
Citation: Czumaj, A.; Śledziński, T.;
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* Correspondence: aczumaj@gumed.edu.pl; Tel.: +48-58-523-51-90

Abstract: Recently, we have demonstrated a decreased level of iso-branched-chain fatty acids (iso-
BCFAs) in patients with excessive weight. However, it is still unclear whether BCFAs may influence
lipid metabolism and inflammation in lipogenic tissues. To verify this, human visceral adipocytes
were cultured with three different concentrations of selected iso-BCFA (14-methylpentadecanoic
acid) and anteiso-BCFA (12-methyltetradecanoic acid), and then the expression of genes associated
with lipid metabolism (FASN—fatty acid synthase; SREBP1—sterol regulatory element-binding
protein 1; SCD1—stearoyl-CoA desaturase; ELOVL4—fatty acid elongase 4; ELOVL6—fatty acid
elongase 6; FADS2—fatty acid desaturase 2; FADS1–fatty acid desaturase 1) and inflammation
(COX-2—cyclooxygenase 2; ALOX-15—lipoxygenase 15; IL-6—interleukin 6) were determined. This
study demonstrates for the first time that incubation with iso-BCFA decreases the expression of
adipocyte genes that are associated with lipid metabolism (except FASN) and inflammation. These
findings suggest that changes in the iso-BCFA profile in obese patients may contribute to adipose
inflammation and dyslipidemia. Further studies should evaluate whether iso-BCFA supplementation
in obese patients would be beneficial.
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1. Introduction

Obesity is a complex chronic disease that adversely affects nearly all physiological
functions of the body. It contributes to reduced life expectancy, impaired quality of life, and
increases the risk of developing multiple disease conditions, such as type 2 diabetes (T2D);
non-alcoholic fatty liver disease (NAFLD); hypertension; coronary heart disease; stroke;
and several types of cancer [1–4]. The well-known hallmark of obesity is dyslipidemia [5,6].
One group of fatty acids that is gaining research interest in this matter is branched-chain
fatty acids (BCFAs). BCFAs are a class of mostly saturated fatty acids with one or more
methyl branches in their carbon chains. Based on branch point position, the following types
are distinguished: iso-BCFA (with a methyl branch on the penultimate carbon, i.e., one from
the end) and anteiso-BCFA (with the methyl branch located on the antepenultimate carbon,
i.e., two from the end), (Table 1) [7,8]. Until now, in humans, BCFAs have been found in
vermix caseosa, breast milk, adipose tissue, and serum [9–12]. Moreover, there is growing
evidence that BCFAs are associated with obesity and inflammation. In our previous studies,
we showed that in the serum of obese patients the levels of BCFAs, especially iso-BCFA,
were lower in comparison to non-obese patients [12,13]. Other authors also reported similar
results but in adipose tissue [11]. However, the consequences of these changes are still not
explored. Moreover, the anti-inflammatory properties of BCFA were mostly studied in
the context of dietary BCFAs and gastrointestinal health [14–16]. In the present study we
focus on adipocyte inflammation since several researchers have confirmed that low-grade
inflammation of adipose tissue is associated with obesity-related metabolic diseases [17–20].
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Table 1. Structural differences among straight-chain fatty acid, iso- and anteiso-BCFA. BCFA—
branched-chain fatty acid.

Type of Fatty Acid 15 Carbon-Atom Fatty Acid

Straight-chain fatty acid
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We also found statistically significant inverse correlations between the serum con-
centration of iso-BCFA and triglycerides (TG), as well as C-reactive protein (marker of 
inflammation) in obese patients [12]. However, in our previous research, we only specu-
lated about a possible molecular mechanism of this relationships. In this paper, we inves-
tigated whether changes in BCFA level are just another disorder associated with 
dyslipidemia and inflammation observed in obese patients or, if these BCFA alterations 
may play a role in the development of dyslipidemia and inflammation by affecting the 
adipocytes, one of the main types of cells involved in lipid metabolism and inflammation 
in humans.  

The aim of this study was to analyze the effect of selected BCFAs on the expression 
of genes related to lipid synthesis and inflammation in adipocytes. 

2. Materials and Methods 
2.1. Cell Culture and Treatment 

We used primary human white preadipocytes that were isolated from adult visceral 
adipose tissue. The cells, all media and supplements were purchased from PromoCell 
(PromoCell GmbH, Heidelberg, Germany). The cells were cultured and differentiated ac-
cording to the manufacturer’s instructions. In brief, the preadipocytes were plated with a 
plating density of 5000 cells per cm2 on 6-well plates and cultured in preadipocyte basal 
medium supplemented with fetal calf serum (final concentration: 0.05 mL/mL); endothe-
lial cell growth supplement (0.004 mL/mL); recombinant human epidermal growth factor 
(10 ng/mL); hydrocortisone (1 μg/mL); and heparin (90 μg/mL). After the cells reached 
total confluency stage, preadipocyte growth medium was replaced by preadipocyte dif-
ferentiation medium for 72 hours. Preadipocyte differentiation medium was prepared 
from basal medium; d-Biotin (8 μg/mL); recombinant human insulin (0.5 μg/mL); dexa-
methasone (400 ng/mL); IBMX (44 μg/mL); L-thyroxine (9 ng/mL); and ciglitazone (3 
μg/mL). After 72h, preadipocyte differentiation medium was replaced by adipocyte nu-
trition medium (adipocytes basal medium supplemented with fetal calf serum (0.03 
mL/mL); d-Biotin 8 (μg/mL); recombinant human insulin (0.5 μg/mL); and dexame-
thasone (400 ng/mL). The medium was changed every 2 days. After 2 weeks the differen-
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We also found statistically significant inverse correlations between the serum con-
centration of iso-BCFA and triglycerides (TG), as well as C-reactive protein (marker of
inflammation) in obese patients [12]. However, in our previous research, we only speculated
about a possible molecular mechanism of this relationships. In this paper, we investigated
whether changes in BCFA level are just another disorder associated with dyslipidemia and
inflammation observed in obese patients or, if these BCFA alterations may play a role in
the development of dyslipidemia and inflammation by affecting the adipocytes, one of the
main types of cells involved in lipid metabolism and inflammation in humans.

The aim of this study was to analyze the effect of selected BCFAs on the expression of
genes related to lipid synthesis and inflammation in adipocytes.

2. Materials and Methods
2.1. Cell Culture and Treatment

We used primary human white preadipocytes that were isolated from adult visceral
adipose tissue. The cells, all media and supplements were purchased from PromoCell
(PromoCell GmbH, Heidelberg, Germany). The cells were cultured and differentiated
according to the manufacturer’s instructions. In brief, the preadipocytes were plated with
a plating density of 5000 cells per cm2 on 6-well plates and cultured in preadipocyte basal
medium supplemented with fetal calf serum (final concentration: 0.05 mL/mL); endothe-
lial cell growth supplement (0.004 mL/mL); recombinant human epidermal growth factor
(10 ng/mL); hydrocortisone (1 µg/mL); and heparin (90 µg/mL). After the cells reached
total confluency stage, preadipocyte growth medium was replaced by preadipocyte differen-
tiation medium for 72 hours. Preadipocyte differentiation medium was prepared from basal
medium; d-Biotin (8 µg/mL); recombinant human insulin (0.5 µg/mL); dexamethasone
(400 ng/mL); IBMX (44 µg/mL); L-thyroxine (9 ng/mL); and ciglitazone (3 µg/mL). After
72 h, preadipocyte differentiation medium was replaced by adipocyte nutrition medium
(adipocytes basal medium supplemented with fetal calf serum (0.03 mL/mL); d-Biotin 8
(µg/mL); recombinant human insulin (0.5 µg/mL); and dexamethasone (400 ng/mL). The
medium was changed every 2 days. After 2 weeks the differentiation process was complete
and only mature adipocytes were present on the plates. Adipocytes differentiation was
confirmed by oil red O staining. All cells were cultured in a humidified atmosphere of 95%
air and 5% CO2 at 37 ◦C.

The mature visceral adipocytes were incubated with 14-methylpentadecanoic acid
(iso-palmitic acid, iso 16:0, 14-MPA) or 12-methyltetradecanoic (anteiso-pentadecanoic acid,
anteiso 15:0, 12-MTA). These specific BCFAs were selected based on our previous research.
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The 14-MPA was selected because it was a branched-chain fatty acid whose serum content
significantly statistically differed between patients with excess weight and healthy subjects
with normal weight. The 12-MTA was selected based on similar serum levels in obese
patients and a similar length of the carbon chain to the 14-MPA. Due to the similar serum
contents of both BCFAs, we were able to use the same experimental concentrations. The
abovementioned BCFAs were used in three different concentrations: 2 µM, 5 µM, and
10 µM for 48 h. The concentrations were selected to mimic normal physiological conditions
(5 µM) and states of decreased and increased BCFA concentrations, 2 µM and 10 µM,
respectively. BCFAs were purchased from Sigma-Aldrich (St. Louis, MO, USA). Adipocytes
in basal adipocyte nutrition medium were used as a control. The selected concentrations
of BCFAs did not influence the cells’ viability when assessed by MTT assay. Due to the
limited possible number of passages of primary human white preadipocytes, the number
of experiments that can be performed with these cells is limited. We used whole material
that was obtained from purchased cells to perform the experiments presented in this paper.

2.2. Real-Time PCR Analysis of mRNA Levels

Cells were lysed directly on the culture plate with the QIAzol Lysis Reagent (Qiagen)
after medium removing and PBS washing. The total RNA was isolated from the cells with
an RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany). RNA quantity and purity
were determined by optical density and A260/280 and A260/230 ratio using a NanoDrop
One Microvolume UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The integrity of RNA was assessed by RNA StdSens Assay on an Experion Auto-
mated Electrophoresis System (Bio-Rad Laboratories, Hercules, CA, USA). An amount of
1 µg of total RNA was reverse transcribed using a RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, Waltham, MA, USA)). Real-time PCR was performed on a
CFX Connect Real-Time PCR Detection System (Bio-Rad) using a SensiFAST SYBR No-
ROX Kit (Meridian Bioscience, Cincinnati, OH, USA). All primers were synthesized by
Genomed S.A. (Warsaw, Poland). The specificity of the mRNA amplification was confirmed
by melting curve analysis. Real-time PCR data were analyzed using the 2−44dCt relative
quantification method.

2.3. Statistical Analysis

All data are presented as mean ± SD. All experimental conditions were analyzed in
triplicates in three independent experiments. The statistical significance of the differences
between the experimental and control conditions was verified with the Mann–Whitney
U test. The results were considered significant for p-values < 0.05. All analyses were
conducted using Statistica 13 (StatSoft, Cracow, Poland).

3. Results and Discussion

Incubation with 12-MTA increased the expression of adipocytes genes encoding en-
zymes involved in fatty acid synthesis (FASN); elongation of polyunsaturated fatty acids
(PUFA)–ELOVL4; and elongation of saturated (SFA) and monounsaturated fatty acids
(MUFA)–ELOVL6. In contrast, the relative expression level of gene encoding stearoyl-CoA
desaturase (SCD1) was decreased. The 12-MTA did not change the expression level of genes
encoding fatty acid desaturases involved in PUFA metabolism (FADS1, FADS2), (Figure 1).
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SFAs to MUFAs. MUFAs such as, for example, palmitoleate (16:1) and oleate (18:1) can 
then be used for TG synthesis. Thus, changes in SCD1 activity/expression are related to 
TG level [23]. Furthermore, studies have shown that oleic acid, a product of SCD1, may 
upregulate the expression of adipose TG lipase (ATGL) and hormone-sensitive lipase 
(HSL) in adipose tissue [24–26]. Therefore, the increased expression of SCD1 may lead to 
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Figure 1. Relative expression level of selected genes involved in fatty acid synthesis and metabolism
in visceral adipocytes incubated for 48 h in different concentrations of 12-methyltetradecanoic
(12-MTA). Data are presented as mean ± SD. * p < 0.05 compared to control. FASN—fatty acid
synthase; SREBP1—sterol regulatory element-binding protein 1; SCD1—stearoyl-CoA desaturase;
ELOVL4—fatty acid elongase 4; ELOVL6—fatty acid elongase 6; FADS2—fatty acid desaturase 2;
FADS1—fatty acid desaturase 1.

Incubation with 14-MPA increased only the expression of gene-encoding FASN. In
contrast to 12-MTA, 14-MPA had the opposite effect on the expression level of genes
encoding ELOV4 and ELOV6. The decreased expression level was observed for genes
encoding sterol regulatory element-binding protein 1 (SREBP1c) and FADS1 (Figure 2).
Similar to 12-MTA, 14-MPA did not change the expression of FADS2.
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in visceral adipocytes incubated for 48h in different concentrations of 14-methylpentadecanoic acid
(14-MPA). Data are presented as mean ± SD. * p < 0.05 compared to control. FASN—fatty acid
synthase; SREBP1—sterol regulatory element-binding protein 1; SCD1—stearoyl-CoA desaturase;
ELOVL4—fatty acid elongase 4; ELOVL6—fatty acid elongase 6; FADS2—fatty acid desaturase 2;
FADS1—fatty acid desaturase 1.

In vivo and in vitro studies have shown that in adipose tissue SCD1 is involved in
the promotion of lipid mobilization by enhancing lipolysis and lipogenesis [21,22]. SCD1
is a key enzyme involved in de novo lipogenesis and is responsible for the conversion of
SFAs to MUFAs. MUFAs such as, for example, palmitoleate (16:1) and oleate (18:1) can
then be used for TG synthesis. Thus, changes in SCD1 activity/expression are related
to TG level [23]. Furthermore, studies have shown that oleic acid, a product of SCD1,
may upregulate the expression of adipose TG lipase (ATGL) and hormone-sensitive lipase
(HSL) in adipose tissue [24–26]. Therefore, the increased expression of SCD1 may lead to
enhancing the release of free fatty acids (FFAs) from adipose tissue. These FFAs can be
re-esterified in adipose tissue to form TG. Moreover, in obese subjects, a higher mRNA level
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of SCD1 was observed in comparison to non-obese subjects [27]. Therefore, an increased
production and release of FFAs from adipose tissue can contribute to dyslipidemia that is
observed in obese subjects. We show in this study that both iso- and anteiso-BCFAs are
able to decrease the expression level of SCD1; however, iso-BCFAs are decreased in obese
subjects [12]. SREBP1c is a well-known transcription factor that activates genes involved in
FA and TG synthesis, including SCD1 [28,29]. Decrease in SREBP1c mRNA level suggest a
possible molecular mechanism by which iso-BFCAs can influence SCD1 gene expression
and lipid metabolism.

We observed that under the influence of BCFA, the mRNA levels of SCD1 and FASN
changed in the opposite way. Although FASN can be also regulated by SREBP1 [30], our
results suggest that in adipocytes, FASN expression after BCFA treatment may be regulated
in an SPEBP1-independent manner [31]. Opposite changes in the expression level of these
lipogenesis genes (SCD1 and FASN) were also observed by Eissing et al. [27] who observed
that in the visceral white adipose tissue of obese subjects, mRNA levels of FASN were lower
and SCD1 mRNA were higher in comparison to non-obese subjects [27].

Studies have shown that ELOVL6 has a crucial role in the development of obesity-
induced pathologies. Mice with ELOVL6 deficiency were protected from hyperinsulinemia,
hyperglycemia, and hyperleptinemia [32–34]. In this study, we demonstrated that iso-
BCFA has the ability to decrease the expression level of ELOVL6. Since the concentration
of this type of BCFAs is lower in the serum of obese subjects, it can be speculated that
supplementation of iso-BCFAs may lead to the improvement of insulin sensitivity in
obese subjects.

BCFAs can also alter the expression of the genes that are involved in inflammation
(Figure 3a,b). The greatest effect was observed for interleukin 6 (IL-6). Interestingly, iso-
BCFA and anteiso-BCFA had the opposite effect on the expression of this gene. The 14-MPA,
a representative of iso-BCFA, decreased the expression of IL-6 in the dose-dependent matter
(Figure 3b). However, this type of BCFA is decreased in subjects with obesity. IL-6 is a
major inflammatory mediator involved in obesity-related chronic inflammation, which
may result in an increased risk of cardiovascular complication, insulin resistance, and type
2 diabetes [35,36]. Until now, several physiological or pathological factors were connected
with the IL-6 level, including hormones, diet, exercise, and stress [37–40]. This study
demonstrates for the first time that BCFA may also influence the expression level of IL-6 in
adipocytes. It has been shown that IL-6 can promote the synthesis of C-reactive protein
(CRP) [41,42]. Therefore, the level of iso-BCFAs may indirectly influence the level of CRP.
This may explain why in our previous work we document the inverse correlation between
serum CRP and iso-BCFA levels [12].
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Incubation of visceral adipocytes with both types of BCFA (iso-, and anteiso-BCFA)
resulted in the decreased expression level of ALOX-15 (Figure 3a,b). The expression
of various lipoxygenases (LOX) isoforms, including ALOX-15, were reported in human
visceral adipose tissue [43,44]. LOX also plays an important role in obesity and obesity-
induced consequences, such as inflammation and insulin resistance [45–49]. Enzymes that
are encoded by ALOX-15 generate various bioactive lipid mediators, such as eicosanoids,
hepoxilins, lipoxins, and other molecules from various PUFA substrates [48,50,51]. For
example, 15-lipoxygenase converts arachidonic acid (AA) into 15-hydroxyeicosatetraenoic
acid (15(S)-HETE), a known pro-inflammatory molecule [52–54]. Studies have shown
that the level and activity of LOX-15 are increased in mice on a high-fat diet and obese
patients [35]. This study has shown for the first time that a reduced level of BCFA in obese
subjects can be one of the possible molecular mechanisms of this phenomenon.

This study has shown that 12-MTA, an anteiso-BCFA, did not affect the expression level
of cyclooxygenase 2 gene (COX-2), while 14-MPA caused a statistically significant reduction
in expression, only at the highest experimental concentration (Figure 3a,b). COX-2 generates
pro-inflammatory mediators—prostaglandins (mainly PGE2) from AA. Studies have shown
that the expression level of COX-2 is elevated in the subcutaneous adipose tissue of obese
humans, and that COX-2 is involved in the development of obesity-associated adipose
tissue inflammation and insulin resistance [55–57]. This study demonstrates for the first
time that BCFA can modulate COX-2 expression.

Based on the results presented in this study, it can be concluded that iso-BCFA can
be another regulatory factor involved in regulating inflammation, mainly by decreasing
the expression level of pro-inflammatory genes such as COX-2, IL-6 and ALOX-15. Lower
iso-BCFA levels observed in obese patients can aggravate inflammation in adipose tissue
and increase the risk of obesity-related metabolic diseases. This supposition is supported
by the fact that an increase in iso-BCFA levels in obese subjects that lost body weight
after bariatric surgery was associated with decreased inflammation (assessed based on
serum CRP levels) [13]. It can be speculated that iso-BCFA may find potential applications
as protective agents against obesity-induced consequences. Since the main source of
BCFAs for humans is the dietary intake of common dairy products, modifying the diet
of obese patients for BCFA content could be beneficial in terms of hyperlipidemia and
inflammation reduction. However, to date, human trials assessing the health effects of the
supplementation of iso-BCFA are still lacking and animal data are very limited. Moreover,
there are currently no recommendations for the daily intake of BCFA. Very little is known
about the daily intake of BCFAs in humans. Based on the daily intake of dairy and beef
products in the United States, the daily intake of BCFA has been estimated to range from 220
mg/day to 500 mg/day [58,59]. To the authors’ knowledge there are no such studies from
other countries. Moreover, diet is not the only source of BCFA in humans. Some studies
have shown that BCFAs can be produced by gut microbiota [60] or can by synthesized de
novo in mammals [11,61].Therefore, further investigations are required.

In the present study, the effects of BCFA were evaluated in visceral adipocytes because
this is the main adipose tissue that is associated with obesity-related diseases [62,63]. Taking
into consideration that lipid metabolism can be very depot-dependent, to better understand
the comprehensive effect of BCFA on lipid metabolism, adipocytes from other adipose
tissue should be analyzed in further research.

The limitation of this study is the fact that the expression of genes was studied only
on the mRNA levels and not on the protein levels. The commercially available primary
pre-adipocytes that were purchased for our experiments can be cultured for a limited
number of passages, and the number of cells that were obtained after the differentiation of
adipocytes allowed only for mRNA experiments. However, there is strong evidence that
the expression of studied genes is regulated on the level of transcription [21,64,65].
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4. Conclusions

In conclusion, this study demonstrates for the first time that iso-BCFAs can decrease
the expression level of genes that are involved in lipid synthesis (except for FASN) and genes
that encode pro-inflammatory proteins in a dose-dependent manner. Based on the results
presented in this study, one can suppose that the decreased level of iso-BCFA that was
previously observed in obese subjects may contribute to dyslipidemia and inflammation.
Further studies should evaluate whether iso-BCFA supplementation in obese patients
would be beneficial.
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