in-
creases the binding affinity of ATP outcompeting the binding of drugs. A 
third-generation, covalent drug, Osimertinib, was approved to over-
come the drawbacks of first-generation drugs. Jane’s group identified a 
mutant selective (EGFR L858R/T790M) allosteric inhibitor JBJ- 
04–125–02, which along with Osimertinib proved to be more effective 
in killing cancer cells than individual drugs [122]. Binding of 
JBJ-04–125–02 causes conformational changes in the EGFR which 
resensitizes the cells to Osimertinib. 

Allosteric drugs are more promising than conventional orthosteric 
drugs, either standalone or in combination with orthosteric drugs. 
Owing to a marginal probability of the existence of the same allosteric 
binding site in other proteins, allosteric drugs are highly specialized in 
terms of their target molecule. In order to expand the perimeter of 
allosteric drugs, more structural studies are required. With the 
advancement in computational approaches, such as molecular dynamics 
simulation, free energy simulation, quantum-mechanics/molecule me-
chanics (QM/MM), and the integration of artificial intelligence (AI; 
programs like AlphaFold, RosettaFold, RFDiffusion, etc.) [123–126], 
novel targets with allosteric sites can be identified and therapeutics can 

be developed for specialized treatment with minimum side effects. 
These computational tools, especially simulations, are invaluable in 
understanding the mechanism of protein function, modelling enzymatic 
activity, screening molecules for effective drugs and so on. Since the 
implement of AI in biological studies is in its nascent stage, there are 
some drawbacks with AI-based programs that might result in biased 
outcomes in molecular modeling and docking, but it is still phenomenal 
in structure prediction [127,128]. Further advancements in this field 
will help in better understanding of biological phenomena and simul-
taneously set a step forward in precision medicine. 

12. Conclusion 

Allostery plays an important role in regulating and/or fine-tuning 
enzyme/receptor activity as per cellular requirements. It has specific 
significance in modular proteins as they have multiple binding sites, 
specific for different binding partners or regulators. Each binding part-
ner of these proteins affects the regulation by another binding partner, in 
either a positive or negative way. Understanding allosteric regulation in 
modular proteins not only provides mechanistic insights but is also 
useful in discovering its previously unknown association with different 
pathways. Apart from fundamental research, allostery is gaining a high 
significance in healthcare. Allosteric drugs are showing promising re-
sults in disease treatment. In this Review, we have summarized different 
mechanisms of allosteric regulation of enzyme functions along with 
their role in drug design. 
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Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of 
active-site cysteines promotes substrate binding. Structure 1997;5:1077–92. 
https://doi.org/10.1016/S0969-2126(97)00259-1. 

[81] Zimanyi CM, Chen PY-T, Kang G, Funk MA, Drennan CL. Molecular basis for 
allosteric specificity regulation in class Ia ribonucleotide reductase from 
Escherichia coli. eLife 2016;5:e07141. https://doi.org/10.7554/eLife.07141. 

[82] Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, et al. The SRA 
methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 
2007;17:379–84. https://doi.org/10.1016/j.cub.2007.01.009. 

[83] Du J, Johnson LM, Groth M, Feng S, Hale CJ, Li S, et al. Mechanism of DNA 
methylation-directed histone methylation by KRYPTONITE. Mol Cell 2014;55: 
495–504. https://doi.org/10.1016/j.molcel.2014.06.009. 

[84] Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA 
methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002; 
416:556–60. https://doi.org/10.1038/nature731. 

[85] Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, et al. 
Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and 
gene silencing in Arabidopsis thaliana. Chromosoma 2004;112:308–15. https:// 
doi.org/10.1007/s00412-004-0275-7. 

[86] Masaoka A, Gassman NR, Kedar PS, Prasad R, Hou EW, Horton JK, et al. HMGN1 
protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in 
mouse fibroblasts. J Biol Chem 2012;287:27648–58. https://doi.org/10.1074/ 
jbc.M112.370759. 

[87] Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I. HPF1/C4orf27 Is a PARP-1- 
interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell 
2016;62:432–42. https://doi.org/10.1016/j.molcel.2016.03.008. 

[88] Kurgina TA, Moor NA, Kutuzov MM, Naumenko KN, Ukraintsev AA, Lavrik OI. 
Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. 
Commun Biol 2021;4:1259. https://doi.org/10.1038/s42003-021-02780-0. 

[89] Langelier M-F, Billur R, Sverzhinsky A, Black BE, Pascal JM. HPF1 dynamically 
controls the PARP1/2 balance between initiating and elongating ADP-ribose 
modifications. Nat Commun 2021;12:6675. https://doi.org/10.1038/s41467- 
021-27043-8. 

[90] Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang J-C, et al. HPF1 
completes the PARP active site for DNA damage-induced ADP-ribosylation. 
Nature 2020;579:598–602. https://doi.org/10.1038/s41586-020-2013-6. 

[91] Alemasova EE, Pestryakov PE, Sukhanova MV, Kretov DA, Moor NA, Curmi PA, 
et al. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1. 
Biochimie 2015;119:36–44. https://doi.org/10.1016/j.biochi.2015.10.008. 

[92] Alemasova EE, Moor NA, Naumenko KN, Kutuzov MM, Sukhanova MV, 
Pestryakov PE, et al. Y-box-binding protein 1 as a non-canonical factor of base 
excision repair. Biochim Biophys Acta 2016;1864:1631–40. https://doi.org/ 
10.1016/j.bbapap.2016.08.012. 

[93] Halgren TA. Identifying and characterizing binding sites and assessing 
druggability. J Chem Inf Model 2009;49:377–89. https://doi.org/10.1021/ 
ci800324m. 

[94] Hedderich JB, Persechino M, Becker K, Heydenreich FM, Gutermuth T, 
Bouvier M, et al. The pocketome of G-protein-coupled receptors reveals 
previously untargeted allosteric sites. Nat Commun 2022;13:2567. https://doi. 
org/10.1038/s41467-022-29609-6. 

[95] Liu L, Yuan M, Jin Y, Zhou G, Li T, Li L, et al. Tunable dual-effector allostery 
system for nucleic acid analysis with enhanced sensitivity and an extended 
dynamic range. Anal Chem 2021;93:8170–7. https://doi.org/10.1021/acs. 
analchem.1c00055. 

[96] Lauzon D, Vallée-Bélisle A. Programing chemical communication: allostery vs 
multivalent mechanism. J Am Chem Soc 2023;145:18846–54. https://doi.org/ 
10.1021/jacs.3c04045. 

[97] Einav T, Mazutis L, Phillips R. Statistical mechanics of allosteric enzymes. J Phys 
Chem B 2016;120:6021–37. https://doi.org/10.1021/acs.jpcb.6b01911. 

[98] Wang Y, Wang G, Moitessier N, Mittermaier AK. Enzyme kinetics by isothermal 
titration calorimetry: allostery, inhibition, and dynamics. Front Mol Biosci 2020; 
7. 

[99] Lonhienne TGA, Winzor DJ. Calorimetric demonstration of the potential of 
molecular crowding to emulate the effect of an allosteric activator on pyruvate 
kinase kinetics. Biochemistry 2002;41:6897–901. https://doi.org/10.1021/ 
bi020064h. 

[100] Hörster F, Schwab MA, Sauer SW, Pietz J, Hoffmann GF, Okun JG, et al. 
Phenylalanine reduces synaptic density in mixed cortical cultures from mice. 
Pedia Res 2006;59:544–8. https://doi.org/10.1203/01. 
pdr.0000203091.45988.8d. 

[101] van Spronsen FJ, Hoeksma M, Reijngoud D-J. Brain dysfunction in 
phenylketonuria: Is phenylalanine toxicity the only possible cause. J Inherit 
Metab Dis 2009;32:46–51. https://doi.org/10.1007/s10545-008-0946-2. 

[102] Rohatgi N, Guðmundsson S, Rolfsson Ó. Kinetic analysis of gluconate 
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