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The complement system is an essential player in innate and adaptive immunity. It consists
of three pathways (alternative, classical, and lectin) that initiate either spontaneously
(alternative) or in response to danger (all pathways). Complement leads to numerous
outcomes detrimental to invaders, including direct killing by formation of the pore-forming
membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of
phagocytosis, and enhancement of cellular immune responses. Pathogens must
overcome the complement system to survive in the host. A common strategy used by
pathogens to evade complement is hijacking host complement regulators. Complement
regulators prevent attack of host cells and include a collection of membrane-bound and
fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls
the alternative pathway (AP) both in the fluid phase of the human body and on cell
surfaces. In order to prevent complement activation and amplification on host cells and
tissues, FH recognizes host cell-specific polyanionic markers in combination with
complement C3 fragments. FH suppresses AP complement-mediated attack by
accelerating decay of convertases and by helping to inactivate C3 fragments on host
cells. Pathogens, most of which do not have polyanionic markers, are not recognized by
FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and
fungi, can recruit FH to protect themselves against host-mediated complement attack,
using either specific receptors and/or molecular mimicry to appear more like a host cell.
This review will explore pathogen complement evasion mechanisms involving FH
recruitment with an emphasis on: (a) characterizing the structural properties and
expression patterns of pathogen FH binding proteins, as well as other strategies used
by pathogens to capture FH; (b) classifying domains of FH important in pathogen
interaction; and (c) discussing existing and potential treatment strategies that target FH
interactions with pathogens. Overall, many pathogens use FH to avoid complement attack
and appreciating the commonalities across these diverse microorganisms deepens the
understanding of complement in microbiology.
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THE COMPLEMENT SYSTEM

Complement activates through a domino-like cascade comprising
over 50 proteins, resulting in outcomes essential for innate and
adaptive immunity. Activation of complement occurs through
three pathways: classical, lectin, and alternative (Figure 1A),
which converge on the cleavage of the central component, C3
[reviewed in (1)]. The classical pathway (CP) activates when C1q
of the C1 complex (C1q, C1r, C1s) recognizes and binds
pathogen- or cell-bound immunoglobulins, circulating immune
complexes, or to pentraxins (e.g., C-reactive protein, pentraxin 3,
serum amyloid P). When C1q binds a ligand, C1r is activated,
which then activates C1s. C1s sequentially cleaves C4 and C2,
resulting in the CP C3 convertase, C4bC2b [reviewed in (2)]. The
lectin pathway (LP) activates when mannose-binding lectin
(MBL), ficolins, or collectins recognize molecular patterns such
as carbohydrates and other ligands on foreign surfaces. This leads
to activation of MBL-associated serine proteases (MASPs),
whereby MASP-2 cleaves C4 and C2 to form the LP C3
convertase, C4bC2b [reviewed in (3)].

Unlike the CP and LP, which are triggered upon recognition of
distinct ligands, the alternative pathway (AP) is continuously active
and initiates spontaneously on surfaces not protected by
complement regulatory proteins. In blood, low levels of C3
undergo spontaneous hydrolysis (“tick-over”) to form C3(H2O).
C3(H2O) binds Factor B (FB) and circulating Factor D cleaves FB to
Bb and Ba, resulting in formation of the fluid phase AP C3
convertase, C3(H2O)Bb. C3(H2O)Bb cleaves C3 to C3b and C3b
binds covalently to nearby surfaces to form membrane-bound C3
convertase, C3bBb. The AP also contributes to a powerful
amplification loop through activation of C3b, which in some
cases contributes up to 80% of the total complement response,
even after initiation by the CP and LP (4, 5). In fact, it is argued the
AP is mainly an amplification mechanism with minimal
contributions from the tick-over of C3 [reviewed in (6)].

C3 convertases derived from each pathway converge to cleave
C3, generating C3a and C3b, which complexes on or near C3
convertases to form C5 convertases. Cleavage of C5 by C5
convertases generates C5a and C5b to initiate the terminal
pathway. Sequential binding to C5b by C6, C7, C8, and
multiple copies of C9 form the membrane attack complex
(MAC, C5b-9). Outcomes of complement are numerous and
include generation of pro-inflammatory mediators C3a and C5a,
C3 fragments involved in opsonization and immune modulation,
and cell lysis by the pore-forming MAC [reviewed in (7, 8)].

Regulation of all complement pathways protects the host
from unwarranted complement-mediated attack. Complement
negative regulators circulate in blood and include FH, Factor I
(FI), C4 binding protein (C4BP), C1 inhibitor (C1-INH),
clusterin, vitronectin, and Factor-H like protein 1 (FHL-1).
Membrane-bound complement negative regulators include
complement receptor 1 (CR1/CD35), decay accelerating factor
(DAF/CD55), membrane cofactor protein (MCP/CD46), CD59,
and complement receptor of the immunoglobulin family (CRIg)
[reviewed in (9)]. Importantly, FH is the primary regulator of the
AP in the fluid phase and on cell surfaces and is essential for
protecting the host from AP attack. Pathogens have developed
Frontiers in Immunology | www.frontiersin.org 2
survival strategies to evade the immune response including
coopting FH from the host to avoid the AP. This phenomenon
will be described in detail in this review.
FACTOR H IN THE HOST

FH, formerly known as b1H (10, 11), is abundantly found in
plasma with a wide concentration range between 116 and 810 mg/
ml [reviewed in (12, 13)]. However, recent studies reveal an
average FH concentration of ~230 mg/ml, when measurement of
FH family proteins FHL-1 and Factor-H related proteins (FHRs)
are excluded [reviewed in (14)]. FH is constitutively expressed by
hepatocytes (15, 16) and also produced by monocytes, fibroblasts,
endothelial cells, platelets, retinal pigment epithelial cells,
peripheral blood lymphocytes, myoblasts, rhabdomyosarcoma
cells, glomerular mesangial cells, neurons, and glial cells
[reviewed in (12, 17)]. FH is a 155-kDa glycoprotein (18, 19)
encoded from a single gene, HF1/CFH, found within the regulator
of complement activation gene cluster on chromosome 1q32
[reviewed in (20)]. FH consists of 20 homologous complement
control protein modules (CCP) (21, 22), with each module
containing ~60 amino acid residues (22) connected by short
spaces of three to eight amino acid residues [reviewed in (17)].
Structural studies indicate FH may adopt a flexible folded back
conformation in solution (23–25).

FH is the primary negative regulator of the AP in the fluid
phase and at the cell surface. The three functions of FH include:
(a) competing with FB for C3b binding (26); (b) accelerating the
decay of surface-bound C3 and C5 convertases (10, 27, 28) and to
a lesser extent, fluid-phase C3 convertase (29), by disassociating
Bb from convertases; and (c) acting as a cofactor for FI-mediated
cleavage of C3b into the inactive form, iC3b (28, 30, 31) (Figure
1B). These regulatory functions are carried out through CCPs 1–
4 (32–35).

Upon binding to a surface, FH protects against AP activity.
FH simultaneously recognizes C3 fragments and host cell
markers to discriminate self (host, non-activators) from non-
self (activators), which lack or have very low levels of surface
polyanions. Several FH domains participate in binding C3
fragments and/or polyanions (Figure 2, top panel). CCPs 1–6
bind C3 and C3b and a weak binding site for C3b is recognized at
CCPs 13–15 (36). CCPs 19–20 recognize iC3b, C3b, and C3d (36,
37). Host cell polyanions, such as sialic acids (38, 39) and
glycosaminoglycans (GAGs), which include heparins (40, 41)
and dextran sulfate (41, 42), serve as recognition markers for FH
regulation on host cells. CCP 20 is the only known site to
recognize sialic acid (43). Heparin binding sites include CCPs
6–8 and 18–20, with a possible weak binding site on CCPs 11–13
(36). CCPs 19–20 are the most important region of FH for
binding to cell surfaces by recognizing both C3b and polyanions
[reviewed in (44)]. FH has a 10-fold increase in affinity towards
C3b in the presence of host sialic acid (38, 39, 41). In addition to
recognizing host cell markers, FH acts as a ligand for annexin II,
DNA, C-reactive protein, and pentraxin-3 to limit excessive
complement activation during apoptosis [reviewed in (44)].
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FIGURE 1 | Overview and regulation of the complement system. (A) Complement is activated by three pathways: the classical, lectin, and alternative pathways. The
classical pathway (CP) activates when the C1 complex (C1q, C1r, C1s) recognizes and binds pathogen- or cell-bound immunoglobulins, circulating immune
complexes, or pentraxins. The lectin pathway (LP) activates when mannose-binding lectin (MBL) ficolins, or collectins recognize molecular patterns such as
carbohydrates and other ligands on foreign surfaces. CP and LP activation results in cleavage of C4, followed by cleavage of C2, forming the CP/LP surface bound
C3 convertase, C4bC2b. The alternative pathway (AP) is spontaneously activated when soluble C3 hydrolyzes to C3(H2O). C3(H2O) can bind FB (labeled B) and
recruit Factor D (labeled D) which cleaves FB to Bb (and Ba), resulting in the fluid phase AP C3 convertase, C3(H2O)Bb. C3(H2O)Bb cleaves C3 to C3a and C3b.
C3b then binds covalently to nearby surfaces to form membrane-bound C3 convertase, C3bBb. C3 convertases derived from all pathways cleave C3 to C3a and
C3b. C3b combines with formed C3 convertases to form the CP/LP C5 convertase (C4bC2bC3b) and AP C5 convertase (C3bBbC3bn). C5 is cleaved by C5
convertases to initiate the common, terminal pathway, which culminates in the formation of the membrane attack complex (MAC). C3b produced from the cleavage
of C3 by C3 convertases from all pathways forms an amplification loop that contributes to the generation of additional AP C3 convertases. Positive (labeled +) and
negative (labeled −) regulators of all complement pathways are shown. Membrane-bound complement negative regulators include complement receptor 1 (CR1/
CD35), decay accelerating factor (DAF/CD55), membrane cofactor protein (MCP/CD46), CD59, and complement receptor of the immunoglobulin family (CRIg).
Soluble negative regulators include Factor H (FH), FI, C4 binding protein (C4BP), C1 inhibitor (C1-INH), clusterin, vitronectin, and Factor-H like protein 1 (FHL-1).
Positive regulators of complement include FH-related proteins (FHRs) -1, -4, and -5, and properdin. (B) Function of FH. FH accelerates the decay of AP C3
convertase by dissociating Bb (decay acceleration function); acts as a cofactor for Factor I-mediated cleavage of C3b into iC3b, an inactivated form that does not
allow complement activity to progress (cofactor activity function); and competes with FB for binding to C3b to form the AP C3 convertase.
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FH belongs to a family of proteins including FHL-1 and five
FHRs, reviewed elsewhere (14, 45), that are present at
significantly lower concentrations than FH in blood [reviewed
in (14)]. Briefly, FHL-1 is a result of alternative splicing of CFH
and contains seven domains homologous to FH CCPs 1–7 plus
four C-terminal amino acids. FHL-1 is a negative regulator of
complement in the fluid phase [reviewed in (14, 45, 46)]. In
contrast, FHRs do not share a gene with FH or FHL-1, but
instead, have domains homologous to the center and C-terminal
FH domains [reviewed in (14)]. Thus, due to a non-functional N-
terminus, FHRs compete with FH, thereby acting as potential
positive regulators of the AP, yet the roles of FHRs are not well
defined [reviewed in (14, 45)].

In addition to the prototypical role of FH as a negative
regulator of the AP, non-canonical roles of FH have emerged
[reviewed in (45)]. FH is a ligand for complement receptor 3
(CR3; CD11b/CD18) on neutrophils and upon binding, results in
Frontiers in Immunology | www.frontiersin.org 4
release of hydrogen peroxide and lactoferrin (47). FH interaction
with neutrophil CR3 also results in release of IL-8, prevention of
neutrophil extracellular traps (NETs) formation, and production
of reactive oxygen species (ROS) (48). Thus, FH may reduce host
damage by inhibition of NETs and ROS (48). In particular, FH
bound to Candida albicans modulates neutrophil function by
interacting primarily with CR3, and to a lesser extent to
complement receptor 4 (CR4; CD11c/CD18), leading to more
effective killing of the pathogen (49). FH is also known as
adrenomedullin-binding protein-1 and binds adrenomedullin
(50), a vasodilator peptide hormone widely expressed in many
human tissues [reviewed in (51)]. FH may protect
adrenomedullin from proteolytic degradation and thus has
therapeutic value in disease models of sepsis, wound healing,
and hemorrhage [reviewed in (52)]. In addition to acting as a
ligand, FH is internalized by early apoptotic cells, resulting in
enhancement of intracellular C3 cleavage and increased iC3b
FIGURE 2 | Factor H domains involved in binding to the host and pathogens. FH contains 20 complement control protein modules (CCP) each with about 60 amino
acids linked by three to five amino acids. In the top panel, FH domains necessary for its regulatory function and domains interacting with C3 fragments and
polyanions are indicated. In the bottom panel, overlapping FH domains involved in binding pathogens are indicated. Refer to Table 1 for specific FH domains
involved in binding to individual pathogens and for pathogens binding FH through undefined domains.
February 2021 | Volume 12 | Article 602277
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surface opsonization to promote uptake by monocytes [reviewed
in (45)].
FACTOR H INTERACTIONS
WITH PATHOGENS

Evasion of complement attack is key to pathogen survival in the
host. In general, pathogens evade complement through
numerous strategies, which include: (a) expression of proteins
that mimic host surface-bound complement regulators; (b)
secretion of proteases to digest complement fragments; (c)
exploitation of complement opsonization to promote
intracellular invasion; (d) secretion of complement inhibitory
proteins; and (e) recruitment of fluid phase complement
regulators, which includes FH family proteins [reviewed in
(53–55)].

Pathogen evasion of the complement system has been
described [reviewed in (54–58)], including strategies particular
to bacteria [reviewed in (53, 59)]; fungi [reviewed in (60)];
parasites [reviewed in (61)]; viruses [reviewed in (62)]; and
evasion mechanisms involving FH family proteins [reviewed in
(17, 19, 63)]. Herein, we review how pathogens steal FH to
outsmart the immune system. Specifically, we describe the
implications of FH binding in pathogen evasion, mechanisms of
binding, and therapeutic targeting of the FH-pathogen interface.

Binding of Factor H to Pathogens to
Control Alternative Pathway Activity
FH is the primary target of pathogens for AP evasion. When
sequestered from blood to the pathogen surface, FH retains its
function as a negative regulator of complement, thus
circumventing lysis by MAC, opsonization by C3 fragments,
and pro-inflammatory consequences of complement cleavage
products such as C3a and C5a [reviewed in (7, 8)].

Binding of Factor H to Pathogens for
Purposes Other Than Alternative
Pathway Evasion
Though FH is primarily a negative regulator of the AP, it has also
been shown to regulate the CP [reviewed in (64)]. Moreover, FH
binding to certain pathogens facilitates host cellular adherence
and invasion. Binding of FH to pneumococcal surface protein C
(PspC) on Streptococcus pneumoniae increases attachment to,
and invasion of, host cells (65). Likewise, in Mycoplasma
hyopneumoniae, FH binding increases adherence to epithelial
cells (66) while FH interaction with influenza A virus promotes
viral cellular invasion. As opposed to binding FH to evade
complement attack, pathogens also cleave FH. Example of
pathogens that cleave and inactivate FH include Salmonella
enterica (67), Yersinia pestis (67), C. albicans (68), and
Treponema denticola (68, 69). Inactivation of FH by pathogen
proteases may result in unchecked AP activation, consequentially
depleting complement proteins surrounding the pathogens, thus
protecting them from attack. In addition, FH inactivation leads
Frontiers in Immunology | www.frontiersin.org 5
to complement dysregulation on host cells, which, as suggested
by Riva et al. and Miler et al., may compromise tissue integrity to
facilitate pathogen invasion (67, 70).

Binding of Factor H Family Members
to Pathogens
FHL-1 and FHRs are also capable of binding pathogens (Table
1). Pathogen recruitment of FHL-1 serves the same purpose in
complement evasion as binding to full-length FH. However, as
suggested by Kunert et al., low serum FHL-1 titers, along with the
increased binding affinity of full-length FH because of its
additional C-terminal binding domains, may limit pathogen
binding to FHL-1 (132). Interestingly, although most Borrelia
species bind FH, B. burgdorferi Complement Regulator-
Acquiring Surface Proteins (CRASP)-2 (Csp-Z) is shown to
preferentially bind FHL-1 (183).

The benefits of pathogens binding FHRs are shown when Scl
of S. pyogenes binds FHR-1 to inhibit the formation of the
terminal complement pathway (157). However, to date, most
studies suggest pathogen binding to FHRs are disadvantageous,
because it outcompetes full-length FH for binding to pathogen
surfaces and can enhance AP activity [reviewed in (45)]. In S.
pyogenes (157) and P. falciparum (184), FHR-1 outcompetes FH
for binding and impairs FH cofactor activity. Moreover, in the
case of P. falciparum, FHR-1 binding also leads to decreased
parasite viability (184). In N. meningitidis, FHR-3 outcompetes
FH binding to result in complement-mediated bacteria lysis
(185). Borrelia CRASP-3 (ErpP) and -5 (ErpA) bind FHR-1,
-2, and -5 while only weakly binding FH (186). However, since
FHRs binding does not provide any complement evasion benefits
to Borrelia (186), the consequences of FHRs binding are unclear.
MECHANISMS OF HOW PATHOGENS
BIND FACTOR H TO EVADE THE
ALTERNATIVE PATHWAY

Pathogens capture FH by adapting their surfaces to mimic host
cells (i.e., expressing host cell markers) and/or expressing specific
FH binding receptors (FH binding proteins). Pathogens must
bind FH using accessible domains that do not interfere with the
N-terminal functions of FH. The sections below describe
mechanisms used by pathogens to bind FH. Figure 2 (bottom
panel) illustrates regions of FH recognized by pathogens.
Moreover, Table 1 summarizes pathogens known to bind FH,
FHL-1, and FHRs.

The Role of Sialylation in Factor H
Recruitment
Pathogens evade complement by protecting their surfaces from
complement attack using host cell markers. In the host, FH
recognizes specific sialic acid capped glycans on host surfaces to
distinguish self from non-self, which importantly restricts AP
activation on self surfaces, while allowing AP activity to continue
on non-self (pathogen) surfaces. However, pathogens bypass AP
February 2021 | Volume 12 | Article 602277
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TABLE 1 | Pathogen interactions with Factor H family proteins.

Pathogen Factor H binding ligand
(other name designations)

Binding domains of Factor
H family proteins

References

Bacteria

Acinetobacter baumannii AbOmpA FH (71)
Bacillus anthracis BclA FH (72)
Bordetella parapertussis, pertussis ? 5–7 (FH, FHL-1); 19–20 (FH); FHR-1 (73, 74)
Borrelia afzelii CspA (BaCRASP-1) 5–7 (FH, FHL-1) (75–78)

CspZ (CRASP-2, BBH06) 6–7 (FH, FHL-1) (75, 77, 78)
BaCRASP-3 6–7 (FHL-1) (77)
BaCRASP-4 19–20 (FH) (77)
BaCRASP-5 19–20 (FH) (77)
BAPKO_0422 FH (79)

Borrelia burgdorferi CspA (CRASP-1, BbCRASP-1, BBA68, FHBP) 5–7 (FH, FHL-1); 19–20 (FH) (75, 77, 80)
CspZ (CRASP-2, BbCRASP-2, BBH06) 7 (FH, FHL-1) (77, 81)
ErpP (CRASP-3, BbCRASP-3, BBN38) 19–20 (FH); FHR-1, -2, -5 (77, 82, 83)#

ErpC (CRASP-4, BbCRASP-4) FH; FHR-1, -2 (77, 83)#

ErpA (CRASP-5, BbCRASP-5, ErpI, ErpN, BBP38, BBl39,
OspE)

19–20 (FH); FHR-1, -2, -5 (74, 77, 83–85)#

Borrelia hermsii BhCRASP-1 (FhbA, FHBP19) 16–20 (FH); FHL-1; FHR-1 (86–88)
Borrelia mayonii CspA 5–7 (FH, FHL-1) (89)
Borrelia miyamotoi CbiA 20 (FH) (90)
Borrelia parkeri BpcA 19–20 (FH); FHR-1 (91)
Borrelia recurrentis HcpA 19–20 (FH); FHR-1 (92)

? FH (93)
Borrelia spielmanii CspA (BsCRASP-1) 5–7 (FH, FHL-1) (94–96)

BsCRASP-2 FH; FHL-1 (94)
BsCRASP-3 20 (FH); FHL-1; FHR-1 (94, 96)

Escherichia coli Stx2 6–8 (FH, FHL-1); 18–20 (FH); 3–5 (FHR) (97, 98)
OmpW FH (99)

Francisella tularensis ? FH (100)
Fusobacterium necrophorum ? 5–7 (FH, FHL-1); 19–20 (FH); FHR-1, -4 (101)
Haemophilus influenzae type b and f Protein H (PH) 7 (FH, FHL-1); 18–20 (FH) (102, 103)
Histophilus somni ? FH (104)
Leptospira spp LenA (LfhA, Lsa24) 18–20 (FH, FHR-1) (105)

Len B FH (106)
LcpA 20 (FH) (107)
LigA, LigB 5–7 (FH, FHL-1); 18–20 (FH); FHR-1 (108, 109)
Lsa23 FH (110, 111)
LIC11966/ErpY-like lipoprotein FH (112)
EF-Tu FH (113)
? FH (114)
Enolase FH (115)

Moraxella catarrhalis OlpA FH (116)
Mycoplasma hyopneumoniae EF-Tu FH (66)
Neisseria cinerea FHbp FH (117)
Neisseria gonorrhoeae PorB.1A (PorB1a, Por1A) 6 (FH, FHL-1); 18–20 (FH); FHR-1 (118, 119)

PorB.1B (PorB1b, Por1B) 18–20 (FH) (118–120)
NspA 6–7 (FH, FHL-1) (121)

Neisseria meningitidis FHbp 6–7 (FH) (122, 123)
NspA 6–7 (FH, FHL-1) (124)
PorB2 6–7 (FH, FHL-1) (125)
PorB3 6–7 (FH) (126)
LOS sialylation 18–20 (FH) (127)

Non‐typeable Haemophilus
influenzae

OmpP5 (P5) 6–7 (FH) (128, 129)

Pasteurella pneumotropica ? FH (130)
Pseudomonas aeruginosa Lpd 7 (FH, FHL-1); 18–20 (FH); 3–5 (FHR-1) (131)

Tuf 6–7 (FH, FHL-1); 19–20 (FH); 3–5 (FHR-
1)

(74, 132)

Rickettsia conorii OmpB b-peptide FH (133)
Salmonella spp Rck 5–7, 19–20 (FH) (134)
Staphylococcus aureus SdrE 20 (FH) (135, 136)

Sbi 19–20 (FH); FHR-1 (137)
Streptococcus agalactiae b protein (Bac, b C) 8–11, 12–14 (FH) (138, 139)

(Continued)
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attack by expressing host glycans (187) which go on to
capture FH.

a-N-acetylneuraminic acid (Neu5Ac) is a sialic acid species
present on pathogens and humans. FH exclusively binds Neu5Ac
species with a(2,3) linkages (43), discriminating against
pathogens expressing other Neu5Ac linkages including a(2,6)
and a(2,8) [reviewed in (188, 189)]. Neisseria meningitidis and
Neisseria gonorrhoeae are Gram-negative bacteria restricted to
humans that express a(2,3) linked Neu5Ac which participate in
FH binding and other complement evasion tactics [reviewed in
(188–190)].

On the activated host surface, FH domain CCP 20 interacts with
GAGs and CCP 19 binds C3b (191). SialylatedN. meningitidis likely
recreates this interaction on the pathogen surface in order to bind
FH. To bind FH, N. meningitidis and N. gonorrhoeae sialylate lacto-
N-neotetraose (LNnT) branches of lipooligosaccharides (LOS) with
Neu5Ac [reviewed in (188)]. Neu5Ac sialylation of N. meningitidis
Frontiers in Immunology | www.frontiersin.org 7
LOS enhances FH binding to pathogen surfaces (127) (Figure 3A).
This is postulated to occur when sialylation on the pathogen surface
replaces host GAGs as the ligand for CCP 20, while maintaining the
interaction between CCP 19 and deposited C3 fragments [reviewed
in (188)]. Similarly, binding of bovine FH to Histophilus somni
increases when bacteria are sialylated with Neu5Ac (104). While
pathogen sialylation promotes FH binding to the cell surface, it still
renders pathogens vulnerable to complement-mediated damage
because a portion of the deposited C3 fragments involved in
binding FH will likely form C3 convertases as opposed to binding
FH [reviewed in (190)].

Pathogen sialylation also promotes FH binding in the absence
of complement fragments. Increased binding of FH to N.
gonorrhoeae occurs with sialylation of LNnT LOS (120, 192)
only with the concomitant presence of gonococcal FH binding
protein, porin B.1B (PorB.1B) (192) (Figure 3B). This
phenomenon is speculated to occur through an interaction
TABLE 1 | Continued

Pathogen Factor H binding ligand
(other name designations)

Binding domains of Factor
H family proteins

References

Sht I and II FH (140, 141)
Streptococcus pneumoniae PspC (CbpA, SpA, Hic, C3-binding protein) 6–10, 8–10, 9, 8–11, 19–20, 13–15

(FH)
(65, 139, 142–

148)
Tuf 6–7 (FH, FHL-1); 18–20 (FH); 3–5 (FHR-

1)
(149)

LytA FH (150)
Streptococcus pyogenes Fba 7 (FH, FHL-1) (151, 152)

M protein family 7 (FH, FHL-1) (153–155)
Scl1 19–20 (FH); 3–5 (FHR-1) (156, 157)

Streptococcus suis Fhb FH (158)
Enolase, EF-Tu, PK, GAPDH, FBA, FBPS, KAR, MRP1 FH (99)

Treponema denticola FhbB 7 (FH) (68, 70, 159)
Yersinia enterocolitica YadA FH (160)

Ail 6–7 (FH) (160)
Yersinia pseudotuberculosis Ail 5–7, 19–20 (FH) (161)

Fungi

Aspergillus fumigatus AfEno1 6–7 (FH, FHL-1); 19–20 (FH) (162)
Aspf2 6–7 (FH, FHL-1); 19–20 (FH); 3–5 (FHR-

1)
(163)

Candida albicans Pra1 5–7 (FH, FHL-1); 16–20 (FH) (164)
Gpm1p (CRASP 1) 6–7 (FH, FHL-1); 19–20 (FH) (165)
Gpd2 (Gapdh) 7 (FH, FHL-1) (166)
Hgt1p 6–7 (FH) (167, 168)

Protozoa

Trypanosoma brucei FHR 4–6 (FH) (169)
Trypanosoma cruzi ? FH (170)
Plasmodium falciparum ? 5 (FH, FHL-1); 20 (FH); FHR-1 (171)

PfGAP50 5–7 (FH, FHL-1) (172)
Pf92 5–6 (FH, FHL-1) (173)

Helminths

Toxoplasma gondii ? FH (174)
Onchocerca volvulus ? (8–20) FH (175)
Echinococcus granulosus ? FH (176)
Loa Loa ? FH (177)

Viruses

West Nile virus NS1 FH (178)
Human immunodeficiency virus-1 gp41, gp120 FH (179–182)
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similar to what is described for N. meningitidis, but with PorB.1B
replacing the interaction of C3b with FH CCP 19 [reviewed in
(189)], thus eliminating the need for deposited C3 fragments.

Sialylation also increases binding of FH CCPs 6-7 to
Neisserial surface protein A (NspA) of N. meningitidis (124).
Here, bacterial sialic acid potentially acts as a docking station for
FH, perhaps through binding CCP 20, but this has yet to be
shown experimentally and may be structurally impossible, as
suggested by Lewis et al. (124). In contrast, in N. gonorrhoeae,
LOS sialylation impedes binding of FH CCPs 6-7 to NspA (121).

a-N-glycolylneuraminic acid (Neu5Gc) is a sialic acid variant
not expressed by humans, but present in mice (193) and on the
surface of sheep erythrocytes (194). Human FH binds Neu5Gc in
a similar manner as Neu5Ac (195) and N. gonorrhoeae LNnT-
LOS incorporation of Neu5Gc results in FH binding and serum
resistance (196). As noted by Schmidt et al., this phenomenon
may skew conclusions from animal research, including infection
models using humanized FH transgenic mice, as FH binding may
be affected in a manner not possible in humans (195).

Pathogen Factor H Binding Proteins
In addition to decorating their surfaces with host markers,
certain pathogens capture FH directly using binding proteins
Frontiers in Immunology | www.frontiersin.org 8
alone. While many FH binding proteins have been identified
along with the regions to which they bind on FH, the
mechanisms explaining many of these interactions remain
unresolved. Below, we describe two strategies employed by
pathogen FH binding proteins to capture FH. In the first
mechanism, FH binding proteins mimic binding interactions
present in the host, but using protein-protein interactions
instead of binding to polyanions on host surfaces. In these
instances, FH binding proteins bind to the same domains on
FH (CCPs 6–7 and 19–20) that are used to bind to the host. In
the second mechanism, FH binding proteins capture FH via
domains (i.e., amino acid residues) on FH that do not bind to
the host.
Pathogen Factor H Binding Proteins Mimic
Interactions Between Host and Factor H
In this section, we describe how FH binding proteins capture FH by
binding to the regions on FH that would normally bind to the host.
However, unlike host surfaces, which bind FH through expression
of host cell markers (i.e., polyanions) in combination with C3
fragment, the binding of FH to the FH binding protein on the
pathogen, constitutes solely a protein-protein interaction instead.
A B

D E F

C

FIGURE 3 | Mechanisms of pathogens binding Factor H to evade the alternative pathway. (A) Pathogens evade complement by protecting their surfaces from
complement attack using host cell markers. Neu5Ac sialylation of N. meningitidis replaces host GAGs and binds FH CCP 20 domain while maintaining the interaction
between CCP 19 and deposited C3 fragments (127). (B) Pathogen sialylation promotes FH binding in the absence of complement fragments. N. gonorrhoeae FH
binding protein, PorB.1B, binds FH CCP 19 domain replacing the interaction of C3b with FH CCP 19 [reviewed in (189)]. (C, D) Pathogen FH binding proteins mimic
interactions between host and FH. (C) B. burgdorferi FH binding protein, OspE, forms a tripartite complex with FH where CCP 19 binds to C3 fragments and CCP
20 interacts with OspE. (D) N. meningitidis binds FH through its FH binding protein, FHbp, via FH CCPs 6–7. (E, F) Pathogen FH interactions that do not mimic
mechanisms utilized by the host. (E) FH binding to deposited C3b on the pathogen surface results in a transformational change in S. aureus FH binding protein,
SdrE, from a closed to open state. In the open state, SdrE facilitates the docking of CCP 20 into a ligand binding groove (136). (F) S. pneumoniae FH binding
protein, PspC, via its tyrosine 90 residue acts like a key inserting into a hydrophobic lock formed by four hydrophobic residues of FH CCP 9 (146).
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An excellent example of FH interactions with a FH binding
protein was demonstrated for the FH binding protein of N.
meningitidis, FHbp (Figure 3D). Crystallography studies
revealed FHbp binds FH through extensive interactions
between b-barrels of FHbp and CCP 6, and through minor
contacts with CCP 7 (122). The site within CCP 6 utilized by
FHbp (122) overlaps with a previously described binding
location for sucrose octasulphate (SOS), a highly sulphated
analog of GAGs (197). Similarly, the binding domain for FhbB
from T. denticola also overlaps with the SOS binding domain
(70). Together, these examples demonstrate how FH binding
proteins mimic interactions between FH and host charged sugars
through amino acid side chains (122).

Protein motif mimicry also involve pathogen interactions
with FH C-terminal domains. FH binds host surfaces through
dual recognition when CCP 20 binds GAGs and CCP 19 binds
the C3d part of C3b (191). Similarly, in the process of mimicking
host surfaces, FH binding proteins form a tripartite complex
when FH CCP 19 binds C3 fragments and CCP 20 interacts with
a FH binding protein (Figure 3C). This phenomena has been
described for FH binding proteins of Pseudomonas aeruginosa
(Tuf) (74), Borrelia burgdorferi (OspE) (74, 85, 198), Borrelia
hermsii (FhBA) (74), and Staphylococcus aureus (Sbi) (137).

In B. burgdorferi, crystallography studies indicate OspE (a
paralog of CRASP-3) forms a tripartite complex between FH and
C3 fragments. This occurs when loops b2–4 and the interface
between loops b5–6 interact with CCP 20 which includes FH
amino acids overlapping with those involved in heparin binding,
while deposited C3dg interacts with CCP 19 (85, 198). The
majority of amino acid residues utilized by OspE for binding FH
are conserved across the OspE protein family (85). Interestingly,
ectopic expression of B. burgdorferi CRASP-3 in a serum sensitive
Borrelia strain bound minute amounts of FH and did not confer
serum protection (186). As suggested by Kolodziejczyk et al., the
FH tripartite complex may not form when OspE is ectopically
expressed, leading to inadequate complement protection (198).
Alternatively, according to Siegel et al., additional complement
binding proteins may be required to unfold FH to a conformation
sufficient for interacting with binding proteins, which does not
occur when ectopically expressed (186). While this study examined
tripartite complex formation under conditions in which the
complex is not surface-bound, this formation is possible under
physiological conditions because the domains responsible for
tethering OspE to the surface do not interfere with the binding
site for FH and bound FH is orientated toward the surface to which
C3b is bound via the thioester bond (85).

Pathogen Factor H Binding Proteins Sequester
Factor H Using Interactions Not Found in the Host
Pathogen interactions with FH have been described that do not
reflect mechanisms utilized by the host. In the model proposed
by Zhang and colleagues, S. aureus surface protein serine–
aspartate repeat protein E (SdrE) tightly binds a 21 amino acid
region of CCP 20 not involved in the binding of C3d or of host
cell markers (i.e., heparin, GAGs, and sialic acid) (85, 136). Upon
FH binding to deposited C3b on the pathogen surface, SdrE
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undergoes a transformational change from a close to open state,
which facilitates the docking of CCP 20 into a ligand binding
groove (136). SdrE functions as a “clamp” to stabilize the SdrE-
FH complex by locking and latching the FH tail into its ligand
binding groove (136). The “close, dock, lock, and latch”
mechanism is similar to strategies utilized by members of the
microbial surface components recognizing adhesive matrix
molecules, to which SdrE belongs (136). The described
mechanism of SdrE is unique in the field of complement
immune evasion [reviewed in (199)] (Figure 3E).

S. pneumoniae FH binding protein, PspC, also binds FH
through a domain less utilized by other pathogens. PspC binds
CCP 9 when the tyrosine 90 residue of PspC inserts like a key
into a hydrophobic lock formed by four hydrophobic residues of
FH (146) (Figure 3F). Studies using PspC lacking the residue
important for interacting with the hydrophobic lock, showed
PspC forms stable complexes with FH CCPs 8–10 (145). Here,
PspC induces a functionally enhanced FH conformation that
accelerates C3bBb decay 5-fold compared to FH alone, and
increases the ability of FH to bind C3b 2-fold (145). Herbert
et al. suggest a similar process may occur in the host in which
host cell markers on host surfaces bind FH, and result in
configurations of FH with enhanced regulatory activity.
ROLE OF FACTOR H BINDING PROTEINS
IN PATHOGEN VIRULENCE

The necessity of FH binding proteins in pathogen virulence is
questionable. While most of the described interactions between
pathogens and FH demonstrate the advantage of binding FH in
AP evasion through in vitro assays, in vivo studies are essential for
further characterizing the role of FH binding in pathogen virulence.
The importance of FH in pathogen virulence varies according to
pathogen. For example, inhibition of FH binding is protective in
several pathogens as supported by studies in which pathogen FH
binding is blocked with recombinant FH proteins, or through
vaccination with FH binding proteins (discussed in Therapeutic
and Preventive Strategies Targeting the Pathogen-Factor H
Interface). In addition, in vivo studies involving the FH binding
protein, plasmodial transmembrane protein gliding associated protein
50 (PfGAP50) of Plasmodium falciparumwas shown to be important
in pathogen virulence when antibody neutralization of PfGAP50
reduced parasite transmission to the mosquito vector (172).

In vitro serum sensitivity of Borrelia species is associated with
FH binding potential, considering almost all serum-resistant
species recruit FH [reviewed in (200)]. However, in vivo
studies demonstrate FH binding to pathogens is not required
for infection. Numerous studies in Borrelia indicate FH may be
dispensable for infection. For instance, FH-deficient mice, and
mice without FB or C3 (no AP activity), were infected with
Borrelia at levels similar to wild type animals (201). This finding
suggests additional complement-dependent and -independent
immune evasion strategies of Borrelia replace the benefits of FH
capture for survival in the host (201). B. garinii is responsible for
causing Lyme disease, but does not bind FH, highlighting that
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FH may be dispensable for infection (202). The mechanisms by
which B. garinii evades complement to establish infection in the
host remain unknown [reviewed in (200)]. Similarly, CspA
(CRASP-1) variants are not required for spirochete survival at
the mouse tick bite site, though it is expressed at this location (203).
Additionally, FH binding protein, FhbA of B. hermsii is not required
for murine infection or human serum resistance (204). B. hermsii
does not express additional FH binding proteins, suggesting the
presence of additional complement evasion strategies (204). While
in vitro studies demonstrate BclA, a FH binding protein of Bacillus
anthracis, downregulates complement activation and protects
against cell lysis, inoculation of mice with a lethal dose of B.
anthracis spores lacking BclA, did not affect animal survival or
bacterial burden compared to inoculation with an isogenic wild type
strain (72).

While some studies convincingly demonstrate FH binding is
dispensable for pathogen virulence, others have led to inconclusive
findings. An example of disputable findings regarding the effect of
FH binding in pathogen virulence involves studies of S. pyogenes. S.
pyogenes is a human-specific pathogen that binds human FH
through three proteins, including M protein (153). To study the
effects of S. pyogenes complement evasion in vivo, transgenic mice
expressing human FH and C4BP were generated. The human FH
and C4BP in the serum from these animals, bound to S. pyogenes in
vitro (205). Compared to wild type animals, transgenic mice
expressing FH and C4BP were more susceptible to fatal infection
by a S. pyogenes strain (AP1 strain) that binds human FH and
C4BP through protein H (205), a member of the M protein family
(206, 207). This demonstrates the additive virulence effect of
binding more than one complement regulator (205). However,
infection with a different S. pyogenes strain that does not bind FH
or C4BP resulted in the same degree of mortality between
transgenic and wildtype animals (205). Furthermore, pathogen
inoculation with an isogenic S. pyogenes strain that does not
express protein H, did not affect animal survival (205).
Altogether, these results demonstrate recruitment of complement
inhibitors by S. pyogenes exacerbates infection when FH and C4BP
are present, but have no effect on disease if the strain cannot
capture the regulatory proteins (205). However, in another study,
FH binding to S. pyogenes did not modulate pathogen virulence. In
this study, transgenic mice expressing chimeric FH (containing
human FH CCPs 6–8) did not show an increased susceptibility to
infection with a S. pyogenes strain capable of binding FH when
compared to wild type animals (155). As suggested by Ermert et al.,
the discrepancy in findings may be due to differences in mouse
strains, bacterial strains, and infection route (205).
FACTORS AFFECTING PATHOGEN
FACTOR H BINDING PROTEIN
EXPRESSION

FH binding proteins are not always constitutively expressed, and
instead, expression is governed by numerous regulatory
mechanisms described in the following section.
Frontiers in Immunology | www.frontiersin.org 10
Environmental Stimuli Influence Factor H
Binding Protein Expression
Pathogens are exposed to a wide variety of conditions within the
host including transitions between hosts, nutrient supplies, and
temperature, all of which have been shown to influence
expression of FH binding protein.

FH binding protein expression is associated with nutrient
availability within the pathogen environment. For example,
expression of the FH binding protein, high-affinity glucose
transporter 1 (Hgt1p) in C. albicans is highest at low, physiological,
glucose concentrations compared to high glucose concentrations
(168), which is likely due to the canonical role of Hgt1p in glucose
metabolism (208). In Streptococcus agalactiae, zinc availability
influences expression of FH binding proteins, Sht and ShtII (141).
Purified Sht and ShtII proteins bind FH, suggesting a potential role in
complement evasion. However, when bacteria survival was assessed
in whole blood assays, no protective effect from Sht family proteins
was observed. Though Sht and ShtII can bind FH, the primary role of
these proteins is bacterial zinc acquisition. Thus, under conditions of
low bioavailable zinc, Sht and ShtII expression is activated. In serum,
adequate zinc levels repress Sht family gene expression, thus FH
binding proteins may only participate in complement evasion under
conditions of low zinc.

In some instances, FH binding protein expression is temperature
dependent. In N. meningitidis, FHbp functions as a thermosensor
when its expression increases with temperature (209, 210). N.
meningitidis resides as harmless flora in the upper airway and
enters the bloodstream during invasive disease where it encounters
the complement system. Bloodstream temperature is warmer than
that of the upper airway which, as suggested by Loh et al., may
explain the upregulation of FHbp expression under conditions of
increased temperature (210). Likewise, according to Kraiczy et al.,
temperature dependent upregulation of CRASPs occurs in cultured
Borrelia (77), which may reflect differential regulation of CRASPs
between mammals (higher temperatures) and ticks (lower
temperatures) (77).

Similarly, binding outcomes of FH differ betweenN.meningitidis
andN. gonorrhoeae to accommodate their respective environmental
niches [reviewed in (211)]. N. meningitidis is an encapsulated
organism, which enables high-level complement evasion (212). In
contrast, N. gonorrhoeae, residing in the genitourinary tract, is not
capsulated, and thus relies on host complement regulators for serum
resistance. N. gonorrhoeae limits complement activity on its surface
more effectively via FH binding through PorB.1B compared to
FHbp of N. meningitidis (123). As noted by Shaughnessy et al., the
functional differences in binding FH may, in part, be explained by
the distinct niches in which these organisms inhabit. FH is very
abundant in blood and therefore, likely easily recruited by N.
meningitidis. In comparison, FH is present in low levels in the
genitourinary tract, demanding efficient recruitment by N.
gonorrhoeae (123).

Pathogen Life Cycle Affects Factor H
Binding Protein Expression
Some pathogens reside in numerous hosts as part of a life cycle
and must adapt accordingly to the changing host environment by
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modulating gene expression, including regulation of FH binding
proteins. For example, Borrelia participate in an enzootic life
cycle between Ixodes tick vectors, and mammal, bird, and reptile
hosts [reviewed in (213)]. Interestingly, expression of CRASPs
reflects the needs of the spirochete in response to its changing
environment. CspA (CRASP-1) is produced by Borrelia during
tick-to-mammal and mammal-to-tick transmission, but is not
expressed during established infection (214) or when Borrelia is
cultured in environments mimicking host conditions (215). In
contrast, CspZ (CRASP-2) expression increases in Borrelia at the
tick bite site in the mammal and is maintained throughout
infection, but is undetectable in the tick (214). CspZ gene and
protein expression is also induced when Borrelia are treated with
human blood and its expression is required for Borrelia
bacteremia and tissue colonization in mice (216). In this
particular study, even though mice were infected using
spirochetes previously subjected to human blood, which does
not reflect the natural life cycle of Borrelia, it nevertheless
exemplifies the influence of human blood on Borrelia gene
expression (217).

In another example, Borrelia turicatae mRNA expression of
the gene for the FH binding protein, FhbA, was lower in Borrelia
from fed ticks compared to in vitro culture; however the
functional role of FhbA in infection remains to be determined
(218). Finally, OspE paralogs (CRASPs 3–5) are expressed during
all stages of mammalian infection [reviewed in (83, 219)].
Concurrent expression of CRASPs during the spirochete
infection cycle confounds interpretation of the role each
protein plays in complement evasion [reviewed in (83)].
Instead of contributing separately to complement evasion,
CRASPs may work synergistically to carry out their functions
as suggested by Bykowski et al. (214).

Some pathogens including protozoans differentiate into
unique morphological life stages and FH binding capabilities
vary concordantly. P. falciparum, a protozoan parasite, recruits
FH using unique FH binding proteins according to the parasite
life stage (172, 173). The invasive blood-stage merozoite found in
humans uses Pf92 to bind FH (173), while extracellular gametes
residing in the mosquito midgut, recruit human FH from a blood
meal using a different FH binding protein, PfGAP50 (172). In
Trypanosoma brucei, the proliferating slender form expresses the
lowest levels of FH binding protein, FH receptor (FHR), followed
by the quiescent stumpy form, and finally, the procyclic form
expresses the highest levels of FHR (169). Both the slender and
stumpy forms are present in mammalian blood, whereas the
procyclic form is present in the midgut of the tsetse fly vector
[reviewed in (220)]. In a related example, the FH binding
proteins of C. albicans, Pra1, is upregulated upon switching
from yeast to hyphal growth, which may explain, in part, why
the hyphal form is more invasive than the yeast (164).

Pathogen Strain and Passage Number
Affects Factor H Binding Protein
Expression
Expression of FH binding proteins is subject to variability
amongst pathogen strains. For example, PspC expressed by S.
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pneumoniae undergoes sequence variation leading to changes in
FH binding capacity (221). Antibodies raised against a particular
PspC variant successfully prevented FH binding and in vivo
opsonophagocytic bacterial killing, but did not cross-react with
S. pneumoniae that contained different sequence variations of
PspC (221). Similarly, in S. pneumoniae, serotype invasiveness
correlates with FH binding (222). Additionally, S. pyogenes bind
FH through expression of M proteins. M proteins exhibit
sequence variation between strains, and hence, vary in the
ability to bind FH (155). Furthermore, analysis of FHbp
expression across a panel of serogroup B meningococcal strains
revealed the level of FHbp expression varies by at least 15-fold,
and that variant 1, which is a component of meningococcus
vaccines (discussed later), expresses significantly more protein
than variant 2 or 3 strains (223). Expression of FH binding
proteins Pra1 and Gpm1 is conserved across clinical isolates of C.
albicans; however, expression levels vary, and higher expression
levels correlate with FH binding (224). Moreover, FH binding
varies from 5-42% across patient strains of Fusobacterium
necrophorum, and strains which bound FH strongly result in
more severe infections (101).

Culture passage number also influences FH binding
expression. Leptospira strains with few passages display higher
FH binding expression compared to culture attenuated strains,
suggesting pathogens lose the ability to bind FH in culture (225).
Similarly, passage number also decreases expression of CRASP-1,
-2, and -5 in Borrelia afzelii (77). Passage number is postulated to
suppress CRASPs expression in B. garinii because isolates from
patients with neuroborreliosis bind FH, whereas strains with
prolonged growth in vitro, do not (226).

Localization of Factor H Binding Proteins
FH binding proteins assume strategic spatial positioning to
promote efficient evasion of the AP. This is evidenced by PspC
of S. pneumoniae. Pneumococci divisional septa are insufficiently
protected by the bacterial capsule, especially at the site where cell
separation is initiated, permitting entry of serum factors and
allowing complement activity (227). PspC compensates for the
breach of protection by localizing to the cell septa to control
lateral complement amplification (227).

While most FH binding proteins are surface bound, some are
secreted. For example, Pra1 of C. albicans is secreted and
regulates FH in the fluid phase (164). Pra1 is also surface
expressed and localizes primarily at the tip of cells, which
suggests an important role of Pra1 upon contact with host
tissues and surfaces during infection (164). Likewise, Hgt1p of
C. albicans is present on the cell wall, cell membrane, and
intracellular and extracellular vesicles (168).
THERAPEUTIC AND PREVENTIVE
STRATEGIES TARGETING THE
PATHOGEN-FACTOR H INTERFACE

Acquiring host complement negative regulators, such as FH,
allow pathogens to bypass complement attack and persist in the
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host. Hence, strategies directed against the FH-pathogen
interface hold therapeutic value. The following section
describes existing and potential approaches to target pathogen
binding of FH (Figure 4).

Interference of Pathogen Sialic
Acid Expression
In addition to the role of sialylation in pathogen FH acquisition,
it also modulates other pathways of complement, as well as
phagocytosis and epithelial invasion [reviewed in (189)]. The
importance of sialylation in pathogenesis renders it an enticing
therapeutic target (Figure 4A). In the case of gonococci that are
becoming increasingly antibiotic resistant, this approach is
timely and reviewed elsewhere (188, 189, 228).

Gonococci incorporate sialic acid in surface glycans (LOS)
resulting in FH binding [reviewed in (189)]. A strategy that
manipulates pathogen sialylation to disable complement evasion,
involves supplying gonococci with sialic acid analogs that do not
bind FH. When such analogs are incorporated into pathogen
glycans, it renders bacteria susceptible to complement and
substantially reduces bacterial survival in normal human serum
(196, 229). Intravaginal administration of a sialic acid analog
(CMP-Leg5,7Ac2) to transgenic mice capable of expressing sialic
acid compounds found in humans protects against multidrug-
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resistant gonococci (229). Moreover, this sialic acid analog was
stable at vaginal pH and temperature and did not incorporate
into glycans on host surfaces, which is noteworthy because
incorporation into host glycans may cause an immunogenic
response against host tissue (229). The stability and limited
side effects of sialic acid analog indicate an effective treatment
option (229).

Inhibitors to Functionally Disable Factor H
Binding Proteins or Its Interaction
With Factor H
Inhibitors that block the interaction between FH and FH binding
proteins can be considered as potential therapeutics (Figures 4B,
D). As described previously, FHbp of N. meningitidis binds FH
using a site shared by SOS, a highly sulphated analog of GAGs
(122). The addition of SOS inhibits FH interaction with FHbp in
vitro, thus as suggested by Schneider et al., provides support for
small molecule competitive inhibitors in disabling pathogen
evasion (122). However, competitive inhibitors binding FH
may also interfere with host regulation of complement activity.

The binding of FH to SdrE of S. aureus is enhanced after a
conformational change in the binding protein from a resting,
locked state, to an open state (136). Small molecules inhibitors
may have a potential in preventing conformational changes of
A B

D E F

C

FIGURE 4 | Potential therapeutic and preventive strategies targeting the interaction between Factor H and pathogens. (A–F) Theoretical representations of
pathogen evasion strategies targeted for therapy and prevention are shown. For each box, the left panel illustrates a pathogen evasion strategy and the right panel
represents the intended result of therapeutic intervention, which includes AP and CP activation, and phagocytosis. (A) Sialic acid species (shown in light blue) are
replaced by analogs unable to recognize FH (shown in brown). (B) Competitive inhibitors for FH binding proteins (FHBP) prevent FH interaction with the pathogen
surface. (C) FH fusion proteins containing the Fc portion of IgG fused to FH binding fragments (CCPs 6–7, 19–20) bind FHBP to activate the CP via antibody
recognition, facilitate Fcg receptor-mediated phagocytosis, and prevent FH binding to the pathogen surface. (D) Inhibitors prevent conformational change of FHBP
required to enhance their binding to FH. (E) Vaccination with native FHBP. (F) Vaccination with modified FHBP unable to bind FH, reveals FHBP epitopes (red balls)
to improve immunogenicity.
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FH binding proteins required to bind FH, similar to what occurs
for SdrE [reviewed in (199)].

Factor H-Fc Fusion Proteins
Targeting the pathogen-FH interface is accomplished using
fusion proteins in which FH domains essential for surface
recognition (CCPs 18–20 or 6–7) are fused to the Fc region of
IgG. Fusion proteins are designated FHX-X/Fc, where X-X refers
to the FH domains used in the fusion protein. The proposed
mechanisms of fusion proteins are threefold: (a) prevent FH
binding to the microbial surface; (b) activate the CP via antibody
recognition; and (c) facilitate Fcg receptor-mediated
phagocytosis [reviewed in (189)] (Figure 4C). Fusion proteins
are advantageous because identifying pathogen FH binding
proteins or ligands is not required. However, determining FH
domains involved in pathogen binding is necessary to design
applicable fusion proteins.

Animal model studies demonstrate the efficacy of fusion
proteins using FH CCP 6–7. In infant rats, administration of
FH6-7/Fc prior to intraperitoneal inoculation of a serogroup C
strain of N. meningitidis dose-dependently reduced bacterial
blood burden (230). Similarly, concurrent intranasal
administration of FH6-7/Fc with inoculation of non-typeable
H. influenzae reduced mouse lung bacterial burden (129). In a
model of S. pyogenes sepsis, intranasal FH6-7/Fc treatment of
human FH transgenic mice resulted in decreased animal
mortality (231). Additionally, fusion proteins with CCPs 18–20
bound to gonococci and resulted in complement-dependent
bactericidal activity (119).

Given the importance of CCP 6–8 (232–236) and CCP 19–20
(237, 238) in discriminating self from non-self surfaces, fusion
proteins containing these domains may outcompete full-length
FH for binding host cells, resulting in unwanted complement-
mediated attack. In order for fusion proteins utilizing CCP 19–20
to be effective therapeutic solutions, these domains must be
modified to prevent host cell interaction. This was
accomplished by the generation of a CCP 19–20 fusion protein
containing a point mutation in CCP 19 (D1119G). This mutation
results in lower affinity for C3b binding compared to wild type
CCP 19–20 restricting its ability to bind human cells, even while
maintaining normal binding affinity for polyanions (238).
D1119G bound to highly sialylated gonococci in the presence
of serum, resulting in a robust in vitro complement response
(239). Moreover, therapeutic administration of D1119G reduced
infection duration and burden in a mouse vaginal colonization
model of N. gonorrhoeae without affecting lysis of human
erythrocytes (239). Similarly, FH CCP 19–20 fragments
containing the D1119G mutation also bound to whole P.
aeruginosa, H. influenzae, Bordetella pertussis, S. pneumoniae,
and C. albicans organisms (74), suggesting the therapeutic
r e l evance o f mutan t FH fus ion pro t e in s aga ins t
numerous pathogens.

Factor H Binding Proteins as Vaccines
A suitable vaccine candidate is (a) immunogenic; (b) conserved
across different strains and genospecies of the respective
pathogen; (c) expressed during human infection; (d) necessary
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for development of a clinical infection; (e) surface exposed; and
(f) raises an immune response that neutralizes an important
virulence determinant as proposed by Bhattacharjee et al. and
Meri et al. (85, 240). FH binding proteins meet many of these
requirements, and thus are viable targets for vaccine
development. This section describes clinically approved
(Figure 4E) and emerging vaccines (Figure 4F) utilizing FH
binding proteins.
Clinically Approved Vaccines Utilizing Factor H
Binding Proteins
FHbp is a successful vaccine target against N. meningitidis, the
causative agent of invasive meningococcal disease. Five of the six
serogroups of N. meningitidis express capsular polysaccharides
that are effective vaccine targets. However, because the capsule of
serogroup B is poorly immunogenic, alternative vaccine targets
are necessary to protect against the high mortality and morbidity
associated with meningococcus disease [reviewed in (241)].
FHbp is a viable therapeutic target because it is widely
expressed across numerous meningococcus B isolates
[reviewed in (241)]. Two licensed vaccines, 4CMenB and
MenB-FHbp, both containing FHbp, are approved to protect
10–25 year old individuals against serogroup B meningococcus
[reviewed in (241, 242)].

FHbp displays sequence variability with 3 main variants
belonging to subfamilies A (variant 2 and variant 3) and B
(variant 1) (243, 244). Consequentially, immunization with
vaccines representing single variants do not offer protection
against strains containing other variants (243–245). MenB-
FHbp is a bivalent vaccine containing recombinant lipidated
FHbp from subfamily A variant A05 and subfamily B variant B01
[reviewed in (242)]. Because FHbp from two variants are
represented in this vaccine, MenB-FHbp offers broad coverage
against multiple N. meningitidis FHbp variants (246). In
contrast, 4CMenB is a multi-component vaccine where one of
the components is a FHbp that represents only one variant
(subfamily B) [reviewed in (247)].

Sequence variability limits the degree of protection against
FHbp variants. For example, post immunization sera from mice
injected with a single variant did not offer in vitro cross
protection against other variants (245). Thus, sequence
variability of FHbp poses difficulties in vaccine development.
However, recent studies have introduced alternative vaccine
candidates that elicit antibody responses against FHbp variants
1, 2, and 3 to offer broad protection against meningococcal
disease. One such promising candidate is the Gonococcal
homologue of meningococcal FHbp (Ghfp) that protects
against N. meningitidis expressing any of the 3 FHbp variants
(248). Vaccination with chimeric FHbp antigens is an additional
approach for offering broad protection. Scarselli et al. developed
a chimeric FHbp antigen in which the surface is modified to
confer specificity against all three variants, resulting in cross
protection in mice (249). Another example includes chimeric
vaccines developed by fusing domains conserved across all FHbp
variants and selective portions of domains from variant 1 FHbp
and domains of variant 2 FHbp (250). These molecules were
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found to elicit bactericidal activity against strains expressing the
different variants (250). Chimeric antigens can also be generated
by fusing FHbp with other immunogenic antigens such as the
VR2 epitope from the integral membrane protein PorA that
induces an immunogenic response against N. meningitidis in
mice (251).

Though approved for clinical use, understanding the scope of
FHbp-based antibodies remains an area of active research. One such
area involves long-term risks of vaccination, such as the
development of anti-FH autoantibodies. Interaction of FHbp
(delivered as a vaccine) with FH may result in the development
of autoantibodies against FH. A few studies have investigated this
potential outcome. Sharkey and colleagues noted that 2.5% of
individuals vaccinated with 4CMenB show an increase in anti-FH
autoantibodies (a low level of anti-FH autoantibodies are present in
some individuals (252)). However, this increase was transient, and
no adverse effects were reported in individuals with higher anti-FH
autoantibodies (253). In another study, 4CMenB immunization
resulted in the development of anti-FH autoantibodies in Rhesus
macaques (254). Since the long-term effects of FH autoantibodies
are still not clear, further investigation is required to assess the risk
of autoimmune disease in response to meningococcal vaccines, as
suggested by Sharkey et al. (253).

Other avenues of research into FHbp vaccines include
expanding applications and improving efficacy. Recently,
antibodies raised in response to MenB-FHbp were shown to be
effective against non-serogroup B meningococci in serum
bactericidal assays (255), suggesting this vaccine may provide
broad protection against meningococcal disease. Additionally,
vaccine delivery with polyhydroxybutyrate beads engineered to
display FHbp antigens, show promise in preclinical studies as
means to overcome limitations of recombinant protein vaccines
such as poor immunogenicity and adjuvant requirements (256).
Finally, recent studies using vaccines containing mutant FHbp
with less ability to bind FH combined with native outer
membrane vesicles showed higher serum bactericidal activity
than 4CMenB vaccination (254). This vaccination approach also
generated less FH autoantibodies than 4CMenB (254).

Emerging Vaccines Utilizing Factor H
Binding Proteins
Vaccination With Native Factor H Binding Proteins
While vaccines against N. meningitidis are the only clinically
approved therapies targeting the pathogen FH interface, other
examples are emerging. The FH binding protein, PspC of S.
pneumoniae, is a promising vaccine target. Mice immunized with
a PspC fragment containing the FH binding domain conferred
protection when challenged with the same strain used for
immunization (257). Antibodies from immunized animals
enhanced CP activity, but also competed for human FH
binding, suggesting interference with the AP (257). However,
antibodies generated against PspC from immunized human sera
do not recognize the FH binding site, suggesting FH masks
epitope recognition (258).

Vaccination with FH binding proteins is also effective against
Leptospira interrogans. Immunization with a multi-subunit,
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adjuvant vaccine comprising multiple FH binding proteins
from L. interrogans had similar protective efficacy and survival
rate in hamsters challenged with L. interrogans compared to
monovalent vaccine administration containing only LigAc (259).
Though results indicate LigAc is likely a superior vaccine antigen
in the multi-subunit vaccine, only the multi-subunit vaccine
reduced leptospiral renal colonization in surviving animals (259).
Further investigation is needed to identify the FH binding
proteins in this observed effect from multi-subunit
vaccination (259).

Vaccination With Modified Factor H Binding Proteins
An innovative approach towards applying FH binding proteins
for vaccination involves manipulating FH binding proteins.
Modification of FH binding proteins from several organisms
has been shown to disable FH binding (Figure 4F).

Murine immunization with a non-binding FH mutant of N.
meningitidis FHbp resulted in antibodies with a higher
bactericidal activity than native FHbp vaccination (260). This
finding suggests binding of FH to the native FHbp vaccine can
decrease a protective antibody response and that mutant FH
binding proteins may serve as a superior vaccine (260).
Importantly, these studies utilized transgenic mice expressing
human FH because FHbp only binds human FH (261).

As discussed above, PspC vaccination fails to generate
antibodies against the FH binding site (258). Thus, as
suggested by Glennie et al., generation of a modified PspC
unable to bind FH presents a viable vaccine opportunity given
the role of this protein in complement evasion and host cell
invasion (258).

A recent study in Borrelia eloquently demonstrates the ability
of mutated FH binding proteins to confer protective
immunization. CspZ (CRASP-2) belongs to a family of
lipoproteins utilized by B. burgdorferi, a causative agent of Lyme
disease, to evade complement. CspZ binds FH (77) though the
degree of binding varies across an extensive panel of human Lyme
disease isolates (262). CspZ is an enticing therapeutic target
because it is immunogenic in humans (though titers vary
between individuals (262)) and its expression is highly
conserved among species associated with Lyme disease
[reviewed in (219)]. However, CspZ on its own is not protective
against B. burgdorferi infection. Immunization with recombinant
CspZ did not impact B. burgdorferi infection (262, 263) or prevent
Lyme disease pathology in a mouse model (263).

Nonetheless, studies by Marcinkiewicz and colleagues revealed
the potential of CspZ as a therapeutic target by using a nonbinding
mutant of CspZ (CspZ-YA). Because CspZ-YA cannot bind FH,
new epitopes previously cloaked by FH binding are revealed (216).
As a result, the immunogenicity of CspZ increases and prevents
Borrelia colonization (216). CspZ-YA conjugated to virus-like
particles (VLP-CspZ-YA) protects passively immunized mice
from Lyme infection (216). Additional work in mice infected by
Ixodes scapularis nymphal ticks carrying Borrelia demonstrated
VLP-CspZ-YA protects against spirochete tissue colonization and
arthritis development (264). These authors suggest anti-CspZ-YA
antibodies bind CspZ at epitopes within the FH binding site, thus
competing with FH binding (264). Furthermore, CspZ-YA
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vaccination protected mice against a strain of B. burgdorferi that
does not bind FH and immunized sera eliminated this strain in
vitro, suggesting resulting antibodies may target CspZ through the
CP (264).
POTENTIAL TARGETING OF FACTOR H IN
OTHER INFECTIOUS DISEASES

While FH interactions among bacteria are well-described and
applied in clinical therapy, further research in this field is
warranted for other classes of pathogens including protozoa,
helminths, viruses, and fungi. Closing this gap is relevant for
developing treatments for diseases caused by pathogens known
to evade complement. The following sections provides
preliminary support for pathogens that interact with FH, but
require further work to harness these findings for therapy.

Factor H Interactions With Protozoa
The protozoan, Trypanosoma cruzi is the causative agent of
Chagas disease, which progresses from an acute, often
undiagnosed, asymptomatic stage, to a deadly chronic stage of
which 30–40% of chronically infected individuals develop
cardiomyopathy, mega-syndromes, etc. [reviewed in (265)].
Currently, there are no vaccines for T. cruzi nor treatments
available for the chronic, fatal stage of the disease. T. cruzi adopts
various strategies to evade complement, including the AP
[reviewed in (266)]. When the infective form of T. cruzi
(trypomastigotes), which is normally resistant to complement-
mediated killing, is treated with enzymes including sialidase and
trypsin, the parasites become susceptible to complement-
mediated lysis in human serum (267), suggesting parasites may
be protected from the AP by FH that has been hijacked by
surface-bound sialic acid. This notion is also supported by data
showing trypomastigotes that are pre-opsonized with C3b bind
FH (170). However, the molecular mechanisms involved in
binding remain unknown. Likewise, as suggested by Sikorski
et al., the mechanism by which Toxoplasma gondii captures FH
may be through expression of sialic acid or heparan sulfated
proteoglycans (174). In addition, P. falciparum, the causative
agent of malaria, has developed resistance to all antimalarial
drugs used against it [reviewed in (268)]. FH has been shown to
bind P. falciparum, though not all receptors have been identified
(171) and doing so holds promise for therapeutic avenues against
drug resistance. Overall, interfering with the ability of infectious
protozoa to bind FH represents a possible treatment strategy
against diseases caused by these pathogens; however, more work
is required to understand the molecular mechanisms involved in
these interactions with FH.

Factor H Interactions With Helminths
Echinococcus granulosus, a zoonotic cestode, causes cystic
echinococcosis in humans when larvae develop cysts in organs
including liver, lungs, brain, and bones [reviewed in (269)]. FH
binds E. granulosus through interactions involving the neutral,
sugar-rich, laminated layer of the cyst wall (176). Myoinositol
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hexakisphosphate (InsP6) is a protein abundantly expressed in
the laminated layer and is shown to bind FH through in vitro
studies with purified protein (270). However, studies
representing physiological conditions suggest InsP6 does not
protect against AP-mediated attack and may instead, activate
the CP through C1q recognition (270). Thus, the mechanism for
FH interaction with E. granulosus remains largely unresolved
and likely involves other components on the laminated layer
other than InsP6 [reviewed in (271)].

Onchocerca volvulus is a parasitic nematode causing
onchocerciasis, or river blindness. Novel treatment options are
necessary for this disease given the threat of drug resistance to
the standard therapy, ivermectin [reviewed in (272)]. The
pathogenic stage of O. volvulus (microfilariae) bind FH using
CCPs 8–20 with preservation of cofactor activity, but the binding
ligand remains unknown (175). Loa Loa is another parasitic
nematode and the causative agent of loiasis, characterized by
subconjunctival eye passage of the adult worm, angioedema, and
pathology associated with the lungs, brain, heart, and kidneys
[reviewed in (273)]. Patients with a high infectious load are at
risk for severe complications from ivermectin treatment (274),
thus alternative treatment options are important. Larval L. Loa
acquires FH on the outermost sheath layer and retains its
cofactor activity (177). However, FH CCPs involved in this
reaction are not yet described, but likely does not involve
heparin binding domains (177).

Factor H Interactions With Viruses
There are many examples of viruses evading complement
[reviewed in (62)], but few associate complement evasion to
pathogen interactions with FH. West Nile virus binds FH using
non-structural protein (NS1); however, the mechanisms of this
interaction is unknown (178). Interestingly, serum levels of NS1
correlate with disease severity and viremia [reviewed in (275)],
which may be due in part, to the ability of NS1 to capture FH.

Human immunodeficiency virus-1 (HIV-1) is resistant to
complement lysis in circulation even though HIV-1 and anti-
HIV-1 antibodies activate complement [reviewed in (276)]. FH
binds the HIV-1 envelope proteins gp41 and gp120 (179–182).
More robust studies are required to understand the role of FH
binding in HIV-1 complement evasion.
CONCLUSION

Numerous pathogens exploit host FH, the primary negative
regulator of the AP of complement, as part of a robust
complement evasion strategy. Characterizing interactions
between pathogens and FH provides insight into the failure of
FH to discriminate self from non-self, and/or the impressive
resourcefulness of pathogens to outsmart complement
regulation. The biological relevance of binding FH is
demonstrated by established and emerging vaccines targeting
the pathogen-FH interface and evidenced by the number of
pathogens utilizing FH and expressing multiple FH binding
proteins. Additionally, studying pathogen interactions with FH
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may reveal more information about how FH operates in the host.
The selective pressure of pathogens to maintain FH binding
capabilities suggest undiscovered details about the role of
complement in immune defense against pathogens.
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