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Abstract: With the emergence of low-cost robotic systems, such as unmanned aerial vehicle, the
importance of embedded high-performance image processing has increased. For a long time, FPGAs
were the only processing hardware that were capable of high-performance computing, while at the
same time preserving a low power consumption, essential for embedded systems. However, the
recently increasing availability of embedded GPU-based systems, such as the NVIDIA Jetson series,
comprised of an ARM CPU and a NVIDIA Tegra GPU, allows for massively parallel embedded
computing on graphics hardware. With this in mind, we propose an approach for real-time embedded
stereo processing on ARM and CUDA-enabled devices, which is based on the popular and widely
used Semi-Global Matching algorithm. In this, we propose an optimization of the algorithm for
embedded CUDA GPUs, by using massively parallel computing, as well as using the NEON intrinsics
to optimize the algorithm for vectorized SIMD processing on embedded ARM CPUs. We have
evaluated our approach with different configurations on two public stereo benchmark datasets to
demonstrate that they can reach an error rate as low as 3.3%. Furthermore, our experiments show that
the fastest configuration of our approach reaches up to 46 FPS on VGA image resolution. Finally, in a
use-case specific qualitative evaluation, we have evaluated the power consumption of our approach
and deployed it on the DJI Manifold 2-G attached to a DJI Matrix 210v2 RTK unmanned aerial vehicle
(UAV), demonstrating its suitability for real-time stereo processing onboard a UAV.

Keywords: embedded stereo vision; real-time stereo processing; disparity estimation; semi-global
matching; GPGPU; SIMD; UAV

1. Introduction

In recent years, the use and importance of unmanned aerial vehicles (UAVs) in differ-
ent markets, such as aerial video and photography, precision farming, security monitoring
and disaster relief, as well as 3D reconstruction and mapping has greatly increased [1–3].
And with the ongoing technological advancements, in terms of size, power and durability,
the number of areas in which UAVs are used become more and more. Prototypes for
delivering goods or even transporting people are already available. With the increasing use
of UAVs, it is becoming evermore important that their usability and safety is ensured [4,5].
In doing so, modern UAVs are equipped with a range of sensors, including stereo vision
sensors, typically used for perceiving the surrounding of the UAV to perform the tasks
of obstacle detection and avoidance or 3D mapping. Compared to active sensors such
as Light Detection and Ranging (LiDAR) scanners, camera systems in combination with
state-of-the-art algorithms are typically more practical in performing these tasks, especially
in terms of costs, weight and power consumption. Moreover, such stereo vision sensors are
often already integrated in commercial off-the-shelf (COTS) UAVs.
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On the other hand, while a LiDAR sensor directly provides data on the 3D geometry of
the scene, using a stereo camera for the same task needs to process the stereo image data and
perform a disparity/depth estimation [6]. This, in turn, requires a high-performance em-
bedded processing on board the UAV. For a long time, so-called field-programmable gate
arrays (FPGAs) were the only processing hardware that were capable of high-performance
computing, while at the same time preserving a low power consumption, essential for
embedded systems. In recent years, however, the availability of embedded graphic pro-
cessing units (GPUs), such as the NVIDIA Tegra, allows for massively parallel embedded
computing on graphics hardware, which is typically more flexible than FPGAs and less
cumbersome to program. Furthermore, with the increasing use of deep learning for a
wide range of applications, the importance and availability of embedded GPUs have
grown even more. With the Jetson boards, comprised of an embedded ARM CPU and an
embedded Tegra GPU, NVIDIA provides a suitable alternative to FPGAs for embedded
high-performance computing. Especially since these systems are recently also being inte-
grated in low-cost COTS UAVs, such as the DJI Matrix UAV in combination with the DJI
Manifold or the UVify IFO-S UAV.

With this in mind, we propose an approach for real-time embedded stereo processing
on ARM and CUDA-enabled devices, which is based on the well-known and widely used
Semi-Global Matching (SGM) algorithm first proposed by Hirschmueller [7,8]. Our main
contributions are:

• the optimization of the algorithm for embedded CUDA GPUs, such as the NVIDIA
Tegra, by using massively parallel computing,

• the use of the NEON intrinsics to optimize the algorithm for vectorized SIMD pro-
cessing on embedded ARM CPUs, and

• the deployment of our approach on the DJI Manifold 2-G attached to a DJI Matrix
210v2 RTK UAV and a use-case specific evaluation with respect to accuracy, processing
speed and power consumption.

Even though we deployed and tested our approach for real-time processing on board
a UAV, it is also suitable for other embedded systems, such as those deployed on ground-
based robots or those used in advanced driver assistance systems (ADAS).

1.1. Paper Outline

This paper is structured as follows: In Section 1.2, we briefly summarize the related
work on embedded stereo processing using embedded FPGA, GPU or CPU hardware and
point out how our approach differs from those found in the literature. In Section 2, we
first illustrate the general processing pipeline of our approach, in which we also review the
general process of deriving the scene depth from a stereo image pair and provide a short
review of the SGM algorithm, before illustrating in detail our optimizations for massively
parallel stereo processing on CUDA-enabled GPUs and vectorized SIMD processing with
NEON intrinsics ARM CPUs. We evaluate our approach on two stereo benchmark datasets
with respect to accuracy, processing speed and power consumption, as well as in a use-case
specific scenario. We present the results of our experiments in Section 3 and discuss our
findings in Section 4, before providing a summary, concluding remarks, and a short outlook
on future improvements in Section 5.

1.2. Related Work

In the following sections, we summarize the related work on embedded stereo pro-
cessing. In Section 1.2.1, we will first look at studies that have deployed stereo algorithms
on FPGA hardware. This is followed by an overview of the emergence of embedded GPU
hardware for real-time stereo processing in Section 1.2.2. Lastly, in Section 1.2.3, we revise
related work on deploying real-time stereo processing on CPU hardware, both for high-end
desktop and embedded environments. We also point out how our approach differs from
the related work using embedded GPU and CPU hardware for real-time stereo processing.
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1.2.1. Embedded Stereo Processing on FPGAs

The use of FPGAs is key to achieve high-performance image processing with minimal
power consumption, especially when relying on computationally expensive algorithms.
Thus, most implementations of stereo algorithms for embedded systems, in particular of
the SGM algorithm [7,8], are based on FPGA technology. First optimizations of the SGM
algorithm, such as those presented in [9,10], were deployed on a PCIe-FPGA card inside
a conventional PC or on a separate development kit, achieving real-time frame rates of
27 FPS and 30 FPS on low-resolution imagery, i.e., images with a size of 320 × 240 pixels
and 640 × 480 pixels respectively. Due to ongoing technological advancements, the im-
plementation of Wang et al. [11], deployed on an Altera Stratix-IV FPGA-Board, already
achieved a frame rate of 67 FPS on images with a size of 1024 × 768 pixels in 2015. How-
ever, typical characteristics of embedded systems, besides the dedicated and specialized
processing of a specific task, are a small form factor and the integration in larger systems or
cooperative environments.

In their work, Schmid et al. [12] have deployed the implementation of Gehrig and
Rabe [13] on a small quadrotor for stereo vision-based navigation achieving 14.6 FPS on
a Spartan 6 FPGA. Further System-on-a-Chip (SoC) developments with respect to size
and performance allowed to deploy computationally expensive algorithms on increasingly
smaller systems with higher performance. Honegger et al. [14] implemented the SGM
algorithm on a small SO-DIMM sized SoC equipped with a Xilinx Artix7 FPGA and
reaching 60 FPS with a frame size of 753 × 480 pixels. By reducing the frame size to
320 × 240 pixels the implementation of Barry et al. [15] reached 120 FPS and was used to
navigate a small and fast-flying fixed-wing UAV around obstacles.

Several recent studies [16–18] have shown that further optimizations, such as reducing
the number of processing paths in the SGM optimization or increasing parallelization by
splitting the input images in independent stripes, as well as the technological advancements,
allow the reaching of frame rates of over 100 FPS, while at the same time increasing
the accuracy of the stereo algorithm using a higher image resolution and reducing the
form factor, leading to a reduced power consumption of the SoC. Yet, the use of FPGAs
for real-time embedded image processing involves a cumbersome and time-consuming
development, optimization and deployment process. To reduce development costs of such
systems, substantial effort is done to enhance the process of high-level synthesis (HLS) and,
in turn, alleviate the development of algorithms for FPGAs with more high-level languages
such as C/C++ [18–20].

1.2.2. On the Emergence of Embedded Processing on GPUs

The development cycles for implementing and optimizing image processing algo-
rithms for massively parallel processing on GPUs, on the other hand, are much shorter
and thus less expensive. In addition, GPUs provide a much higher processing power, ideal
for algorithms with high computational effort, such as stereo image processing. Early
works [21,22] have used the rendering pipeline of OpenGL to deploy the SGM stereo
algorithm on graphics hardware and reached frame rates of up to 8 FPS and 4 FPS on
VGA image resolution, respectively. With the introduction of the CUDA-API in 2007, the
development costs for general-purpose computation on a GPU (GPGPU) have dropped
even more. And so, a lot of implementations of the SGM algorithm for real-time stereo
processing on hardware without embedded constraints are optimized and deployed on
graphics hardware [23–25]. Hernandez-Juarez et al. [25] show that with increasing com-
putational power, the use of GPGPU on modern, high-performing graphics hardware,
such as the NVIDIA Titan X, allows the reaching of frame rates of up to 237 FPS on VGA
image resolution with the conventional use of eight optimization paths inside the SGM
optimization. Even higher frame rates of up to 475 FPS and 886 FPS are possible, if the
number of optimization paths are reduced to four or two, respectively.

Although GPUs provide great computational performance, a major drawback is given
by their high power consumption. The deployment of the SGM algorithm on a high-
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end GPU only achieves 1.90 FPS/W on VGA image resolution [25], while a comparable
configuration of the algorithm deployed on a state-of-the-art embedded FPGA achieves
15 FPS/W on a larger image resolution [18]. However, due to the increasing importance
of deep learning algorithms for robotic applications, more and more embedded CPU-
GPU-based SoCs are released and integrated into robotic systems. Recently, such SoCs
with embedded GPUs have even been integrated onto COTS UAVs, and thus been made
available for the mainstream user. In their work, Hernandez-Juarez et al. [25] have also
deployed their implementation on the NVIDIA Jetson TX1, encapsulating the embedded
Tegra X1 GPU, reaching 42 FPS (4.19 FPS/W) on VGA resolution and a four path SGM
optimization. Chang et al. [26] further optimized the computation of the normalized cross-
correlation (NCC) matching cost for the use on GPUs and deployed their SGM-based
stereo algorithm on the NVIDIA Jetson TX2 reaching 28 FPS on images with a size of
1242 × 375 pixels.

In our work, we have also optimized the SGM algorithm for real-time processing
on CUDA devices and deployed it on the NVIDIA Jetson TX2 and the more powerful
NVIDIA Jetson Xavier AGX. In this, we evaluate the performance of different configurations
and optimization strategies with respect to performance and power consumption. The
computationally most expensive part of the SGM algorithm is the aggregation along the
different scanlines. At the same time, due to the nature of dynamic programming, this
is also the part which can by parallelized most effectively, since the computation of each
scanline can be done fully independently, without the need for synchronization. In terms
of GPGPU, this is typically done by instantiating one thread on the graphics hardware for
each scanline, resulting in a massively parallel processing SGM path aggregation. We have
adopted this approach as described in Section 2.2.

1.2.3. Are Embedded CPUs Suitable for Stereo Processing?

In contrast to FPGAs and GPUs, which are designed to be less flexible and yet very
powerful in processing specific tasks on a large amount of data, CPUs are designed to do
more general and versatile processing, needed to allow computers to instantly react to new
sensor input. Even though they have much higher clock frequencies, CPUs are often not ca-
pable of keeping up with the performance achieved by their more specialized counterparts,
due to their small number of cores and, in turn, limited ability of parallelization.

One of the first deployments of the SGM algorithm on a conventional CPU was done
by Gehrig and Rabe [13]. They have implemented several different parallelization tech-
niques, among others splitting the eight-path optimization scheme into two independent
scans. With this, they achieve 14 FPS on images with a size of 640× 320 pixels, but they only
considered a range of 16 disparities. They have deployed their algorithm on an Intel Core i7
with four cores and a clock frequency of 3.3 GHz. A few years later, Spangenberg et al. [27]
have achieved 16 FPS on VGA resolution and 128 disparities, also running their imple-
mentation on a conventional Intel Core i7 with four cores. Apart from several algorithmic
optimizations, e.g., disparity space compression and striped computation, they have paral-
lelized the processing by using Single-Instruction-Multiple-Data (SIMD) vectorization with
the SSE instruction set from Intel, combined with multi-threading.

The work of Arndt et al. [28] is one of the first to deploy an implementation of the
SGM algorithm on an embedded CPU, namely the Freescale P4080, reaching a frame rate
of only 0.5 FPS on VGA image resolution. When considering that this was done around the
same time as the works of Gehrig and Rabe [13] and Spangenberg et al. [27], it illustrates
the gap between conventional and embedded CPUs in terms of performance. However,
the embedded CPU technology has also evolved and gained performance. Most of the
modern high-end embedded SoCs typically consist of an ARM CPU and a FPGA or a GPU,
for example the Xilinx Ultrascale series or the NVIDIA Jetson series. Rahnama et al. [29]
implemented the ELAS stereo algorithm [30] on a Xilinx ZC706 SoC made up of an ARM
CPU and a FPGA. In this, they have deployed the computationally most expensive stages
of the algorithm onto the FPGA (if possible) and used the ARM CPU to process the stages
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with unpredictable memory access patterns. Saidi et al. [31] accelerated a simple stereo
algorithm on an ARM CPU achieving frame rates of up to 59 FPS on an image resolution
of 320 × 240 pixels. In this, they have parallelized the algorithm using multi-threading as
well as SIMD vectorization on ARM with the NEON instruction set [32].

Just as the dynamic programming in the SGM path aggregation is well suited for
massively parallel computing on graphics hardware, its computation can also be effectively
vectorized by SIMD processing as Spangenberg et al. [27] have shown. With this in mind,
we want to investigate the ability of embedded CPUs in performing high-accuracy stereo
processing in real time based on the SGM algorithm. To the best of our knowledge, our work
is the first to implement and optimize the Semi-Global Matching stereo algorithm on an
embedded ARM CPU, leveraging multi-threading parallelization and SIMD vectorization
with NEON intrinsics. We have summarized a relevant excerpt of the related work on
real-time SGM stereo processing on FPGA, GPU and CPU hardware in Table 1.

Table 1. Overview of numerous studies that have developed and deployed an SGM-based stereo algorithm on different
hardware architectures. The highest frame rates, with respect to the corresponding power consumption, are achieved by
FPGA-based implementation. ∗: Power consumption stated for the whole system, e.g., including image capture. †: Studies
state measurements for different configurations; however, the configuration listed provides a good trade-off between image
resolution and frame rate.

Reference HW Device Embedded SoC Resolution Disp. Range FPS Power

Gehrig et al. [9] FPGA 320× 240 64 27 <3 W
Banz et al. [10] FPGA 640× 480 128 30 n/a
Honegger et al. [14] FPGA X 753× 480 32 60 <5 W
Wang et al. [11] † FPGA 1024× 768 96 67 n/a
Barry et al. [15] FPGA X 320× 240 32 120 <5 W ∗
Hofmann et al. [16] † FPGA X 640× 480 64 140 n/a
Ruf et al. [19] FPGA X 640× 360 64 29 n/a
Rahnama et al. [17] † FPGA X 640× 480 128 109 <3 W
Zhao et al. [18] † FPGA X 1242× 374 128 161 6.6 W

Banz et al. [23] † GPU 1024× 768 128 25 n/a
Michael et al. [24] GPU 640× 480 64 11.7 n/a
Hernandez-Juarez et al. [25] † GPU X 640× 480 128 42 <10 W
ReS2tAC-CUDA (ours) GPU X 640× 480 128 24 ~20 W ∗
Gehrig and Rabe [13] † CPU 640× 320 16 14 n/a
Arndt et al. [28] † CPU X 640× 480 64 0.5 n/a
Spangenberg et al. [27] † CPU 640× 480 128 16 n/a
ReS2tAC-NEON (ours) CPU X 640× 480 128 7.2 ~18 W ∗

2. Materials and Methods

In the following sections, we first give a general overview of the processing pipeline
of our approach (Section 2.1), in which we also review the general process of deriving the
scene depth from a stereo image pair and provide a short review of the SGM algorithm.
This is followed by detailed descriptions on our optimizations for massively parallel stereo
processing on CUDA-enabled GPUs (Section 2.2) and vectorized SIMD processing with
NEON intrinsics ARM CPUs (Section 2.3).

2.1. Processing Pipeline for Real-Time Dense Disparity Estimation

In their work, Scharstein and Szeliski [33] have studied and categorized several stereo
algorithms for dense disparity or depth estimation based on their processing steps. From
their observations they have derived a general processing pipeline which provides a basic
blueprint for most modern stereo algorithms, as well as for our approach proposed in this
work, as illustrated in Figure 1. In this, the estimation of dense disparity maps can be
subdivided into three subsequent steps, which are made of smaller building blocks. In the
following, we will look at each individual processing step, give a short overview of its task,
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and subsequently provide a detailed description on how we have instantiated it in our
proposed approach.

Image Matching and Cost Computation

IL

IR
Image

Rectification

Matching
Cost

Computation

S

Cost Optimization

Semi-
Global

Matching

S̄

Disparity Refinement and Post-Processing

Subpixel

Refinement
Median

Filter

Consistency

Check
D

Figure 1. Processing pipeline for real-time dense disparity estimation consisting of three subsequent
steps, which in turn are made of smaller building blocks.

2.1.1. Dense Image Matching and Cost Computation

Finding two corresponding image points that depict the same scene point in both
images of a stereo camera setup (Appendix A), means to match the pixels of the reference
image, typically the image of the left camera, against each pixel in the matching image
within a certain disparity range d ∈ Γ = [dmin, dmax]. In this, the similarity between these
the two pixels is modeled by a similarity measure from which a cost function Φ can be
deduced, which typically is at its minimum if both pixels coincide. This so-called matching
cost between a pixel p in the left image and a corresponding pixel q, located according to a
disparity shift d in the right image, is stored in the three-dimensional cost volume S :

S(p, d) = Φ
(

IL(px, py), IR(px − d, py)
)

. (1)

Thus, the objective in finding two corresponding image points is to minimize the
matching cost computed by Φ.

When relying on distinctive image features such as SIFT [34], SURF [35] or ORB [36]
features, a unique matching between two image points can be found. However, such
image features can only be calculated in descriptive image regions, resulting in a very
sparse correspondence field. Thus, in the case of dense image matching Equation (1) is
evaluated for each pixel in the reference image, computing a pixel-wise matching cost s
according to Φ, which indicates the similarity between the pixel pair. This cost is then
stored inside a three-dimensional cost volume S from which the disparity map is later
extracted. In our work, we have implemented the two most commonly used similarity
measures for real-time dense image matching, namely the Hamming distance of the non-
parametric census transform (CT) [37] and the normalized cross-correlation (NCC). Since
the Hamming distance of the CT is minimal when both image patches are most similar, it
can directly be used as the matching cost sCT. The NCC, however, is equal to 1 when both
image patches are equal. Thus, the NCC is inverted and truncated before being evaluated
as matching cost: sNCC = 1−max (0, ΦNCC).

Since the disparity is only evaluated along the same pixel row (Equation (1)), it
is assumed that the input images IL and IR are rectified prior to the process of image
matching. Similar to the way described by Ruf et al. [19], we use a standard calibration
routine implemented in the OpenCV library [38] to calculate two rectification maps, which
allow efficient resampling of the input images such that the epipolar lines lie horizontally
on the image rows.

2.1.2. Cost Optimization and Disparity Computation

Given the previously computed three-dimensional cost volume S , the next step con-
sists of extracting a plausible disparity map D. Since each voxel of S holds the matching
cost of a particular pixel p of the reference image, associated with a certain disparity d
within the studied disparity range, a straightforward approach to compute a disparity map
from the cost volume is to take the winner-takes-it-all (WTA) solution for all pixels inside the
reference image:

D(p) = arg min
d∈Γ

S(p, d). (2)



Sensors 2021, 21, 3938 7 of 37

However, due to the limited descriptiveness of the cost functions and resulting ambi-
guities in the cost volume, this would lead to a noisy and unsuitable disparity map. Thus,
it is important to perform a cost optimization and in turn regularize the cost volume.

Scharstein and Szeliski [33] have categorized the stereo methods according to their
cost optimization strategies into local and global methods. Although the first group of
algorithms only optimize the cost volume in a locally confined window and make implicit
smoothness assumptions, global methods explicitly state their regularization scheme and
perform an optimization within the whole image domain. Global methods will thus
produce more accurate disparity maps compared to those estimated by local methods. Yet,
at the same time, the use of global methods for embedded stereo processing is not feasible
due to their complexity.

In their taxonomy, Scharstein and Szeliski [33] additionally propose a third group of
algorithms, which alleviate dynamic programming to compute a disparity map. Algo-
rithms in this group usually state an explicit smoothness assumption and approximate a
global optimization scheme, which is why this group can be considered to be a subgroup
of the global methods. The most prominent algorithm, especially for real-time embedded
processing, is the so-called Semi-Global Matching (SGM) algorithm [7,8]. In this, the opti-
mization scheme is formulated as a Markov Random Field (MRF) and the minimization
of the energy function with its explicit smoothness assumption is approximated by ag-
gregating the matching costs along several concentric paths for each pixel p within the
image domain:

Lr(p, d) = S(p, d) + min
d′∈Γ

(
Lr(p− r, d′) + V(d, d′)

)
, with

V(d, d′) =





0, if d = d′

P1, if |d− d′| = 1
P2, if |d− d′| > 1.

(3)

For each pixel p and disparity d inside the cost volume S , the matching costs are
recursively aggregated into Lr, while moving along the path with the direction r. Within
the smoothness term V(d, d′) the matching costs of the previously considered pixel, with
respect to all evaluated disparities d′, are penalized according to the disparity difference
between d and d′. Finally, for each pixel, all path costs are summed up and stored inside an
aggregated cost volume S̄ :

S̄(p, d) = ∑
r

Lr(p, d), (4)

before extracting the WTA disparity map according to Equation (2) from the same.
The use of dynamic programming, i.e., breaking down the minimization problem of

the energy function into the aggregation of independent one-dimensional paths, makes
the SGM approach well suited for massively parallel computing and vector processing,
and in turn for embedded processing. At the same time, many studies have shown that
the results of the SGM algorithm are very accurate, making it one of the most widely used
algorithms for real-time and accurate stereo processing. In our work, we have parallelized
and optimized the SGM algorithm to run in real time with SIMD vector processing on
embedded ARM CPUs as well as CUDA-enabled GPUs.

2.1.3. Post-Processing

There are several post-processing steps, i.e., filtering, regularization and further op-
timizations, which can be applied to the initial disparity map in the final stage of the
processing pipeline. In our pipeline, we have implemented a subpixel disparity refinement,
a left–right consistency check for occlusion detection, as well as a final median filter.
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Subpixel Disparity Refinement

The initial disparity map computed by the SGM optimization is made up of discrete
disparity values, which is sufficient for a diversity of robotic applications such as perception
of the surrounding and obstacle detection. However, when the aim is to accurately recon-
struct the scene, it is important to also account for slanted surfaces and thus incorporate a
subpixel refinement of the disparity. A simple and yet effective way to implement such
a refinement is to use the minimum matching cost for each pixel, i.e., the matching cost
corresponding to the WTA disparity d̂, as well as the matching costs of the two neighboring
disparities in front and behind of d̂, and fit a parabola through these three matching costs.
The location of the minimum of this parabola with respect to d̂ is then considered to be the
subpixel refinement and added to d̂. This optimization has only a minor computational
overhead and is thus well suited for real-time processing. However, it needs to work with
floating point arithmetic which might be of restriction to some embedded hardware.

Occlusion Detection by Left–Right Consistency Check

A typical approach to detect and filter pixels in occluded areas is the left–right consis-
tency check (cf. Appendix B). This, however, requires the computation of a second disparity
map DR, which corresponds to the right image of the stereo pair. A straightforward ap-
proach to compute DR would be to swap and horizontally flip the input images and repeat
the image matching, cost optimization and disparity computation as described above. This,
however, would mean to execute the first and computationally most expensive steps of the
processing pipeline twice for each image pair. Yet, the computation of DR can be efficiently
approximated by reusing the aggregated cost volume S̄ from the cost optimization step:

DR(p) = arg min
d∈Γ

S̄((px + d, py), d). (5)

In this work, we employ the approximated computation of DR for real-time processing
and evaluate how it performs compared to computing the right disparity map from scratch.

Median Filter

For a final outlier removal, we employ a 3 × 3 median filtering for all remaining pixels
with valid disparities. A median filtering requires a sorting of all disparities within the local
window, which is especially cumbersome when optimizing for vector processing on a CPU.
Thus, we are using sorting networks to efficiently perform a bubble sort when running
the algorithm on the ARM CPU (cf. Section 2.3.4). We chose a confined neighborhood
size of 3 × 3 pixels because of two reasons: First, to not introduce too much smoothing or
object fattening in the resulting disparity map. And secondly, to keep the computational
complexity in the process of sorting the disparity values low.

2.2. Real-Time Processing by Massively Parallel Computing on CUDA-Enabled GPUs

As described in Appendix C, the CUDA-API allows for massively parallel general-
purpose computation on a GPU (GPGPU) on NVIDIA GPUs. Thus, we have implemented
each step of the stereo algorithm in separate CUDA kernels to optimize the stereo algorithm
for embedded NVIDIA GPUs. Since each kernel execution is aimed to achieve a high use of
the GPU, we refrained from a parallel execution of the CUDA kernel methods with CUDA
streams. In the following, we provide a detailed description on how we have optimized
and instantiated each step of the algorithm for an efficient GPGPU.

2.2.1. Matching Cost Computation

As already mentioned in Section 2.1.1, we have implemented two different matching
cost functions, namely the Hamming distance of the census transform (CT) as well as
an inverted and truncated version of the normalized cross-correlation (NCC). A detailed
description on the implementation and the optimization of these two cost functions for
execution on a GPU with CUDA is given in the following.
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Calculating the Census Transformation and Its Hamming Distance

For the parallel calculation of the CT on the GPU, we assign different image regions to
each instantiation of the corresponding CUDA kernel. Before the actual CT is calculated,
each kernel instantiation copies the pixel data of the considered image region into shared
memory to achieve a higher access speed. The computation of the CT is then performed in
parallel by each thread of the thread-block for a specific pixel in the assigned image region.
To account for pixels at the image border, where a part of the neighborhood lies outside of
the image, a zero-valued margin with the size of the neighborhood radius is assigned to
the image for the calculation of the CT. Furthermore, we separated the calculation of the
Hamming distance from the calculation of the CT, since the two kernel methods of these
two steps are instantiated with different parameters. For the parallelization on the GPU,
we have implemented a CT with a neighborhood size of 5× 5 pixels and 9× 7 pixels, the
latter being the largest neighborhood that fits into a 64 bit integer. The choice of the former
neighborhood size is justified by the limitations of the optimized implementation for the
CPU (cf. Section 2.3.1). An overview of our implementation is illustrated by Figure 2 (top).
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Figure 2. Top: To calculate the census transform by a CUDA warp for a specific image region, the
image data of this region is first copied from the global memory to the shared memory, the latter
having higher access speeds. In the second step, each thread of the CUDA warp calculates the census
transform (CT) for one pixel inside this region. Bottom: The threads of a CUDA warp calculate the
Hamming distance for 16 disparities simultaneously.
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Figure 2. Top: To calculate the census transform by a CUDA warp for a specific image region, the
image data of this region is first copied from the global memory to the shared memory, the latter
having higher access speeds. In the second step, each thread of the CUDA warp calculates the census
transform (CT) for one pixel inside this region. Bottom: The threads of a CUDA warp calculate the
Hamming distance for 16 disparities simultaneously.

In the calculation of the Hamming distance, the reference and matching image are
divided into stripes and each stripe is assigned to different CUDA warps. Each thread of
the CUDA warps then calculates the Hamming distance from the corresponding census
descriptors at a certain pixel position and disparity. We have chosen the dimensions of the
CUDA warps in such a way that for 16 different pixels half the disparities can be calculated
simultaneously (Figure 2 (bottom)). In this, the census descriptor of the reference pixels is
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first loaded by all threads of a thread-block into the shared memory. Then all threads load
the census descriptors of the matching pixel given a certain disparity. This means that the
32 threads of a thread-block load the census descriptors CT(x− i, y), . . . , CT(x− i− 31, y)
from the matching image into the shared memory. This is repeated until for all disparities
[0, dmax] the census descriptors of the matching image are loaded into the shared memory.
Given all the census descriptors, the threads of a thread-block compute the Hamming
distance simultaneously for different pixels and store the result at the corresponding
position in the cost volume. Since the matching cost of the different disparities for one
pixel lie directly next to each other in the cost volume, the dimension of the CUDA warp is
chosen in such a way that the memory access from the GPU can be pooled together.

Inverted and Truncated Version of the Normalized Cross-Correlation

Using the NCC as a cost function is computationally more expensive than relying on
the Hamming distance of the CT. Although the computation of the CT and the subsequent
Hamming distance only requires some comparative and bit-level operations, the compu-
tation of the NCC needs the calculation of a mean and variance of the two input patches.
Since the mean and the variance of all possible patches inside an image can be precomputed
and then reused, we divide the calculation of the NCC and the process of image matching
into two separate stages, similar to the calculation of the CT and the Hamming distance.

In the first step, we calculate the mean and variance for all patches in the left and
right input image. In this, we instantiate a kernel with the same configuration as when
calculating the CT, iterating over all pixels in the left and right image, and compute the
necessary data for a patch of a given size, centered around the current pixel. Similar to the
process of computing the CT, we thus first enhance the input images with the independent
patch information, storing the patch-mean and patch-variance, together with the pixel
value of the center pixel, in a special struct for each pixel of the input image. Just as
when calculating the Hamming distance of the census transform, we then use the pixel
and the patch data to perform the image matching based on the inverted and truncated
normalized cross-correlation and fill the resulting cost volume in the second stage. Again,
we instantiate a kernel with the same parameters, as when doing the image matching with
the Hamming distance. We have implemented the NCC for a patch size of 5× 5 pixels and
9× 9 pixels.

2.2.2. Semi-Global Matching Optimization

The calculation of the eight different SGM path costs is done sequentially on CUDA
hardware. The parallelization of the cost aggregation on one path direction is realized on
two different levels. First, each CUDA block calculates the costs for 16 different lines along
one path direction (Figure 3). If a diagonal line reaches the image border, the values are
reset and the calculation is resumed on the other side of the image. This ensures that all
calculations of one path direction takes the same time. Additionally, for each image point,
the costs for the disparities d0, . . . , ( dmax

2 − 1) and dmax
2 , . . . , dmax are calculated in parallel

by two iterations. This ensures that all threads within one warp access a contiguous area in
the memory, allowing the memory transactions to be more efficient. However, this requires
a synchronization of the threads within a CUDA warp after the costs for all disparities have
been calculated, to find the minimum path cost, which is necessary for further processing.
To find the minimum of the aggregated costs, we use the map reduce method as illustrated
in Appendix D. After the calculation and aggregation of the different SGM path costs,
the WTA disparity with the minimum aggregated costs is to be found. This is done by
assigning a specific image region to each CUDA warp and again using the map reduce
method mentioned above.
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Figure 3. Multiple CUDA blocks processing the SGM path aggregation. Each block calculates 16
different lines along one path direction.

2.2.3. Consistency Check

The key aspect in the consistency check is the calculation of the approximated disparity
map DR, corresponding to the matching image. This is approximated from the calculated
aggregated cost volume of the reference image S̄ . In this, each entry of DR is calculated
according to Equation (5). The difficulty that arises in this process is the access of non-
adjacent areas in S̄ , as illustrated in Figure 4. Between all entries of the aggregated cost
volume S̄ that are to be used for the calculation of DR, always lie dmax + 1 entries, which
are of no interest.

In the GPU implementation for the consistency check, each instantiation of a CUDA
kernel computes a specified region in the approximated disparity map DR. In this, the data
of the aggregated cost volume is first copied into shared memory for quicker access. Since
the data does not lie next to each other, the access to the global memory by the different
CUDA threads cannot be pooled together. When all data are available in the shared
memory, we again use the map reduce method to find the minimum. After the disparity
map DR for the matching image is approximated, each thread performs the consistency
check according to Equation (A1) for a specific pixel in the final disparity map DL.

... ... ...

S̄((x, y), 0) S̄((x + 1, y), 0) S̄((x + 2, y), 0) S̄((x + 3, y), 0)

dmax + 1 dmax + 1 dmax + 1
S̄R((x, y), 0) S̄R((x, y), 1) S̄R((x, y), 2) S̄R((x, y), 3)

Figure 4. In the consistency check, an additional disparity map, which corresponds to the matching
image, is approximated from the aggregated cost volume S̄ . The required entries are not situated
directly next to each other, which hinders an efficient memory access.

2.2.4. Median Filter

The execution of the median filter on the GPU is straightforward. To each CUDA
thread-block a region in the final disparity map is assigned for which the filter is to be
processed. In this, the necessary data are first copied to the shared memory. Pixels that lie
outside the image achieve a disparity value of 0xFFFF assigned, making them irrelevant
for the filtering. With all the data in the shared memory, each thread of the thread-block
calculates the median for a pixel. In this, the first five iterations of the bubble sort algorithm
are performed to sort the values in the 3× 3 pixels neighborhood. After the fifth iteration,
the five highest values are correctly sorted, and the median can be extracted.

2.3. Vectorized SIMD Processing with NEON Intrinsic Set on ARM CPUs

To efficiently deploy the real-time processing pipeline for the estimation of dense
disparity maps on an embedded CPU, such as the 8-core ARMv8.2 on the NVIDIA Jetson
Xavier AGX, we use two strategies of parallelization as illustrated in Figure 5, namely:
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1. a thread-level parallelization, and
2. a vectorized data processing with the Single-Instruction-Multiple-Data (SIMD)

NEON intrinsics.

Our implementation uses eight concurrent threads to efficiently use the available CPU
cores. In each step of the processing pipeline, in exception to the SGM optimization step,
each thread operates on a different image stripe, thus operating isolated and independently
from the other threads. At two locations in the processing pipeline of the stereo algorithm,
i.e., before and after the SGM optimization, the concurrent threads need to be synchronized,
since the SGM optimization relies on a different thread barrier than the other steps of the
pipeline. In the other steps of the pipeline, the threads do not require any synchronization
and can thus be processed fully concurrently. As part of our second parallelization strategy,
each thread uses the ARM NEON instruction set [32] to perform a vectorized SIMD
processing on the vector-processors of the CPU (cf. Appendix E).

Thread 1

Thread 2

...

Thread n

SIMD Instructions

PU

PU

PU

PU
M

em
or

y

Thread 2 - NEON Vector-Processor

CPU 1

CPU 2

CPU n

Figure 5. In the optimization of the SGM stereo algorithm for the execution on embedded CPUs,
two different parallelization strategies are used. The implementation uses multiple threads to evenly
distribute the processing on the available CPU cores. Each thread uses the AMD NEON instruction
set to perform a vectorized SIMD processing using the NEON processing units (PU).

In the following sections, we will discuss how we have optimized each step of the
processing pipeline for execution on an ARMv8 CPU, using thread parallelism and SIMD
processing. Since the use of the NCC as a cost function for the image matching is computa-
tionally more expensive, and the frame rates achieved using the CPU are anyway much
lower than those achieved on the GPU, we refrained from implementing the NCC for a
vectorized SIMD processing on the CPU.

2.3.1. Calculating the Census Transformation and Its Hamming Distance

As illustrated in Figure 6, we can calculate the census transform (CT) in each thread
for 16 pixels simultaneously, using the SIMD vector-registers. In this, we load the 16
reference pixels with eight bits each into one vector-register. In addition, we load the
corresponding 24 × 16 neighbor pixels into one vector-register each, resulting in a total
use of 25 vector-registers with 16 lanes. We process the full image by sliding the illustrated
window from left to right and top to bottom over the image. In doing so, there is a good
chance that the image data, which is needed by the next iteration, is already cached. In
the calculation of the CT, we omit the comparison of the reference pixel with itself. This
allows us to represent the 24 bits of the resulting CT bitstring by three bytes and thus store
the census descriptors of all 16 pixels in three vector-registers. This is also why we only
consider a 5× 5 pixels neighborhood in the optimized implementation of the CT for the
ARM CPU. To also calculate the CT at the image border, where a part of the neighborhood
lies outside of the image, we would need to introduce a conditional statement, which is
not recommended when using SIMD vectorization. Thus, we only calculate the CT up to
two pixels with respect to the image border, reducing the image size by four pixels in each
dimension for the subsequent processing.
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Currently treated reference pixel
Currently treated neighborhood pixel

Previously processed pixel
Pixel to be processed

Iteration 1 Iteration 2 Iteration 3

Figure 6. For the optimized CPU implementation, the census transform is processed for multiple
pixels simultaneously by using the NEON vector processing units. In this, a sliding window is used,
which processes the image data from left to right and from top to bottom.

To calculate the Hamming distance between two census descriptors, namely the one
from the pixel of the reference image and the corresponding pixel in the matching image,
we apply the XOR operator and count how many bits are set to 1 in the final output. To
count the number of bits which are set, the NEON instruction set offers a population count
(VCNT) which can be applied to each vector-lane. As illustrated in Figure 7, the resulting
matching cost, i.e., the Hamming distance of the CT, is stored to a three-dimensional
cost volume. By using the SIMD instructions and the 32 vector-register, a maximum of
64 matching costs can be calculated simultaneously in each thread. Thus, each thread
processes 16 disparities and four lines simultaneously in one iteration.

Reference bitstrings Matching bitstringsXOR

Temporary vector 1

VCNT

Temporary vector 2

Memory

IL IR

Figure 7. Overview of the calculation of the Hamming distance with SIMD intrinsics. Each census
descriptor is loaded from IL and IR in separate vector-registers, on which a XOR operation is applied.
The number of set bits inside a vector-register is counted using the NEON hardware instruction
VCNT (Vector Count Set Bits).

In the case the currently calculated disparity is bigger than the x-coordinate of the
reference pixel, the corresponding matching pixel lies outside the image. To efficiently
handle this case, we additionally store the disparity for which the matching costs are
currently being calculated as well as the x-coordinate of the currently processed pixel in
two additional vector-registers. In each iteration, both of the above-mentioned registers are
compared against each other, and the result is stored in a third register. If the disparity is
greater than the x-coordinate of the pixel, all bits inside the vector-lanes will be set. Finally,
if we apply an OR operation between the register with the matching cost and the register
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with the comparison result, the matching cost of each disparity that spans over the image
boundary will be set to 0xFF and thus will not contribute in the subsequent search for
the optimum.

2.3.2. Semi-Global Matching Optimization

The optimized implementation of the SGM algorithm can be divided into two separate
steps. First, each thread calculates the SGM path costs for each path that is assigned to
it according to Equation (3). As illustrated in Figure 8, the four vector-registers are first
filled with the results of the previous iteration, so that the vector-register Lr(p− r, d) will
hold the previous path costs at the same disparity level, the vector-registers Lr(p− r, d− 1)
and Lr(p− r, d + 1) will hold the previous path costs at the disparity level ±1, and the
vector-register mind Lr(p− r, d) will hold the minimum path costs over all disparity levels
at the considered pixel. According to Equation (3), the current matching costs from the
cost volume as well as the penalties are added to the different vector-registers. Again, the
NEON instruction set provides a method to achieve the minimum from the four vector-
registers, namely MINIMUMshuffle. The result is stored in the allocated memory and is
compared to the path costs of the other disparities to achieve the minimum path cost for
the next iteration.
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Lr(p− r, d− 1)

Lr(p− r, d + 1)

mind Lr(p− r, d)
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Figure 8. Schematic overview of the implementation of the SGM aggregation at a single pixel on a
path. All components of the SGM path aggregation (cf. Equation (3)) are calculated simultaneously.
A final minimum operation will yield the result which is stored in the aggregated cost volume.

In each thread, the costs for the disparities of two pixels are calculated simultaneously.
In this, the implementation of the horizontal and vertical paths (LLR, LRL, LTB, LBT) differ
from the implementation of the diagonal paths (LTLBR, LTRBL, LBLTR, LBRTL). On the straight
paths, each thread processes two pixels on two neighboring rows or columns (Figure 9a).
However, due to the different lengths of the diagonal paths, this cannot be applied to the
processing of the same. Instead, on the diagonal paths, each thread processes two pixels
lying on opposite sides of the image. This is illustrated in Figure 9b.
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Figure 8. Schematic overview of the implementation of the SGM aggregation at a single pixel on a path.
All components of the SGM path aggregation (cf. Equation (3)) are calculated simultaneously. A final
minimum operation will yield the result which is stored in the aggregated cost volume.
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Figure 9. Different traversal strategies in the aggregation of the SGM path costsFigure 9. Different traversal strategies in the aggregation of the SGM path costs.
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In the second step of the SGM aggregation, each thread sums up all SGM path costs
and finds the disparity with the minimum cost, i.e., the WTA cost, for each image stripe
assigned to it. The different path costs are first copied into different vector-registers
and then summed up. When summing up, each thread additionally stores the currently
processed disparity as well as the minimum aggregated cost and the corresponding WTA
disparity in additional vector-registers. Afterwards, the aggregated costs are compared to
the minimum costs which are updated if necessary. If the minimum costs are updated, the
corresponding WTA disparity is updated accordingly. The final aggregated path costs are
stored into an aggregated cost volume S̄ , which is needed for the subsequent consistency
check, while the final WTA disparity is written into the disparity map.

2.3.3. Consistency Check

In the optimization of the consistency check for the CPU, we encounter the same
difficulty as in the implementation of the approximated consistency check for the GPU,
namely that the required data from the aggregated cost volume does not lie physically
next to each other (cf. Figure 4). This makes it inefficient to load the data into vector-
registers first and then process it with NEON intrinsics. There are two ways to solve this
problem: The first possibility, which is proposed by Spangenberg et al. [27], is to first
transform the aggregated cost volume S̄ into a temporary volume in such a way that the
data which is required to compute the approximated disparity map DR will physically lie
next to each other in memory. Afterwards, the vector-registers can be filled with the data
and the approximated disparity map DR, corresponding to the matching image, can be
calculated efficiently with SIMD instructions. The second option, which we chose, is to
refrain from using SIMD instructions for the consistency check. In our implementation of
the consistency check, we only use a thread-level parallelization in which each thread is
processing a different part of the cost volume. This saves us the need to rearrange the cost
volume necessary to use SIMD instructions.

2.3.4. Median Filter

In our pipeline, we deploy a final median filter after the consistency check to remove
any small outliers that remain in the disparity map D. This requires a sorting of all
disparity values within the local neighborhood. We use the concept of sorting networks (cf.
Appendix F), which relies on wires and comparators, to allow for a parallel sorting with
SIMD intrinsics. In the implementation for the vectorized processing of the 3 × 3 median
filter, the wires of the sorting network are realized using the vector-lanes of the vector-
register. In this, the wires of the network are distributed among different vector-registers,
using one vector-lane from each register. Thus, for the implementation of one sorting
network for the median filter with nine wires, nine different vector-lanes distributed over
nine different vector-registers are used (Figure 10).

The comparators of the sorting network are implemented using two comparison
instructions of the NEON instruction set that compare each vector-lane of two vector-
registers and store the minimum or maximum in a third register. Thus, for each vector-lane
we first extract the minimum and maximum value from the two source vector-registers.
Then, the minimum is copied to the register which represents the upper lane of the sorting
network, while the maximum is copied to the register which represents the lower lane. By
this vectorized parallelization the median filter is computed for 16 pixels simultaneously.
Inherent to the nature of the BubbleSort algorithm, it is only necessary to calculate the first
five iterations to achieve the median of a 3 × 3 pixels neighborhood.
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Figure 10. Implementation of sorting networks using vectorized SIMD processing. The nine wires of a sorting network are
mapped to vector-lanes of nine different vector-registers.

3. Results

The first part of our experiments (Section 3.1) comprises a quantitative evaluation
of the accuracy and performance of our optimized implementations on the KITTI 2015
stereo benchmark [39], as well as the Middlebury 2014 stereo benchmark [40]. In this, we
have also evaluated and studied the effects of different configurations of the processing
pipeline for real-time disparity estimation, e.g., the effect of reducing the number of SGM
paths or the improvement of the additional subpixel refinement. We compare the results of
our implementations with state-of-the-art approaches and analyze their performance with
respect to the power consumption of the embedded system.

In the second part (Section 3.2), we qualitatively discuss the results of the use-case
specific experiments we have conducted. In this, we have deployed our approaches on
a low-cost UAV and performed real-time disparity estimation based on a stereo camera
system, which is pointing forward in the direction of flight. The resulting disparity map
can then be used for reactive obstacle avoidance as proposed in our previous work [19] or
for facade and close-range object reconstruction.

3.1. Quantitative Evaluation of Accuracy on Public Stereo Benchmarks

The quantitative assessment of the performance of our approaches comprises an
evaluation with respect to their accuracy in Section 3.1.1, as well as studies on the effects
of the subpixel disparity refinement in Section 3.1.2 and the improvements gained by an
accurate left–right consistency check in Section 3.1.3. For the evaluation of the accuracy of
our approach and its different configurations, we have used the training set of the KITTI
2015 stereo benchmark [39], which consists of 200 stereo image pairs and ground truth
disparity maps captured by a LiDAR sensor from on top of a car driving around urban
areas, as well as the Middlebury 2014 stereo benchmark [40]. The latter one allows a
more thorough evaluation on the accuracy of our approach, and the effects of different
optimizations in the processing pipeline, since it consists of 15 high-resolution stereo pairs
of indoor scenes, together with highly accurate and dense ground truth disparity maps
captured by a structured light sensor. Moreover, in Section 3.1.4, we study the processing
speed and power consumption of our approaches, together with the effects of reducing
the aggregation paths of the SGM optimization. For our experiments, we have deployed
our approaches on the NVIDIA Jetson Xavier AGX with an 8-core 64 bit ARMv8.2 CPU
and a 512-core Volta GPU. All measurements with respect to accuracy, timings and power
consumption were done on this hardware.
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The standard evaluation routine of the KITTI 2015 stereo benchmark [39] states the
accuracy as the number of erroneous pixels (D1-all), averaged over all m ground truth
pixels in the evaluation set, for which the estimated disparity d differs by 3 or more pixels
with respect to the ground truth d̂:

D1-all =
1
m

m

∑
i=1

[
|d− d̂| ≥ 3

]
, (6)

with [·] being the Iverson bracket. Since the ground truth was generated from a LiDAR
sensor, mounted at a slightly different position as the camera, for which the disparity map
is estimated, the ground truth also provides disparity values in areas which are occluded
in the second camera image and, in turn, usually only contains limited information in
the estimated disparity map. Although the KITTI benchmark also provides ground truth
maps which only contain non-occluded (noc) areas, the standard evaluation protocol
uses the occluded (occ) dataset, which we have also used for our evaluation in Table 2.
Furthermore, the benchmark distinguished between the results of the actual estimated (Est)
disparity maps and interpolated versions of them (All). The latter ones allow a comparison
between disparity maps of different density, by applying a background interpolation to
fill the pixels in the estimated disparity map for which no data are available. However,
since our approach uses a left–right consistency check and a median filter to explicitly
remove outliers and inconsistent areas, we are more interested in the results achieved by
the actual estimate. Nonetheless, for comparison, we also provide the results achieved
by the interpolated disparity maps, as well as the information on the density of the non-
interpolated map, if available, which states the number of pixels in the estimated disparity
map which contain valid estimates.

Similar to the evaluation routine of the KITTI 2015 stereo benchmark, the Middlebury
benchmark ranks the algorithms based on four different accuracy levels, namely the amount
of pixels whose error is greater than 0.5 (bad0.5), 1 (bad1), 2 (bad2) and 4 (bad4) pixels
with respect to all m ground truth pixels in the evaluation set:

badθ =
1
m

m

∑
i=1

[
|d− d̂| > θ

]
, (7)

with d and d̂ again denoting the estimated and ground truth disparity respectively, and
[·] being the Iverson bracket. The data are provided in full (F) image resolution with up
to 3000× 2000 pixels and a disparity range of up to 800 pixels, as well as half (H) and
quarter (Q) image resolution. The official evaluation is always performed on the full image
resolution. Thus, if the results are generated on a dataset with a smaller resolution, the
results are first being up-sampled before being evaluated.

3.1.1. Accuracy

In this section, we will first list the accuracy achieved on the KITTI 2015 stereo
benchmark, which is followed by the evaluation of the accuracy on the Middelbury 2014
stereo benchmark.
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Table 2. Accuracy achieved by different algorithms and configurations on the KITTI 2015 stereo benchmark [39]. Although
the upper part lists algorithms that are optimized and deployed on embedded hardware, the three algorithms at the bottom
are listed as a reference and a baseline. The results achieved by different configurations of our implementation are listed in
the middle section. The accuracy is stated as the number of erroneous pixels (D1-all), for which the estimated disparity
differs by 3 or more pixels with respect to the ground truth. The KITTI 2015 benchmark distinguishes between the result of
the actual estimated (Est) disparity map and an interpolated version of it (All), in which the pixels, for which no disparity is
available, become interpolated by a simple background interpolation. As an evaluation ground truth, we have considered
all available pixels, not only the non-occluded ones. The density indicates, how many pixels inside the computed disparity
maps have an estimate. †: The accuracy stated is computed with respect to the non-occluded pixels in the ground truth.

Approach Configuration HW Device Resolution Accuracy

(in pixels) D1-all (Est.) D1-all (All) Density

Zhao et al. [18] CT5×5—SGM FPGA 1242× 375 - 11.8% -
Zhao et al. [18] CT7×7—SGM FPGA 1242× 375 - 9.5 % -
Ruf et al. [19] CT5×5—SGM FPGA 640× 360 4.6% 31.2% 46.4%
Rahnama et al. [17] CT5×5—MGM FPGA 1242× 375 6.7% 13.6% 81.0%
Rahnama et al. [17] CT13×13—MGM FPGA 1242× 375 4.8% 9.9% 85.0%
Cui and Dahnoun [41] † NCC9×9-native GPU 1242× 375 - 16.6% -
Cui and Dahnoun [41] † NCC9×9-optimized GPU 1242× 375 - 13.1% -
Chang et al. [26] Z2-ZNCC GPU 1242× 375 7.6% 7.7% 99.9%
Hernandez-Juarez et al. [25] CT9×7—SGM GPU 1242× 375 8.2% 8.2% 100%

ReS2tAC—CUDA CT5×5—SGM GPU 640× 480 5.4% 8.4% 94.5%
ReS2tAC—CUDA CT5×5—SGM GPU 1242× 375 4.3% 8.3% 88.8%
ReS2tAC—CUDA CT9×7—SGM GPU 640× 480 5.1% 7.9% 94.6%
ReS2tAC—CUDA CT9×7—SGM GPU 1242× 375 4.0% 7.7% 90.0%
ReS2tAC—CUDA NCC5×5—SGM GPU 640× 480 5.3% 7.8% 94.8%
ReS2tAC—CUDA NCC5×5—SGM GPU 1242× 375 4.3% 8.1 % 90.0%
ReS2tAC—CUDA NCC9×9—SGM GPU 640× 480 5.9% 8.2 % 94.7%
ReS2tAC—CUDA NCC9×9—SGM GPU 1242× 375 4.8% 8.3 % 91.1 %
ReS2tAC—NEON CT5×5—SGM CPU 640× 480 5.0% 7.9% 94.5%
ReS2tAC—NEON CT5×5—SGM CPU 1242× 375 4.6% 8.5% 90.0%

Schönberger et al. [42] NCC7×7—SGM-Forest CPU 1242× 375 4.3% 4.4% 99.9%
OpenCV-SGBM SAD3×3—SGM CPU 1242× 375 5.9% 10.9% 90.4%
Hirschmueller [8] CT—SGM GPU 1242× 375 6.4% 6.4% 100%

KITTI 2015 Stereo Benchmark

Table 2 lists the quantitative results of the accuracy of different configurations of
our implementations, as well as those of other approaches and implementations, which
are achieved on the KITTI 2015 stereo benchmark. Although the results of our approach
were achieved on the training set of the benchmark, the results of the approaches from
literature were taken either from the corresponding publication or the official listing of
the benchmark, which lists the results achieved on the actual test set. The upper part
of Table 2 lists algorithms and configurations, which are optimized for the deployment
and execution on embedded hardware. Not all of these are variants of the Semi-Global
Matching stereo algorithm. Yet, they serve as a good comparison since they were deployed
on the same or similar hardware as ours. The three algorithms at the bottom of the list
serve as a baseline to our approaches. Although the one from Hirschmueller [8] reveals the
accuracy achieved by the original SGM algorithm implemented on the GPU with the census
transform of unknown size as a cost function, the SGBM variant of the OpenCV library is
widely spread and easy to use, but not optimized for embedded processing. The algorithm
of Schönberger et al. [42] is evaluated on both the KITTI 2015 stereo benchmark, as well
as the Middlebury 2014 stereo benchmark. They propose to use a random forest classifier
to learn to efficiently fuse the different scanline optimizations of the SGM algorithm, to
reduce the number of optimization paths for embedded processing more efficiently.



Sensors 2021, 21, 3938 19 of 37

We have measured the accuracy of our approach using different cost functions and
different support regions. For each configuration, we have evaluated the results achieved
on the original image size provided by the KITTI benchmark, i.e., 1242× 375 pixels, as well
as on images with VGA resolution. In the case of VGA resolution, we have down-sampled
the original images to a resolution of 640 × 480 pixels, performed the stereo disparity
estimation and up-sampled the resulting disparity maps to the original image size with a
nearest-neighbor interpolation and a scaling of the disparities by the horizontal scale factor.
Thus, we have always used the original image size for the accuracy measurements. For the
selection of the SGM penalties, we have empirically evaluated different values and selected
those with the best result. In terms of the best configurations, these are P1 = 27 and P2 = 86
for the CT9×7 and P1 = 90 and P2 = 880 for the NCC5×5. An excerpt on the qualitative
results for the best configuration of our approach is presented in Figure 11.
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Figure 11. Four exemplary results from the KITTI 2015 stereo benchmark, computed with the CT9×7 -
SGM configuration on the original image size. Rows 1 & 4: Reference image. Rows 2 & 5: Estimated
disparity maps. Rows 3 & 6: Color-coded error image between the prediction and the ground truth.
Error images use a log-color scale as described by Menze and Geiger [39], marking correct pixels in
estimates and wrong estimates in red color tones.

its GPU counterpart. In summary, when considering the actual estimate, our configuration CT9×7 -574

SGM executed on the GPU, with the original image size of 1242× 375 pixels, outperforms the baseline575

implementations as well as the other algorithms optimized for embedded hardware. When evaluating576

on the interpolated disparity maps, our approaches achieve similar and mostly better results than the577

other embedded algorithms. The superiority of the baseline algorithms from Hirschmueller [8] and578

Schönberger et al. [42] with respect to the quality of the disparity estimation is to be expected, since579

they were optimized with respect to accuracy and not speed or throughput.580

Middelbury 2014 stereo benchmark:581

The results achieved by our approach on the training set of the benchmark are listed in Table 3,582

with a qualitative excerpt of the results achieved by the best configuration presented in Figure 12.583

None of the other approaches for stereo processing on embedded hardware, which were listed in584

Figure 11. Four exemplary results from the KITTI 2015 stereo benchmark, computed with the CT9×7—SGM configuration
on the original image size. Rows 1 & 4: Reference image. Rows 2 & 5: Estimated disparity maps. Rows 3 & 6: Color-coded
error image between the prediction and the ground truth. Error images use a log-color scale as described by Menze and
Geiger [39], marking correct pixels in estimates and wrong estimates in red color tones.

The results in Table 2 reveal that the use of the census transform with a support region
of 9× 7 pixels and its Hamming distance as a matching cost function, achieves the best
results, in the evaluation of both the actual estimate and the interpolated version. As can be
expected, the use of down-sampled versions of the input images yields less accurate results
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and yet, achieves a higher density in the resulting disparity maps. Furthermore, the use of
the normalized cross-correlation as a cost function achieves slightly less accurate results,
while leading to a smaller throughput as discussed in Section 3.1.4. The implementation on
the CPU using NEON SIMD intrinsics with a CT of size 5× 5 pixels achieves similar and, in
the case of the smaller image resolution, slightly better results than its GPU counterpart. In
summary, when considering the actual estimate, our configuration CT9×7—SGM executed
on the GPU, with the original image size of 1242× 375 pixels, outperforms the baseline
implementations as well as the other algorithms optimized for embedded hardware. When
evaluating on the interpolated disparity maps, our approaches achieve similar and mostly
better results than the other embedded algorithms. The superiority of the baseline algo-
rithms from Hirschmueller [8] and Schönberger et al. [42] with respect to the quality of the
disparity estimation is to be expected, since they were optimized with respect to accuracy
and not speed or throughput.

Middelbury 2014 Stereo Benchmark

The results achieved by our approach on the training set of the benchmark are listed
in Table 3, with a qualitative excerpt of the results achieved by the best configuration
presented in Figure 12. None of the other approaches for stereo processing on embedded
hardware, which were listed in the evaluation on the KITTI benchmark, have also been
evaluated on the Middlebury 2014 stereo benchmark and, thus, these are not listed in this
evaluation. However, results on the non-embedded baseline algorithms are available and
are again listed in the lower part of Table 3. We have evaluated the same configurations as
in the evaluation on the KITTI benchmark. Since our approach can only handle a disparity
range of up to 256 pixels, we computed the disparity maps on the provided quarter image
resolution (Orig. Q). Just as in the standard evaluation routine of the benchmark, the results
listed were found after up-sampling the disparity maps to the original image resolution
with a nearest-neighbor interpolation and scaling the containing disparities with a factor of
4. Again, for the selection of the SGM penalties, we have empirically evaluated different
values and selected those which yield the best results, being P1 = 11 and P2 = 39 for the
CT5×5 and P1 = 140 and P2 = 730 for the NCC5×5.

Table 3. Accuracy achieved by different algorithms and configurations on the Middlebury 2014 stereo benchmark [40].
Although the upper part lists the results of different configurations of our implementation, the three algorithms at the
bottom are listed as a reference and a baseline. The accuracy is stated as the number of erroneous pixels, whose error is
greater than 0.5 (bad0.5), 1 (bad1), 2 (bad2) and 4 (bad4) pixels with respect to the ground truth. The density indicates,
how many pixels inside the computed disparity maps have an estimate. The Middlebury 2014 stereo benchmark provides
the image data in full (F), half (H) and quarter (Q) image resolution. We have computed our results on the quarter image
resolution and evaluated them according to the standard evaluation pipeline on the full resolution.

Approach Configuration Resolution
Accuracy

bad0.5 bad1 bad2 bad4 Density

ReS2tAC—CUDA CT5×5—SGM Orig. Q 77.0% 59.5% 35.4% 13.5% 93.0%
ReS2tAC—CUDA CT9×7—SGM Orig. Q 77.3% 59.9% 35.7% 13.6% 93.3%
ReS2tAC—CUDA NCC5×5—SGM Orig. Q 77.1% 60.1% 36.3% 14.4% 92.8%
ReS2tAC—CUDA NCC9×9—SGM Orig. Q 77.1% 61.2% 38.7% 17.1% 91.9%
ReS2tAC—NEON CT5×5—SGM Orig. Q 76.2% 59.0% 35.1% 13.4% 92.1%

Schönberger et al. [42] NCC7×7—SGM-Forest Orig. H 43.1% 14.8% 7.0% 3.7% 100%
OpenCV-SGBM SAD3×3—SGM Orig. Q 67.3% 42.1% 25.5% 17.3% 100%
Hirschmueller [8] CT—SGM Orig. H 51.5% 28.2% 17.7% 12.2% 100%
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Approach Configuration Resolution Accuracy
bad0.5 bad1 bad2 bad4 Density

ReS2tAC- CUDA CT5×5 - SGM Orig. Q 77.0 % 59.5 % 35.4 % 13.5 % 93.0 %
ReS2tAC- CUDA CT9×7 - SGM Orig. Q 77.3 % 59.9 % 35.7 % 13.6 % 93.3 %
ReS2tAC- CUDA NCC5×5 - SGM Orig. Q 77.1 % 60.1 % 36.3 % 14.4 % 92.8 %
ReS2tAC- CUDA NCC9×9 - SGM Orig. Q 77.1 % 61.2 % 38.7 % 17.1 % 91.9 %
ReS2tAC- NEON CT5×5 - SGM Orig. Q 76.2 % 59.0 % 35.1 % 13.4 % 92.1 %

Schönberger et al. [42] NCC7×7 - SGM-Forest Orig. H 43.1 % 14.8 % 7.0 % 3.7 % 100 %
OpenCV-SGBM SAD3×3 - SGM Orig. Q 67.3 % 42.1 % 25.5 % 17.3 % 100 %
Hirschmueller [8] CT - SGM Orig. H 51.5 % 28.2 % 17.7 % 12.2 % 100 %

Table 3. Accuracy achieved by different algorithms and configurations on the Middlebury 2014 stereo
benchmark [40]. While the upper part lists the results of different configurations of our implementation,
the three algorithms at the bottom are listed as a reference and a baseline. The accuracy is stated as the
amount of erroneous pixels, whose error is greater than 0.5 (bad0.5), 1 (bad1), 2 (bad2) and 4 (bad4)
pixels with respect to the ground truth. The density indicates, how many pixels inside the computed
disparity maps have an estimate. The Middlebury 2014 stereo benchmark provides the image data in
full (F), half (H) and quarter (Q) image resolution. We have computed our results on the quarter image
resolution and evaluated them according to the standard evaluation pipeline on the full resolution.
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Figure 12. Three exemplary results from the Middlebury 2014 stereo benchmark, computed with
the best performing base configuration, i.e. CT5×5 - SGM on the quarter image resolution. Row 1:
Reference image. Row 2: Estimated disparity map. Row 3: Ground truth disparity map.

Figure 12. Three exemplary results from the Middlebury 2014 stereo benchmark, computed with the best performing base
configuration, i.e., CT5×5-SGM on the quarter image resolution. Row 1: Reference image. Row 2: Estimated disparity map.
Row 3: Ground truth disparity map.

Table 3 does not yield any satisfying results. This, however, is not surprising, since
we have only used quarter of the image resolution to compute the results and up-sampled
them by a factor of 4 for evaluation, introducing a lot of errors due to interpolation. As
stated by Scharstein et al. [40], the aim of this benchmark is on providing new challenges for
modern stereo algorithms in terms of image resolution, accuracy and scene complexity, and
not necessarily on the evaluation of optimizations with respect to computational efficiency
and run-time. Nonetheless, the accuracy in the ground truth and the evaluation protocol
of the Middlebury 2014 stereo benchmark allows for an evaluation of the improvement
gained by a subpixel disparity refinement as done in the following section.

3.1.2. The Effect of Subpixel Disparity Refinement

As described in Section 2.1.3, a subpixel disparity refinement can be computed for
each pixel in the disparity map, by fitting a parabola through the matching costs of the
winning disparity and its two neighbors. This achieves an increase in accuracy of up to 0.8%
in the case of the KITTI benchmark (Table 4), and up to 9% in the case of the Middlebury
benchmark (Table 5), and yet only requires a small computational overhead (cf. Table 6).
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Table 4. Accuracy achieved by selected configurations of our approach with an additional subpixel
disparity refinement on the training set of the KITTI 2015 stereo benchmark [39]. The corresponding
differences to the accuracies listed in Table 2 are given in parentheses.

Approach Configuration Resolution
Accuracy

(in pixels) D1-all (Est.) D1-all (All)

ReS2tAC—CUDA CT5×5—SGM—fine 1242× 375 3.5% (−0.8) 8.0% (−0.4)

ReS2tAC—CUDA CT9×7—SGM—fine 1242× 375 3.3% (−0.7) 7.4% (−0.3)

ReS2tAC—CUDA NCC5×5—SGM—fine 1242× 375 3.7% (−0.6) 7.7% (−0.4)

ReS2tAC—CUDA NCC9×9—SGM—fine 1242× 375 4.3% (−0.5) 7.9% (−0.4)

Table 5. Accuracy achieved by selected configurations of our approach with an additional subpixel disparity refinement on
the training set of the Middlebury 2014 stereo benchmark [40]. The corresponding differences to the accuracies listed in
Table 3 are given in parentheses.

Approach Configuration Resolution
Accuracy

bad 0.5 bad 1 bad 2 bad 4

ReS2tAC—CUDA CT5×5—SGM—fine Orig. Q 72.4% (−4.6) 52.1% (−7.4) 26.1% (−9.3) 10.4% (−3.1)

ReS2tAC—CUDA CT9×7—SGM—fine Orig. Q 73.0% (−4.3) 52.7% (−7.2) 26.6% (−9.1) 10.7% (−2.9)

ReS2tAC—CUDA NCC5×5—SGM—fine Orig. Q 73.8% (−3.3) 53.8% (−6.3) 27.8% (−8.5) 12.1% (−2.0)

ReS2tAC—CUDA NCC9×9—SGM—fine Orig. Q 73.8% (−3.3) 55.2% (−6.0) 30.6% (−8.1) 14.8% (−2.3)

3.1.3. Accurate Left–Right Consistency Check

To evaluate the effects of only approximating the disparity map corresponding to
the right image of the stereo pair, which is needed for the left–right consistency check
(cf. Section 2.1.3), we have implemented a more exact and more costly consistency check
for the GPU. In this, we switch and flip the reference and matching image and calculate
a second disparity map for the original matching image. This leads to a more accurate
disparity map DR for the right input image, which, in turn, is used by Equation (A1) of the
consistency check. With a more accurate DR it is assumed that the consistency check is more
effective in filtering outliers, but does the high computational overhead of fully calculating
two disparity maps justify the increase in accuracy? The results of our evaluation do not
indicate a significant improvement. Our studies reveal an increase in accuracy of only
0.4–1.0%, when calculating the disparity map of the right image from scratch compared
to only approximating it from the cost volume corresponding to the left disparity map.
However, the throughput is nearly halved when using a more accurate consistency check,
as illustrated by configurations with the prefix exact-cc (exact consistency check) in Table 6.

3.1.4. Throughput, Frame Rates and Power Consumption

A typical measure to quantify the processing speed of a stereo algorithm is the number
of frames per second (FPS) which can be calculated. However, since the FPS greatly
depends on the image size of the output and the disparity range, we instead reason on
the efficiency of our approaches based on their throughput, which is measured in million
disparity estimations per second (MDE/s):

MDE/s =
W · H · |Γ|
run-time

, (8)

with W and H being the width and the height of the resulting disparity map, and |Γ| being
the size of the disparity range. Given the throughput achieved by a certain configuration
or algorithm, it is possible to deduce the expected frame rates for a set of image size and
disparity range:

FPS =
MDE/s

W · H · |Γ| , (9)
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as done in Figure 13. Furthermore, the throughput allows for a better comparison between
different algorithms with respect to their processing speed, due to its independence of a
fixed image size and disparity range.

In Table 6, we have listed the throughput achieved by different configurations of
our approach, as well as the throughput of selected embedded algorithms from literature.
Although all measurements of our approach were done on the NVIDIA Jetson Xavier AGX
with maximum performance, the related work optimized for the execution on GPU were
deployed on the NVIDIA Jetson TX1 and TX2. In the case of the related work, which has
not explicitly stated the throughput of the respective algorithm, we have used the frame
rate and the corresponding image size to calculate the values according to Equation (9).
For the measurement of the run-time of our approaches, we have considered the whole
pipeline, including the upload of the stereo image pair and the download of the disparity
image to and from the device memory of the GPU.

First, the measurements reveal the higher computational efficiency of the census
transform as a matching cost function with respect to the normalized cross-correlation.
And secondly, they show the small computational overhead of the subpixel disparity
refinement (fine), as discussed in Section 3.1.2. However, the measurements also unveil
that our optimizations are less efficient than those that can be found in the literature.
As expected, the implementations which are optimized and deployed on FPGA architec-
tures are superior to those running on an embedded GPU. Furthermore, the superiority
in terms of throughput of algorithms, such as those from Cui and Dahnoun [41] and
Chang et al. [26] that do not rely on a complex regularization scheme such as the SGM is
also to be expected. Nonetheless, our approach has a lower throughput than a similar
implementation of Hernandez-Juarez et al. [25], while simultaneously being deployed on
a more powerful system.

Table 6. Throughput achieved by our approach and selected embedded algorithms from literature.
The throughput is measured in million disparity estimations per second (MDE/s). All the measure-
ments for our approach were done on the NVIDIA Jetson Xavier AGX board, with the power setting
set to maximum performance.

Approach Configuration HW Device Throughput
(in MDE/s)

Zhao et al. [18] CT5×5—SGM FPGA 9589.9
Zhao et al. [18] CT7×7—SGM FPGA 8743.7
Ruf et al. [19] CT5×5—SGM FPGA 400.8
Rahnama et al. [17] CT5×5— MGM FPGA 4246.9
Cui and Dahnoun [41] NCC9×9-optimized GPU (TX2) 6497.1
Chang et al. [26] Z2-ZNCC GPU (TX2) 1669.2
Hernandez-Juarez et al. [25] CT9×7—SGM GPU (TX1) 747.1

ReS2tAC-CUDA CT5×5—SGM GPU (AGX) 652.7
ReS2tAC-CUDA CT9×7—SGM GPU (AGX) 644.9
ReS2tAC-CUDA CT5×5—SGM—fine GPU (AGX) 640.9
ReS2tAC-CUDA CT9×7—SGM—fine GPU (AGX) 633.1
ReS2tAC-CUDA CT5×5—SGM—exact-cc GPU (AGX) 365.7
ReS2tAC-CUDA CT9×7—SGM—exact-cc GPU (AGX) 361.8
ReS2tAC-CUDA NCC5×5—SGM GPU (AGX) 442.4
ReS2tAC-CUDA NCC9×9—SGM GPU (AGX) 344.1
ReS2tAC-NEON CT5×5—SGM CPU 166.2
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with decreasing complexity, i.e. a reduced image size and disparity range, the frame rates increase667

rapidly. Thus, the curves reveal how different configurations, approaches and utilized hardware668

compare in terms of processing speed.669

A key characteristic of embedded systems is their power consumption and, depending on what670

platform the system is deployed, this can be a very crucial characteristic. The simple metric of FPS671

per watt (FPS/W) helps to quantify the efficiency of image processing algorithms with respect to the672

power consumption of the system on which they are deployed. The NVIDIA Jetson Xavier AGX, on673

which we have deployed our approach, allows to set four different power settings, namely:674

MAXN This is the setting enabling the maximum performance. With this, all eight cores of the ARM675

CPU are activated and can clock up to a maximum of 2.3 GHz. The maximum clock rate of the676

GPU is set to 1.4 GHz. This is the setting with which all previous experiments were conducted.677

30 W In this, again all eight cores of the CPU are enabled. However, they are restricted to a maximum678

clock rate of 1.2 GHz. Furthermore, the clock rate of the GPU is restricted to 905 MHz.679

15 W In this setting, four cores of the CPU are enabled which clock at a maximum rate of 1.2 GHz,680

while the GPU clocks up to 675 MHz.681

10 W In the smallest setting, only two cores of the CPU are enabled with a maximum of 1.2 GHz and682

the clock rate of the GPU is restricted to only 522 MHz.683

In Figure 14, we have plotted the FPS/W which are expected to be achieved by different684

configurations of our approach, as well as by some approaches form the literature, again, depending on685

different image sizes and disparity ranges. These calculations are based on the throughput and power686

consumption measured or stated. In terms of our approach, we have selected the two configurations687
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Figure 13. Expected frames per second (FPS) for sets of different image sizes and disparity ranges,
based on the throughput achieved by different configurations and approaches listed in Table 6 and
Table 7. Image resolution and disparity ranges corresponding to the KITTI 2015 and Middlebury 2014 Q
benchmark are printed in bold. ∗: Approaches from literature deployed on embedded GPU hardware.
†: Approaches from literature deployed on embedded FPGA hardware.

Figure 13. Expected frames per second (FPS) for sets of different image sizes and disparity ranges, based on the throughput
achieved by different configurations and approaches listed in Tables 6 and 7. Image resolution and disparity ranges
corresponding to the KITTI 2015 and Middlebury 2014 Q benchmark are printed in bold. ∗: Approaches from literature
deployed on embedded GPU hardware. †: Approaches from literature deployed on embedded FPGA hardware.

A common way to further increase the throughput of the SGM algorithm is to reduce
the number of aggregation paths. Most of the implementations aggregated the match-
ing costs for each pixel along eight concentric paths. However, studies [10,25] suggest
that a reduction of the aggregation paths from eight to four does not have a significant
negative impact on the accuracy of the resulting disparity map, while greatly increasing
the processing speed. This is also supported by our experiments, in which we have left
out the diagonal aggregation paths of the SGM optimization, since they are the longest
ones, and only regularized the cost volume with the two horizontal and the two verti-
cal aggregation paths. The results of our experiments are listed in Table 7, showing an
increase in the throughput by a factor of up 1.45, while reducing the accuracy and the
disparity by a maximum of 0.2% and 1.6% respectively. In this, we outperform the ap-
proach of Hernandez-Juarez et al. [25], which is comparable to ours, in terms of accuracy
and throughput.

With the throughput listed in Tables 6 and 7, we calculated the expected FPS, which
are to be achieved for sets of different image sizes and disparity ranges according to
Equation (9), and plotted these as curves in Figure 13. In this, we have not plotted all
our configurations, but selected one for each cost function and hardware, as well as the
corresponding versions with only four paths in the SGM optimization. Additionally,
we have selected one configuration that performs a subpixel disparity refinement for
comparison. We have also plotted the FPS curves for the related approaches from literature
deployed on FPGA (†) and GPU (∗) architectures, as well as one curve achieved by our
approach on a high-end desktop NVIDIA RTX 2070 Super GPU. We have printed the
image sizes and disparity ranges corresponding to the KITTI 2015 and Middlebury 2014 Q
benchmark in bold. The curves provide a good visual representation of the throughput
listed in Tables 6 and 7 and show that with decreasing complexity, i.e., a reduced image size
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and disparity range, the frame rates increase rapidly. Thus, the curves reveal how different
configurations, approaches and used hardware compare in terms of processing speed.

Table 7. Throughput and accuracy achieved with a reduced number of aggregation paths in the SGM optimization. Instead
of eight aggregation paths, only the two horizontal and the two vertical paths were used. The accuracy in terms of error rate
and density was measured on the KITTI 2015 stereo benchmark.

Approach Configuration HW Device Throughput Accuracy

(in MDE/s) D1-all (Est.) Density

ReS2tAC-CUDA CT5×5—4-Path-SGM GPU (AGX) 924.1 (×1.42) 4.3% (+0.0) 88.1% (−0.7)

ReS2tAC-CUDA CT9×7—4-Path-SGM GPU (AGX) 904.4 (×1.40) 4.2% (+0.2) 89.2% (−0.8)

ReS2tAC-CUDA NCC5×5—4-Path-SGM GPU (AGX) 615.4 (×1.39) 4.3% (+0.0) 88.6% (−1.4)

ReS2tAC-CUDA NCC9×9—4-Path-SGM GPU (AGX) 436.5 (×1.27) 4.6% (+0.2) 89.5% (−1.6)

ReS2tAC-NEON CT5×5—4-Path-SGM CPU 241.8 (×1.45) 4.8% (+0.2) 89.3% (−0.7)

A key characteristic of embedded systems is their power consumption and, depending
on what platform the system is deployed, this can be a very crucial characteristic. The
simple metric of FPS per watt (FPS/W) helps to quantify the efficiency of image process-
ing algorithms with respect to the power consumption of the system on which they are
deployed. The NVIDIA Jetson Xavier AGX, on which we have deployed our approach,
allows the setting of four different power settings, namely:

MAXN This is the setting enabling the maximum performance. With this, all eight cores
of the ARM CPU are activated and can clock up to a maximum of 2.3 GHz. The
maximum clock rate of the GPU is set to 1.4 GHz. This is the setting with which all
previous experiments were conducted.

30 W In this, again all eight cores of the CPU are enabled. However, they are restricted
to a maximum clock rate of 1.2 GHz. Furthermore, the clock rate of the GPU is
restricted to 905 MHz.

15 W In this setting, four cores of the CPU are enabled which clock at a maximum rate
of 1.2 GHz, while the GPU clocks up to 675 MHz.

10 W In the smallest setting, only two cores of the CPU are enabled with a maximum of
1.2 GHz and the clock rate of the GPU is restricted to only 522 MHz.

In Figure 14, we have plotted the FPS/W which are expected to be achieved by dif-
ferent configurations of our approach, as well as by some approaches form the literature,
again, depending on different image sizes and disparity ranges. These calculations are
based on the throughput and power consumption measured or stated. In terms of our
approach, we have selected the two configurations reaching the highest throughput on the
GPU and the CPU. We have varied the power setting and measured the throughput and
power consumption, the latter being provided by internal sensors of the AGX. Please note
that the actual power consumption on the AGX does not coincide with the statement of
the power setting, as the latter one only indicates an upper bound on the consumption.
From literature, we have selected approaches which provide a value on the power con-
sumption in addition to the throughput or frame rate. Unfortunately, in terms of related
work that has deployed stereo algorithms on embedded GPUs, this was only done by
Hernandez-Juarez et al. [25].
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Figure 14. Expected FPS per watt (FPS/W) for sets of different image sizes and disparity ranges, based
on the throughput and the power consumption achieved by different configurations and approaches.
In terms of our approach, the power settings of the AGX were varied in order to measure its efficiency.
Image resolution and disparity ranges corresponding to the KITTI 2015 and Middlebury 2014 Q
benchmark are printed in bold. ∗: Approaches from literature deployed on embedded GPU hardware.
†: Approaches from literature deployed on embedded FPGA hardware.

Figure 14. Expected FPS/W for sets of different image sizes and disparity ranges, based on the throughput and the power
consumption achieved by different configurations and approaches. In terms of our approach, the power settings of the
AGX were varied to measure its efficiency. Image resolution and disparity ranges corresponding to the KITTI 2015 and
Middlebury 2014 Q benchmark are printed in bold. ∗: Approaches from literature deployed on embedded GPU hardware.
†: Approaches from literature deployed on embedded FPGA hardware.

The curves in Figures 13 and 14 clearly reveal the superiority of FPGA-based ap-
proaches over those deployed on GPUs. Not only do they achieve much higher frame
rates, but also require significantly less power and, in turn, also achieve higher FPS/W.
However, the emerging embedded GPUs also achieve quite reasonable frame rates with
respect to their power consumption, and depending where the systems are deployed, e.g.,
quadrotor-based systems, the power required by the GPU is negligible, when compared
to that required by the rotors. However, more on this is provided in the discussion on
what the results mean for our use-case (cf. Section 4). Interestingly, the curves in Figure 14
show that both the CUDA and NEON implementation of our approach achieve the best
efficiency on the 30 W power setting. Even the CUDA implementation being run on the
15 W power setting is still more efficient than the same run on the setting with maximum
performance. We assume that this is the result of clocking down the CPU, since it is less ef-
ficient than the GPU. Nonetheless, the 30 W and 15 W power setting reduce the throughput
by approximately 29% and 42%, respectively, compared to that achieved on MAXN.

3.2. Qualitative and Quantitative Evaluation of Real-Time Stereo Processing on Board
Low-Cost UAVs

As part of our use-case specific experiments, in which we want to bring real-time
stereo processing with an embedded CUDA device on board a low-cost UAV, we have
equipped a DJI Matrix 210v2 RTK with a DJI Manifold 2-G processing unit, which is based
on the NVIDIA Jetson TX2 architecture equipped with a 4-core 64 bit ARMv8 CPU and
a 256-core Pascal GPU. As a stereo camera we have used the integrated stereo vision
sensor, which can be accessed by the Manifold through the DJI onboard SDK. Our setup is
illustrated in Figure 15.
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Stereo Vision Sensor

Figure 15. The system used for use-case specific experiments for real-time stereo processing with an
embedded CUDA device on board a low-cost UAV: A DJI Matrice 210 v2 RTK equipped with a DJI
Manifold 2-G processing unit. The integrated stereo vision sensor is used as stereo camera.
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with a Jetson TX2.

Figure 15. The system used for use-case specific experiments for real-time stereo processing with an
embedded CUDA device on board a low-cost UAV: A DJI Matrix 210 v2 RTK equipped with a DJI
Manifold 2-G processing unit. The integrated stereo vision sensor is used as stereo camera.

In the maximum power setting (MAXN), the ARM Cortex A57 CPU of the TX2 inside
the Manifold has four cores with a maximum clock rate of 2 GHz, while the built-in Tegra
GPU clocks up to a maximum of 1.3 GHz. The integrated vision sensor provides non-
rectified, grayscale stereo image pairs with an image resolution of up to 640× 480 pixels
at a frame rate of 20 FPS. We have used the standard calibration routine of OpenCV to
calibrate the stereo sensor and, in turn, precompute the rectification maps, needed to
transform the input images into a rectified stereo pair prior to the actual stereo processing.
The integrated stereo vision sensor also provides precomputed disparity maps at a frame
rate of 10 FPS and with an image resolution of 320× 240 pixels [43].

We have deployed and tested two configurations of our approach, one running on
the GPU and the other on the CPU, namely: ReS2tAC-CUDA with CT9×7—4-Path-SGM
and ReS2tAC-NEON with CT5×5. Both configurations rely on the Hamming distance of
the census transform as a cost function and use only four paths in the SGM optimization to
reach a higher throughput. The throughput and frame rates, as well as qualitative results
achieved by the two configurations are listed in Table 8 and Figure 16 respectively.

Table 8. Throughput and frame rate achieved by two configurations on the DJI Manifold, equipped with a Jetson TX2.

Approach Configuration HW Device Throughput
Frame Rate

(in MDE/s) at 640 × 480 × 64 pixels at 320 × 240 × 64 pixels

(in FPS) (in FPS)

ReS2tAC-CUDA CT9×7—4-Path-SGM GPU (TX2) 304.7 15.5 62.0
ReS2tAC-NEON CT5×5—4-Path-SGM CPU 102.2 5.2 20.8
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Figure 16. Qualitative results of our approach run on the DJI Manifold 2-G on top of the DJI Matrice
210v2 RTK, using the data of the stereo vision sensor as input. In this, the UAV was flying 1-2 m above
the ground in order to demonstrate the ability of our approach to appropriately estimate the scene
depth. Top row: Rectified reference images. Bottom row: Corresponding disparity maps, color-coded
with the jet color map, going from red (near), over yellow and green to blue (far).
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Figure 16. Qualitative results of our approach run on the DJI Manifold 2-G on top of the DJI Matrix 210v2 RTK, using the
data of the stereo vision sensor as input. In this, the UAV was flying 1–2 m above the ground to demonstrate the ability of
our approach to appropriately estimate the scene depth. Top row: Rectified reference images. Bottom row: Corresponding
disparity maps, color-coded with the jet color map, going from red (near), over yellow and green to blue (far).

4. Discussion

In the following, we will discuss the findings of our experiments with respect to three
different aspects, namely accuracy (Section 4.1), processing speed (Section 4.2) and power
consumption (Section 4.3) in the light of possible applications, before finishing this paper
with a short summary, a conclusion and an outlook.

4.1. Accuracy

The quantitative evaluation on the KITTI 2015 stereo benchmark (Table 2) reveals a
high and state-of-the-art accuracy of our approach, both in the actual estimated disparity
map (Est), in which inconsistent regions are removed, as well as the interpolated versions
(All). The latter are being used as part of the standard evaluation routine of the benchmark.
Understandably, the accuracy of the interpolated disparity maps is used as a primary
ranking in the benchmark, since it allows the comparison of disparity maps with different
densities; however, in the assessment of the performance of our approach, the accuracies of
the filtered disparity maps are of greater importance. In particular, when looking at the
qualitative results (Figure 11) and the stated densities of the estimated disparity maps, it
becomes clear that the few areas that are being removed by the post-filtering mostly arise in
occluded areas and are thus legitimately removed, since it is not possible for the algorithm
to reason about the depth in areas which are only seen by one camera.

Unfortunately, the results of the Middlebury 2014 stereo benchmark render the ac-
curacy of our approach far from the state-of-the-art. With an error rate of over 35% for
three out of four accuracy levels, the results are not really satisfying. Apart from the
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high-resolution ground truth and the high accuracy levels in the evaluation, we assume
that these poor results can also be attributed to the fact that the resolution, with which the
disparity maps are being evaluated, is 4× bigger than the input resolution, introducing a
lot of error in the process of upscaling and interpolation. Thus, we have also evaluated
the results on ground truth data with only a quarter of the original image resolution and
found that the error rate is on average reduced by way over 50%. For the configuration
with a 5× 5 census transform, being the best achieving configuration on this dataset, the
accuracies calculated are 35.8% (bad0.5), 14.2% (bad1), 7.4% (bad2) and 4.9% (bad4), which
is in the comparable range to that obtained on the KITTI benchmark.

As the name of our approach suggests, it is intended for real-time, rather than high-
accuracy stereo processing. Our main use-case is the deployment on low-cost UAVs,
equipped with embedded ARM or CUDA hardware, with the purpose of collision detection
and avoidance or real-time 3D mapping and scene reconstruction. In the light of this use-
case, we believe that the KITTI benchmark is more appropriate, since it comprises image
data that depict real-world scenes in a quality that can also be expected from cameras
mounted on UAVs. Moreover, for collision avoidance or real-time 3D mapping, it is
not necessary to have disparity maps with high subpixel accuracy as evaluated by the
Middlebury benchmark. It is more important to reliably detect the location of objects in the
perceived scene and extensively reconstruct their appearance. Not only do the quantitative
results prove the accuracy of the disparity maps, the qualitative presentation of some of
the disparity maps also shows that our approach is able to reveal objects, which are only
visible by a second glance, such as the person on the right of Figure 11 (row 2, column 2) or
Figure 16 (column 2).

With respect to the KITTI 2015 benchmark, most of the configurations of our approach
outperform the other approaches that perform real-time stereo estimation on embedded
hardware. Even compared to the baseline algorithms, our results are compatible, especially
when considering the frame rates we achieve. Furthermore, our experiments on the effects
of subpixel disparity refinement (cf. Tables 4 and 5) have shown that its use can increase
the accuracy by up to 35% without significantly decreasing the throughput (cf. Table 6).
We therefore will consider using the post-refinement as part of the standard pipeline.

4.2. Processing Speed

Compared to the related work from literature, the throughput and processing speed of
our approach are not very impressive. We expected to reach a significantly lower through-
put than approaches running on FPGAs [17,18], as well as a slightly lower throughput
compared to approaches that do not rely on a computationally expensive optimization
scheme but run on an embedded GPU [26,41]. However, the CT9×7—SGM configura-
tion of our approach has a lower throughput than that of a comparable configuration by
Hernandez-Juarez et al. [25], while at the same time running on a hardware generation
that is two times newer and that has twice the number of CUDA cores. This is not very
satisfactory and something we will need to further investigate in the scope of future work.
One difference between the work of Hernandez-Juarez et al. [25] and ours is that in our
time measurements we include the data transfer to and from the memory of the GPU.
Hernandez-Juarez et al. [25] argue that the processing can be overlapped with the compu-
tation and thus is not relevant for the computation of the throughput. However, in our
case, the data transfer only takes up 4–6% of the processing time, which is not enough to
reach the throughput of Hernandez-Juarez et al. [25], if omitted. Other optimization steps
are the use of SIMD instructions to vectorize the cost aggregation with the CUDA kernels,
or to streamline the aggregation of the last path and the disparity computation to reduce
memory access, which should lead to a 1.35× performance speed-up [25]. A third and
significant difference between our approach and that of Hernandez-Juarez et al. [25] with
respect to performance is that Hernandez-Juarez et al. [25] refrain from any post-processing
such as left–right consistency check or median filter. This allows the reaching of a higher
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throughput but, in turn, reduces the accuracy of the results, leading to an error rate which
is twice as high as ours in the actual estimate (cf. Table 2).

Furthermore, in the light of our use-case, addressing on-board stereo processing on
low-cost UAVs, we believe that to this end the throughput of our approach is sufficient, as
another limiting factor is the camera sensor and the data throughput between the sensor
and processing board that is provided by commercial off-the-shelf (COTS) systems. Since a
FPGA is typically located closer to the sensor with a direct and high-bandwidth connection,
which allows the streaming of the image data directly into the memory of the FPGA, a high
data throughput is of greater importance. However, embedded systems equipped with
a GPU, such as the NVIDIA Jetson series that are mounted on COTS UAVs, are usually
connected to the sensor via USB or similar, with the CPU capturing the data and storing it
in global memory, from where it is transferred to the device memory of the GPU before it
can be processed. This process does not allow for a high input frame rate (usually between
20 FPS and 30 FPS), as can be seen in the example of the DJI Matrix 210 (cf. Section 3.2),
and therefore does not require an extremely high throughput. Nonetheless, the more time
spent on the estimation of the disparity map, the less time is available for the successive
interpretation, e.g., obstacle detection and avoidance. This raises our interest to further
investigate the optimization of the processing speed in the future.

4.3. Power Consumption

The final aspect which we want to discuss is the power consumption of our approach
running on the NVIDIA Jetson Xavier AGX in the light of deployment on a rotor-based
UAV and whether it is feasible to use embedded CPUs for stereo processing. The average
power consumption of the complete NVIDIA Jetson Xavier AGX (i.e., including the GPU,
the CPU and the EMC) under the maximum power setting MAXN during the execution of
our CUDA- and NEON-based approaches is approximately 20.1 W and 17.9 W, respectively.
The DJI Matrix 210v2 RTK is powered by two batteries with a total energy of 349.2 Wh,
which allows a maximum flight time of 33 min when no payload is attached [44]. Thus,
during flight, the bare DJI Matrix 210v2 RTK consumes around 634.9 W per minute. This
power consumption obviously increases with each gram of payload that is being attached.
Given these measurements, we can calculate that the power consumption of the AGX
under the highest power setting only makes up 3.2% and 2.8% with respect to the total
power consumption of the DJI Matrix, thus reducing the flight time by a maximum of
1 min, when our CUDA- and NEON-based approaches are executed, respectively. This is
an upper bound on the relative power consumption of the AGX, as the power consumption
during flight of the DJI increases when payload is attached. The use of other power settings
that will increase the FPS/W ratio (cf. Figure 14), but also decrease the absolute frame rate,
is dependent on the use-case and whether the gain of a few seconds in flight time is more
valuable than a major reduction in frame rate.

The power consumption during the execution of our CUDA-based approach is higher
than during the execution of our NEON-based approach. This is expected as the GPU,
which consumes more power than the CPU, is clocked down when not in use. However,
the reduced power consumption does not stand in relation to the loss in processing speed of
the NEON-based approach compared to the ones based on CUDA. This is clearly revealed
by the curves in Figure 14, depicting that the NEON-based approaches running on the
CPU have the worst FPS/W ratio. Thus, we conclude that the use of embedded GPUs
is preferred over embedded CPUs. However, some drones are only equipped with an
embedded ARM CPU, e.g., VOXL https://www.modalai.com/pages/voxl (accessed on
7 June 2021), for which a vectorized stereo processing with NEON intrinsics is an option.

5. Conclusions

In conclusion, we present an approach for real-time stereo processing on embedded
ARM and CUDA devices, such as those attached to modern low-cost COTS UAVs. In
this, we have optimized a disparity estimation algorithm for embedded CUDA GPUs,

https://www.modalai.com/pages/voxl
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such as the NVIDIA Tegra, by general-purpose computation on a GPU, as well as for
embedded ARM CPUs by using the NEON intrinsics for vectorized SIMD processing.
We have demonstrated that our approach reaches state-of-the-art accuracies when evalu-
ated on public stereo benchmark datasets. Our CUDA-based implementation for stereo
processing on embedded GPUs reaches real-time performance, even though it does not
outperform related work in terms processing speed. The frame rates of our NEON-based
implementation, however, outperform all related work on stereo processing on embedded
CPUs. In a use-case specific scenario, we have further demonstrated the suitability of our
approach for real-time stereo estimation on a low-cost COTS UAVs for the task of obstacle
detection and 3D mapping by deploying it on a DJI Matrix 210v2 RTK equipped with a DJI
Manifold 2-G.

We have shown that in the case of rotor-based UAVs a modern embedded GPU
is a suitable alternative to an embedded FPGA, especially due to its shorter and thus
less expensive developments cycles. Even though the GPU has a much greater power
consumption than a FPGA and a significantly worse FPS/W ratio, its power consumption
is negligible compared to the energy needed by rotor-based UAVs during flight and will
reduce the flight time of the DJI Matrix 210v2 RTK by a maximum of 1 minute. However,
for embedded systems with stricter power constraints, a FPGA-based approach should be
considered. Our experiments have also shown that although the CPU requires less energy
than the GPU, it has the worst FPS/W ratio. Thus, our optimization based on NEON
intrinsics for vectorized SIMD processing should only be used if neither GPU nor FPGA
are available.

Finally, we have also identified a few aspects to consider in future work. For one,
we will need to further investigate which part of our optimization for CUDA-enabled
GPUs can be further optimized, since our approach does not reach the processing speed of
comparable approaches from the literature. And secondly, we should also consider other
approaches, e.g., deep-learning-based algorithms that can reach higher accuracies than
ours. Apart from that, our next steps are the extension of our approach by algorithms for
real-time 3D mapping, as well as object and obstacle detection, to alleviate the perception
of the environment around the UAV and in turn increase its autonomy.

Author Contributions: Conceptualization, B.R. and J.M.; methodology, B.R. and J.M.; investiga-
tion, B.R.; writing—original draft preparation, B.R. and J.M.; writing–review and editing, B.R. and
M.W.; supervision, S.H. and J.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the European Commission under the H2020 Framework
Programme for Research and Innovation as part of the TULIPP project under grant agreement
No 688403. We also acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute
of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo (ac-
cessed on 7 June 2021) and https://vision.middlebury.edu/stereo/eval3/ (accessed on 7 June 2021).

Acknowledgments: We would like to thank Raphael Senk and Shreyas Manjunath for their support
in setting up and using the UAV with the on-board processing unit.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Stereoscopic Vision

It is well known that with the positions of two image points, pL and pR, in the images
of the left and right camera of a calibrated stereo camera setup, belonging to the same
scene point P, it is possible to compute the 3D position of P relative to the stereo rig. Thus,

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://vision.middlebury.edu/stereo/eval3/
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finding such correspondences is the essential task in the process of stereo processing, and
in turn dense disparity or depth estimation. Generally speaking, a correspondence search
between an image point in the one camera and the image projection of the same scene point
in the other camera must be done along the epipolar curve, which is the viewing ray, going
through the image point of the first camera, projected into the image of the second camera.
This correlation is formulated by the epipolar constraints. When the intrinsic parameters of
the cameras are known, it is possible to account for image distortions, transforming the
curve into an epipolar line. Furthermore, if the relative position and orientation between
the two cameras of the stereo rig are known, the camera images can be rectified, i.e., they
can be transformed onto a common image plane, and in turn the epipolar lines can be
transformed to coincide with the image row of the image points. Thus, the difference
between the image positions of pL and pR is reduced to a horizontal shift, the so-called
disparity dp =

∣∣pL
x − pR

x
∣∣. This is illustrated in Figure A1.
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Figure A1. Illustration of a stereo camera setup. Two cameras, placed apart from each other with a
distance b (baseline), observe a scene point P from two different vantage points. The scene point will
appear at different locations, pL and pR, in the two camera images IL and IR. The difference between
the x coordinate of the two image points, pL

x and pR
x is called the disparity d. If the camera rig is

not calibrated, the two image planes are not rectified (light gray boxes), i.e. the image planes are not
co-planar. By transforming IL and IR through rectification, the epipolar lines will align with the image
row of the respective image points (gray lines).
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Figure A1. Illustration of a stereo camera setup. Two cameras, placed apart from each other with
a distance b (baseline), observe a scene point P from two different vantage points. The scene point
will appear at different locations, pL and pR, in the two camera images IL and IR. The difference
between the x coordinate of the two image points, pL

x and pR
x is called the disparity d. If the camera

rig is not calibrated, the two image planes are not rectified (light gray boxes), i.e., the image planes
are not co-planar. By transforming IL and IR through rectification, the epipolar lines will align with
the image row of the respective image points (gray lines).

Appendix B. Left–Right Consistency Check

The existence of occluded pixels that arise from areas, which are observed by one
camera and yet occluded in the field-of-view of the other camera, is inherent to disparity
and depth maps that are computed from a conventional stereo setup, consisting of only
two cameras. A typical approach to detect and filter such pixels is the left–right consistency
check. As illustrated in Figure A2, the disparities that are stored in the disparity map of the
left image DL are compared with the corresponding disparities in the right disparity map
DR and invalidated if they differ by a certain threshold, usually 1:

D(p) =

{
DL(p), if

∣∣DL(p)− DR(px − DL(p), py)
∣∣ ≤ 1

inv, otherwise.
(A1)
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dL = DL(x, y) DR(x, y)dR = DR(x− dL, y)

|dL − dR| ≤ 1

Figure A2. With the disparity maps DL and DR for the reference and matching image respectively, a
consistency check according to Equation (A1) is performed in order to find occlusions.
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which allows the deployment of routines and functions for data processing in the form of so-called909

CUDA kernels on the GPU. When deployed, such a kernel is instantiated inside a high number of910

threads, which are being distributed among the available processing units and are each processing a911

different subset of the data. For a better abstraction and handling, the threads are logically grouped912

into thread-blocks, which share a local memory space and can thus exchange data between each other.913
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Figure A2. With the disparity maps DL and DR for the reference and matching image respectively, a
consistency check according to Equation (A1) is performed to find occlusions.

Appendix C. General-Purpose Computing on CUDA-Enabled GPUs

Graphic processing units (GPUs) are designed for massively parallel processing. The
number of processing units that are integrated into modern GPU hardware exceeds the
number of cores available on a conventional CPU by far. Even embedded GPUs, such
as the one built into the NVIDIA Jetson Xavier AGX, have up to 100× more cores than
high-end desktop CPUs. However, the processing units on a GPU are less powerful and
flexible than those of a CPU. Although the CPU is designed to do arbitrary processing
tasks, the cores of the GPUs are intended for the parallel processing of small and dedicated
instructions on a large amount of data simultaneously.

Massively parallel general-purpose processing on NVIDIA GPUs is alleviated by the
CUDA-API, which allows the deployment of routines and functions for data processing
in the form of so-called CUDA kernels on the GPU. When deployed, such a kernel is
instantiated inside a high number of threads, which are being distributed among the
available processing units and are each processing a different subset of the data. For a
better abstraction and handling, the threads are logically grouped into thread-blocks, which
share a local memory space and can thus exchange data between each other. Furthermore,
the execution of all threads within one thread-block can be halted and synchronized. All
thread-blocks are grouped into a grid. The grid size and the number of threads inside a
grid is used to parameterize the instantiation of the kernel. The actual execution of the
threads on a processing unit is always done in groups of 32, which is referred to as a CUDA
warp. For an efficient general-purpose computation on a GPU (GPGPU), the developer is
compelled to consider some design guidelines:

• Reduction of global memory access due to higher latency. Instead, data which is
processed multiple times by threads in a thread-block should be cached inside the
shared memory space.

• Pooling of global memory access and reduction of non-contiguous data storage.
• Efficient and maximum use of hardware resources.

Appendix D. Map Reduce Method

The map reduce method allows efficient discovery of the minimum of a given dataset.
In this, each active thread performs a comparison between two elements and stores the
smaller element in a designated memory space. The number of active threads, as well
as the elements that are to be processed, is halved by each iteration as illustrated by
Figure A3. Thus, the search for the minimum cost requires log2(dmax) iterations. Ideally,
the dimensions of the CUDA blocks are chosen in such a way that there are 32 active
threads at the beginning. This allows that the map reduce algorithm can be processed in
only one warp.
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Figure A3. Illustration of the map reduce method to find the WTA disparity with the minimum
aggregated cost. In each iteration, the number of aggregated costs that are being processed and the
corresponding disparities are halved.
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Figure A3. Illustration of the map reduce method to find the WTA disparity with the minimum aggregated cost. In each
iteration, the number of aggregated costs that are being processed and the corresponding disparities are halved.

Appendix E. Vectorized SIMD Processing on ARM CPUs

Although conventional Single-Instruction-Single-Data (SISD) processing on the CPU
requires one instruction for each data transfer between the memory and the registers
of the CPU, as well as for each processing of the data stored inside these registers, the
additional use of vector-processors allows the performance of one instruction on a set of
data simultaneously, the so-called Single-Instruction-Multiple-Data (SIMD) processing.
Each vector-processor is divided into multiple vector-lanes, which in turn hold one datum
each. The memory unit as well as the arithmetic and logical unit of the vector-processor
allow simultaneous transfer of multiple data into and from the lanes of the vector-registers,
as well as to simultaneously combine the lanes of two registers and store the results into
the lanes of a third register. The vector-processors of the ARMv8 architecture contain
32 vector-registers with a size of 128 bits each [45]. The number of vector-lanes inside each
register differs, depending on the data type which is to be stored inside the register. Thus,
each register can have 16 lanes when data with a size of 8 bits each is to be stored, or only
two lanes, if each lane holds a datum with the size of 64 bits. In particular, image processing
is well suited for the SIMD parallelization on vector-processors, since all pixels in an image
are processed in the same manner, only with different data.

For an efficient use of vectorized SIMD processing, the developer is compelled to
consider some design guidelines [32]:

• Reduction of the dependencies between conventional CPU and vectorized SIMD
processing, to minimize the latency induced by copying data between the SISD and
SIMD pipeline.

• Exploitation of cache coherence, to speed up the data transfer between the memory
and the vector-registers.

• Dependencies in the data of vector-instructions trigger pipeline-stalls, in which
the SIMD pipeline is stopped until the dependencies are resolved slowing down
the processing.
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• Minimal use of conditional branching, since if the Branch Prediction Unit (BPU) of
the CPU predicts the wrong branch, the pipeline must be recursively cleared until the
point of branching and restarted.

Appendix F. Sorting Networks

In general, sorting algorithms such as BubbleSort, MergeSort or QuickSort can sort an
arbitrary number of input values and, in turn, require indefinite number of comparative
and swapping operations, making a naive implementation inappropriate for vectorized
processing. In the case of the fixed-size median filter, however, the number of considered
input values are fixed and known in advance. This allows use of sorting networks [46],
which sort an input vector of known size with a fixed number of comparators and swapping
operations. A sorting network is comprised of two basic building blocks, namely:

• wires, which hold and transport one value of the input vector each, and
• comparators, which are responsible for comparing the values of the connected wires

and swap these if necessary.

The comparators always connect two wires with each other and assign the smaller
value to the upper wire. Figure A4 illustrates the BubbleSort algorithm implemented using
a sorting network. In this, the horizontal lines represent the wires, while the comparators
are illustrated by the vertical connections. The values of the input vector move along the
wires from left to right and are rearranged by the comparators, resulting in a sorted output
vector on the right with the smallest value at the top.
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Figure A4. Exemplary sorting network, implementing the BubbleSort algorithm for nine
input values.
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