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Abstract: Comparative genomics, evolutionary biology, and cancer researches require tools to eluci-
date the evolutionary trajectories and reconstruct the ancestral genomes. Various methods have been 
developed to infer the genome content and gene ordering of ancestral genomes by using such genomic 
structural variants. There are mainly two kinds of computational approaches in the ancestral genome 
reconstruction study. Distance/event-based approaches employ genome evolutionary models and re-
construct the ancestral genomes that minimize the total distance or events over the edges of the given 
phylogeny. The homology/adjacency-based approaches search for the conserved gene adjacencies and 
genome structures, and assemble these regions into ancestral genomes along the internal node of the 
given phylogeny. We review the principles and algorithms of these approaches that can reconstruct 
the ancestral genomes on the whole genome level. We talk about their advantages and limitations of 
these approaches in dealing with various genome datasets, evolutionary events, and reconstruction 
problems. We also talk about the improvements and developments of these approaches in the subse-
quent researches. We select four most famous and powerful approaches from both distance/event-
based and homology/adjacency-based categories to analyze and compare their performances in deal-
ing with different kinds of datasets and evolutionary events. Based on our experiment, GASTS has 
the best performance in solving the problems with equal genome contents that only have genome rear-
rangement events. PMAG++ achieves the best performance in solving the problems with unequal ge-
nome contents that have all possible complicated evolutionary events. 
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1. INTRODUCTION 

 Ancestral reconstruction was used to infer the ancestral 
states and biological characteristics based on the analyses of 
encoding genes or genome segments in molecular level [1-
4]. Afterwards, this study was extended to explore the ge-
nomic structures of ancestral genes and genomes [5, 6]. Re-
cently, the availability of fully sequenced and well-annotated 
whole genome data allowed researchers to reconstruct ances-
tral genomes using gene orders on the whole genome level. 
Ancestral reconstruction from gene orders and karyotypes 
was first studied by Dobzhansky and Sturtevant in the Dro-
sophila chromosomes in 1938 [7]. However, the computa-
tional methods were first developed in 1990s [8, 9], later 
they were widely explored in reconstruction of ancestral ge-
nomes and phylogenies in the next two decades. 
 Reconstructing ancestral genomes on the whole-genome 
level offers opportunities to explore the genome features and 
ancestral characters of the organisms that extinct millions of 
years ago. It can also be used to study the evolutionary pro-
cedures and trajectories of the modern species. Nevertheless, 
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it is hard to determine the timings and the intermediate steps 
of the evolutionary events just based on the information re-
searchers currently have. Even for the simplest case, the me-
dian genome problem: given three genomes, constructing the 
intermediate ancestral genome that minimizes the sum of 
total pairwise distances to the other three genomes has been 
proven to be NP-complete [10, 11]. To solve the ancestral 
reconstruction problems, researchers have developed a few 
evolutionary models to simulate the gene order evolutions 
and solve the ancestral reconstruction problems, such as 
breakpoints distance [12], rearrangement distance [13], uni-
versal double-cut-and-join (DCJ) [14], single-cut-or-join 
(SCJ) [15] and the existence or likelihood of adjacencies 
[16-18].  
 There are mainly two kinds of computational approaches 
in the ancestral genome reconstruction study. Dis-
tance/event-based approaches usually employ genome evolu-
tionary models and search for the exact ancestral genomes 
that minimizes the total distance or events over all edges of 
the given phylogeny. BPAnalysis [9], GRAPPA [19] and 
MGR [13] are the pioneering studies of distance/event-based 
approaches. They reconstruct the ancestral genomes by find-
ing the local median genomes. These methods have already 
encountered challenges in handling current complicated ge-
nome data due to their simplified model and NP-hard com-
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plexity. Recent distance/event-based approaches include 
MGRA2 [11, 20], GASTS [21] and PATHGROUPS [22], 
which use more advanced and efficient graph-based algo-
rithms to find the median genomes. Homology/adjacency-
based approaches view the genomes as a set of gene adja-
cencies or genome segments, and assemble these conserved 
adjacencies and genome regions into ancestral genomes 
along the internal node of the given phylogeny. Homol-
ogy/adjacency-based approaches are explored more fre-
quently in recent years, such as PMAG [17], InferCARS 
[23], proCARS [24], ANGES [25] and Gapped Adjacency 
[26]. 
 Distance/event-based approaches are computationally 
costly and time-consuming since they usually need to solve 
the problems of NP-hard complexity. Homology/adjacency-
based approaches are fast, and have lower error rates since 
the adjacencies in the ancestral genome are derived from the 
shared common information of children genomes. Dis-
tance/event-based approaches usually have higher probabili-
ties of correct adjacencies but also have higher error rates, 
because they need to reconstruct the ancestral genomes that 
minimize distances and fill the missing adjacencies [47].  
 Each ancestral reconstruction always starts with a 
phylogeny. Phylogeny is an evolutionary tree that indicates 
the evolutionary relationships and classifications of the 
taxon, which is based on the analysis of their morphological 
and genetic characters. Current ancestral reconstruction ap-
proaches either assume there already exists a phylogeny to 
represent the evolutionary relationships of given species, and 
employ it as a guide tree to reconstruct the ancestral genome, 
which is known as the small phylogeny problem (SPP). Or 
they may first build the most appropriate phylogeny from the 
input data and then use it to reconstruct the ancestral ge-
nome, which is known as the big phylogeny problem (BPP). 
Only a few of the approaches can handle the big phylogeny 
problem and reconstruct phylogeny and ancestral genome 
using the same input data, such as GRAPPA [27], MGR 
[13], MGRA2 [11], SCJ [15], MLGO [18] and GASTS [21].  
 Gene orders represent the gene permutations of a ge-
nome, and can reflect the genome level evolutionary events 
such as genome rearrangements, deletions, insertions and 
duplications. Compared to the sequence data, gene order data 
has several inherent advantages. Gene order variations are 
considered rare evolutionary events when compared with the 
nucleotide level mutation. It can help researchers build accu-
rate evolutionary models and simulate the evolutionary his-
tory across different species. Gene order can represent the 
gene content, direction, and their relative positions, such as 
{1, -2, -3, 4…. n}. Each distinct integer represents a ho-
mologous gene or conserved genome region across different 
species. The sign (+/−) of the gene order indicates the strand 
or direction of each gene or region. So genomes can be rep-
resented by a permutation of signed integers that corresponds 
to gene orders with orientations. Adjacency is used to repre-
sent the relative position among genes orders. For instance, 
two adjacent genes, 1 and 2, form an adjacency if they are 
next to each other, and 1 is followed by 2, or equivalently –2 
is followed by –1. The breakpoint of the genome is defined 
as an adjacency that is missing in one genome but exists in 
one or more other genomes. The ordering of genome seg-

ments or genes can be changed by the genome level evolu-
tionary events. 

2. DISTANCE/EVENT-BASED ANCESTRAL RECON-
STRUCTION APPROACHES 

2.1. Ancestral Reconstruction Approaches Based on Lo-
cal Optimal Solutions 

2.1.1. BPAnalysis 

 Before BPAnalysis there was no effective algorithm to 
measure the genomic distance for more than two genomes. 
In 1997, Blanchette and Sankoff first defined the “break-
point”: if two genes were adjacent in genome A but not in 
genome B [9]. They also used the “breakpoint distance” 
(number of breakpoints between two genomes) to measure 
the genomic distance without any assumptions of the evolu-
tionary mechanisms [9]. They developed a few heuristics for 
reconstructing the ancestral genomes by minimizing the total 
breakpoint distance summed along the each edge of a fixed 
phylogeny. BPAnalysis reduced the median genome problem 
to a travel salesman problem, and it iteratively labeled the 
internal nodes with median genome for the entire phylogeny. 
Since this method labeled the internal node iteratively, ini-
tialization of the set of genomes was critical to its perform-
ance. The simulation experiments showed that a better ini-
tialization could help to output a better solution.  
 BPAnalysis was the pioneering study of automated an-
cestral genome reconstruction and it brought this study area 
to a new era. However, the integrative labeling procedure 
was very computationally intensive and time-consuming, 
since each iteration was solving one NP-hard TSP problem. 
Most of the solutions were discarded since they did not bring 
any improvement. The computational complexity of this 
algorithm grew exponentially with each additional genome. 
For a dataset with 13 genomes of 105 gene segments, it 
might need 200 years to obtain the solution [27]. Although 
the procedure remained a heuristic and each internal node 
was labeled accurately, the tree labeling might still not the 
optimal unless there were only three leaves [27].  

2.1.2. GRAPPA 

 GRAPPA was a new implementation and improvement 
of the BPAnalysis [27]. Compared to BPAnalysis [9], 
GRAPPA made a few changes in low-level algorithms, data 
structures and coding strategies. GRAPPA was more cache-
sensitive, and obtained significant improvements in speed, 
quality, and robustness. GRAPPA employed an efficient tree 
generation method that could generate a preorder encoding 
of tree, and then produced the topology from this encoding. 
This method could generate the next tree in amortized con-
stant time. Instead of solving the median problem for each 
internal node, GRAPPA only needed to resolve the median 
problem for the nodes that had at least one of relabeled 
neighbors in the last pass. The GRAPPA scored the tree in-
crementally after each relabeling if the label had changed, 
which also took a constant time. GRAPPA used two ap-
proximate solvers to solve the TSP problem from the Con-
corde library-the chained and the simple versions of famous 
Lin-Kernighan heuristic [28]. It also used another exact TSP 
solver, which only considered nontrivial edges and treated 
the others as an undifferentiated pool.  
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 GRAPPA presented a novel implementation of break-
point analysis and improved the BPAnalysis by 2 to 3 orders 
of magnitude. It could handle a much larger dataset that 
couldn’t be resolved by the BPAnalysis [27]. However, 
GRAPPA still employed a simplified evolutionary model 
and could only deal with a limit type of genome rearrange-
ment events. 

2.1.3. MGR 

 Due to the facts that BPAnalysis was not robust enough 
when adapting to the multi-chromosomal genomes [9], and 
the breakpoint median was hardly corresponding to the an-
cestral median. Bourque et al. developed the MGR approach 
in 2002, an ancestral reconstruction method based on the 
reversal distance and multiple rearrangement scenarios. 
MGR could be applied to both unichromosomal and multi-
chromosomal genomes [13] and had significant improve-
ments in the analyses of pairwise genome rearrangements 
[29].  
 MGR was successfully applied to reconstructing the 
phylogeny and ancestral gene orders for the human-mouse 
cat dataset [13]. On the other hand, the MGR approach was 
still limited to handling the small genome dataset and low-
resolution data with only a few hundred syntenic blocks [21]. 
MGR required the input genome datasets to have equal gene 
content and unique genome markers. Furthermore, it was 
hard to make the distinction between the reliable and unreli-
able rearrangements [20]. In 2008, Sankoff et al. introduced 
the DCJ model to the MRG and applied it to a mammalian 
dataset with seven species. This improved version of MGR 
could process more complicated evolutionary events such as 
reciprocal translocation, transposition and block interchange 
[30]. 

2.1.4. SCJ 

 The Single-Cut-or-Join (SCJ) approach was based on a 
novel rearrangement distance between multi-chromosomal 
genomes, which modeled the most fundamental rearrange-
ment operations, cutting and joining adjacencies [15]. The 
cutting operation cut one old adjacency and created two te-
lomeres. The joining operation linked two telomeres into a 
new adjacency. So that the SCJ model could simulate the 
genome rearrangements events by deleting old adjacencies 
and bring new adjacencies into the genome adjacency set, 
which was similar to the breakpoint model [39]. SCJ could 
only handle the genome rearrangement events since it was 
still based on the genome rearrangement distance. SCJ ap-
plied the Fitch’s algorithm and used a parsimony strategy to 
reconstruct the ancestral genome in a polynomial time with a 
very low false positive rate.  
 SCJ could output very conservative genome reconstruc-
tions. However, it could not recover the phylogeny and an-
cestral genome very accurately. Only 60 percent to 95 per-
cent of the phylogeny splits and 50 percent to 85 percent of 
the ancestral adjacencies could be recovered. SCJ had been 
applied to simulated datasets and the real biological datasets 
of the Campanulaceae and Protostomes groups. It could re-
construct phylogenetic trees with good quality compared to 
the accepted species trees [15]. In 2016, Luhmann et al. in-
troduced the adjacency weights to the SCJ model and de-
signed an algorithm based on the Sankoff-Rousseau dynamic 

programming algorithm [40]. Their study on both the mam-
malian and bacterial datasets showed that their algorithm had 
a significant impact in reducing the fragmentation of ances-
tral gene orders and obtained more robust ancestral genome 
structures [41]. 

2.2. Ancestral Reconstruction Approaches Based on 
Global Optimal Solutions 

2.2.1. MGRA and MGRA2 

 MGRA was developed upon the multiple breakpoint 
graphs, which made it suitable for ancestral reconstructions 
of multi-chromosomal genomes [20]. It used the cycles or 
paths in the breakpoint graphs as guidance to reconstruct the 
ancestral genomes. MGRA turned the genomes P1...Pk into 
genome graphs and marked them in unique colors. The 
breakpoint graph G (P1...Pk) was the superposition of these 
individual genome graphs and constructed by “gluing” the 
labeled vertices in the genome graph. MRGA let X be the 
common ancestral genome of genomes and let t be the trans-
formation as a collection of paths in T. Each internal node on 
path T was an internal genome of this node. Recovering t 
could be achieved by reconstructing the internal genomes of 
T. MGRA restored a reverse transformation of t and eventu-
ally recovered t and the ancestral genomes [20]. 

 The MGRA was conceptually simpler and less time-
consuming than the MGR and had a better performance in 
dealing with the semi-independent rearrangement and break-
point re-use. MGRA could solve the big phylogeny problem 
and reconstruct the rearrangement-based phylogenetic tree, 
even if the phylogeny was unknown. MGRA was further 
adapted to study the rearrangement history of seven mam-
malian genomes and achieved a good performance [20]. 
However, MGRA was also restricted to the genome dataset 
with the equal genome content and unique genes. In 2016, 
Alekseyev et al. improved the MGRA algorithm to the 
MGRA2. MGRA2 could handle more kinds of complicated 
genome evolutionary events, including insertion, deletion, 
and duplications [11]. MGRA2 was also applied to both 
simulated datasets and real mammalian genome dataset, 
which showed very good performance [11]. 

2.2.2. GASTS 

 Generalized Adequate Subtree Tree Scoring (GASTS) 
was a tree-scoring approach based on generalized adequate 
sub-graphs [21]. GASTS could be used to solve the big 
phylogeny problems. It sorted for a fixed phylogenetic tree 
that minimized the overall sum of the pairwise DCJ dis-
tances between input genomes and the ancestral genomes. 
GASTS used two different styles of phylogenetic inference 
to obtain an accurate tree-scoring algorithm in turn: the brute 
force search and the incremental construction. It also utilized 
a novel algorithm to solve the median genome problem, 
which merged the inversion medians with Xu’s extensions 
into capped multiple breakpoint graphs [31]. GASTS either 
detected a capped adequate sub-graph and divided the cur-
rent problem into sub-problems in a divide-and-conquer 
way, or added adjacencies into the median genome in a poly-
nomial number of ways, according to the criterion that 
matched the adequate sub-graphs. It could merge the circular 
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chromosomes with linear chromosomes with a greedy algo-
rithm to minimize the incremental increase of median scores.  

 GASTS solved a problem that subsumed from the me-
dian problems, so that it was equally NP-Hard. However, 
GASTS scaled linearly instead of exponentially with the 
expected length of the tree and the genome size involved. 
So that it could run magnitude faster and handle high-
resolution data. GASTS maintained a very high speed and 
accuracy for phylogenetic tree reconstruction up to 100 
taxa and up to 10,000 syntenic blocks for each genome. For 
real biological vertebrate data, GASTS could handle the 
genome datasets with equal contents and over 2000 syn-
tenic blocks [21].  

 GASTS overcame the crucial initialization issue of the 
BPAnalysis and GRAPPA, which was the good performance 
could only be achieved by appropriate initial assignment. 
Nevertheless, GASTS could only handle the simplified ge-
nome datasets with equal genome content and unique syn-
tenic blocks; it could not take account of the gene duplica-
tion, gene loss, and gain events. And it couldn‘t output the 
intermediate ancestral genomes of the ancestral reconstruc-
tion process.  

2.2.3. PATHGROUPS 

 PATHGROUPS was a data structure enabling rapid heu-
ristic solutions for ancestral reconstruction based on the ge-
nome rearrangement distance [22, 32]. Using PATH-
GOURPS, researchers could employ a look-ahead based 
generic greedy algorithm to reconstruct the ancestral ge-
nomes in linear time. Each branch distance in the given 
phylogeny was corresponding to a breakpoint graph. There 
were two kinds of edges in the breakpoint graph. The blue 
edges in the breakpoint graph were determined by the given 
genome information. The red edges in the breakpoint graph 
were corresponding to the reconstructed ancestral genome, 
which was identical in all of the breakpoint graphs. A 
PATHGROUP was a set of these paths, which started with 
the same vertex; each path was from a partial breakpoint 
graph that currently being constructed. This algorithm set an 
entire set of PATHGROUPs for each internal node. The 
PATHGROUP that connected with two given nodes would 
be processed first, and then built all of the three paths and 
combine the PATHGROUPs one by one. The red edge 
would be changed to the blue edge after it was added to the 
path in the corresponding PATHGROUP for the ancestral 
genomes that connected to it. The edges were accumulated in 
their PATHGROUPs and form cycles, which could be corre-
sponding to the fragment of reconstructed ancestral ge-
nomes.  

 This greedy algorithm updated the data structure during 
the running time and then chose the priority scheme in the 
next step. Even though this algorithm could not find the ex-
act solution, it was fast enough to obtain a reasonably accu-
rate solution for the large-scale instances. PATHGROUPS 
required a given phylogeny to reconstruct the ancestral ge-
nomes. And the phylogeny information had to be hard-coded 
into the program. It could only resolve the problems for 
equal content genome dataset with simplified evolutionary 
events [22, 32]. 

3. HOMOLOGY/ADJACENCY-BASED ANCESTRAL 
RECONSTRUCTION APPROACHES 

3.1. Ancestral Reconstruction Using Contiguous Ances-
tral Regions (CARs) 

3.1.1. InferCARs and InferCARsPro 

 InferCARs was a Fitch parsimony-based computational 
heuristic algorithm that predicted the permutations and ori-
entations of conserved segments and orthologous blocks 
[23]. This algorithm output the ancestral genomes in the 
form of “contiguous ancestral regions” (CARs), which were 
large genome segments. This algorithm was built on graph 
theory, and it introduced to the graph edges to represent the 
reliability of the adjacencies. InferCARs first sorted the 
edges by weight and added edges to the vertex-disjoint paths, 
which were representing the CARs. Secondly, it searched for 
a set of paths that could cover all nodes in the graph to 
maximize the total edge weights in the paths. 
 InferCARs could output the intermediate ancestral ge-
nomes during the reconstruction, so that researchers could 
estimate the breakages on each evolutionary lineage. This 
algorithm discarded all of the conserved segments or 
orthologous blocks that shorter than 50 kb, so that the high-
est resolution was only 50 kb. The output of inferCARs was 
contiguous chromosome segments, so there was no guaran-
tee to assemble the CARs into mature chromosomes. The 
local parsimony-based algorithm might ignore many true 
adjacencies that should exist in the ancestral genome.  
 In 2010, Ma et al. further introduced a probabilistic 
model to replace the parsimony model that used in infer-
CARs and developed the InferCARsPro approach [16]. In-
ferCARsPro predicted the posterior probability of the adja-
cency of the ancestral genomes based on an extended Jukes-
Cantor model for breakpoints. InferCARsPro used a neutral 
model to calculate the adjacencies variations. However, the 
biased model was now already been applied for ancestral 
genome reconstruction [33, 34]. InferCARsPro required a 
given phylogeny with known branch lengths to reconstruct 
the ancestral genome, which was hard to satisfy when it was 
applied to real genome dataset [16, 33]. Both InferCARs and 
InferCARsPro could only resolve the small phylogeny prob-
lems since it needed to assume that there was already a 
known phylogeny for input genomes. Although they were 
both applied to reconstruct the ancestral genomes for mam-
mal genome datasets with four species and two out-groups, 
these two approaches still cannot deal with complicated evo-
lutionary events including insertion, deletion and duplication 
[11, 16, 23].  
 In 2008 Ma et al. proposed a heuristic ancestral recon-
struction approach DUPCAR, which put the genome rear-
rangements and gene duplication in a unified framework. 
DUPCAR was based on their previous CARs method and 
incorporated gene duplication events into the ancestral gene 
order predictions. The DUPCAR approach reconstructed the 
chromosome X of a placental mammal dataset and ancestral 
genomes of Paramecium tetraurelia [35]. 

3.1.2. ProCARs 

 ProCARs was a homology/adjacency-based approach 
that used a progressive approach to detect and assemble an-
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cestral adjacencies into CARs. It firstly iteratively identified 
a set of potential ancestral adjacencies based on the current 
set of CARs. Next, it used a 2-phase procedure to compute 
new adjacent blocks to concatenate current CARs progres-
sively. This algorithm started with a given phylogeny and a 
set of non-duplicated syntenic block seeds, which were ob-
tained from the multiple sequence alignments [36, 37]. In 
each step, a set of CARs was first detected, and then a subset 
of non-conflicting adjacencies were selected and added to 
the current CARs. The proCARs approach finally output a 
set of concatenated CARs as the ancestral genome. These 
CARs had the maximum number of adjacencies and the 
minimum total homoplasy cost. The proCARS approach had 
been used to reconstruction of the Boreoeutherian ancestral 
genome from the dataset with ten mammals and two birds 
species.  
 ProCARs was a parameter-free method. Even though it 
still required a given phylogeny for ancestral reconstruction, 
it didn’t need the branch lengths of the phylogeny. The re-
constructed ancestor was a set of completely resolved CARs 
with the information of rearrangement events that occurred. 
However, ProCARs could only consider the genomes with 
equal genome content and non-duplicated blocks. It did not 
allow insertion and deletion event either. In the ancestral 
reconstruction of real genome dataset, proCARs initiated the 
CARs set with 100kb syntenic blocks, so that the highest 
resolution was only 100kb, which was even lower than the 
InferCARs and InferCARsPro [24]. 

3.1.3. Gapped Adjacency 

 Gapped Adjacency was a homology/adjacency-based 
ancestral genome reconstruction algorithm, which used a 
flexible model to handle different kinds of genome level 
evolutionary events, including rearrangements, gene inser-
tions, and losses and duplication [26]. Gapped Adjacency 
introduced a cutoff threshold t and constant value MAXa 
among contiguous ancestral regions, and reconnected the 
neighboring regions by considering gapped adjacencies. This 
algorithm iterated in a two-step procedure, which determined 
the genome content and multiplicity for each ancestral node 
in the first step. It increased the value from 1 to the constant 
MAXa and computed the adjacency scores, which allowed 
different number of gaps between adjacencies until reached 
the maximum setting. In the second step, it constructed a 
complete undirected graph Q. In this graph, the vertices were 
the two ends for each CARs, and the edges were then 
weighted according to the a-adjacency scores in step one. 
The ancestral reconstruction problem was converted to find-
ing the heaviest Hamiltonian cycle through Q, where the 
edges with weight under threshold t were excluded to discard 
the less reliable adjacencies. Then it used the heuristic TSP 
solver Chained Lin-Khernigan (http://www.math.uwater 
loo.ca/tsp/concorde/index.html) to solve this problem and 
output the ancestral genome with gene ordering [26]. 
 The TSP solver used in this algorithm ensured a com-
pletely assembled genome with a low error rate. The thresh-
old t ensured that the final output won’t be only one single 
long chromosome that concatenation all genes. The Gapped 
Adjacency could only deal with the small phylogeny prob-
lem, so an existing phylogeny should be provided for recon-
structing the ancestral genome. Gapped Adjacency was 

tested in the simulated datasets with WGD and non-WGD 
events. Their reconstructed ancestral genome remarkably 
reduced the number of CARs, and still kept a very low error 
rate. In the testing of simulated and real biological datasets 
(yeasts and cereal genome), it reduced the final number of 
CARs and output reasonable number of large segments. 

3.1.4. ANGES 

 ANGES was a Python program that reconstructed the 
‘Contiguous Ancestral regions’ (CARs) by comparing the 
organizations of modern genomes [25]. This approach was 
inspired by techniques of computing the physical maps of 
current genomes [38]. ANGES had a similar two-step proce-
dure with Gapped Adjacency [26], which was establishing 
the genome content in the first step and determining the gene 
ordering in the second step. ANGES first detected genomic 
markers with similar organizations of each pair of genomes 
in given phylogeny, and it then derived the ‘Ancestral Con-
tiguous Sets’ (ACS) with a given weight by the occurrence 
in the extant genomes. Next, ANGES linked these genomic 
makers into linear or circular segments, which could be re-
ferred to the ‘Contiguous Ancestral regions’ (CARS) [23]. 
ANGES used a greedy heuristic algorithm [23] and branch-
and-bound [39] algorithm to compute the subset of CARs 
from the modern genomes and utilized a PQ-tree or the re-
lated PC-tree to represent the ancestral genomes. ANGES 
could reconstruct ancestral genome maps for multi-
chromosomal linear genomes and unichromosomal circular 
genomes. It also could handle whole genome duplication, 
insertion and deletion events in the ancestral reconstructing. 
However, it still needed a given phylogeny as reference tree 
and could only deal with the small phylogeny problems. 
ANGES had been tested on simulated datasets, Boreoeuthe-
rian and yeast genome datasets. These ancestral reconstruc-
tions had discarded less than 5% of ACS, and maintained 
very low level of conflicting signals. 

3.2. Ancestral Reconstruction Using Gene Adjacencies 

3.2.1. EMRAE 

 In 2007, Zhao and Bourque developed the EMRAE algo-
rithm to recover the ancestral rearrangement events based on 
a fixed phylogenetic tree [40]. EMRAE was a homol-
ogy/adjacency-based algorithm and relied on the shared ad-
jacencies across genomes in the phylogeny. The initial ver-
sion of EMRAE could only deal with simplified rearrange-
ment events in unichromosomal genomes. In 2009, they fur-
ther improved this algorithm to handle more complicated 
genome rearrangement events, such as translocations, fu-
sions, and fission for muti-chromosomal genomes. This al-
gorithm first searched for the conserved adjacencies that 
existed in extent genomes. Then it used the distinctive signa-
tures in the conserved adjacencies to track back the rear-
rangement events based on a parsimony assumption [40]. 
This algorithm was tested on simulated datasets and showed 
to have comparable sensitivity and higher specificity than the 
MGR algorithm [13]. EMRAE also processed same mam-
malian genome data that used in InferCARs [23], and pre-
dicted 1109 rearrangement events including 831 inversions, 
15 translocations, 237 transpositions, and 26 fusions/fissions. 
The improved version of EMRAE could handle more com-
plicated rearrangements events and breakpoint reuse of muti-



Ancestral Genome Reconstruction Current Genomics, 2017, Vol. 18, No. 4    311 

chromosomal genomes, however, it still couldn't handle the 
duplication, insertion, and deletion events [40, 41]. 

3.2.2. PMAG/PMAG++ 

 PMAG was designed to reconstruct the ancestral genome 
based on a probabilistic framework and flexible evolutionary 
model. PMAG used Bayes’ theorem and a novel transition 
evolutionary model to compute the adjacency variations 
along the edge of the given phylogeny. It first encoded ge-
nome content and gene adjacencies into binary strings and 
then calculated the conditional probability for each observed 
adjacency [42]. Next, PMAG assembled the gene adjacen-
cies into ancestral genomes with maximum overall probabil-
ity by converting this problem into an instance of Traveling 
Salesman Problem (TSP) [33, 17]. It employed the Chained-
Lin-Kernighan heuristic TSP solver Linkern (http://www. 
math.uwaterloo.ca/tsp/index.html) to reconstruct the ances-
tral genomes. The initial version of PMAG could only han-
dle the genome rearrangement insertion, and deletion. In the 
newest version, PMAG++ was improved to deal with the 
duplication and whole genome duplication events [43-45]. 

 The reconstructed ancestral genomes were directly from 
the outputs of TSP solver, which could successfully link the 
gene adjacencies into completed mature chromosomes. 
These reconstruction results were very similar to the output 
of Gapped Adjacency. However, the Gapped Adjacency 
needed additional parameter and procedures to determine the 
chromosome number. PMAG also required a given 
phylogeny to reconstruct the ancestral genomes. Later 
PMAG was integrated with a gene order based phylogeny 
reconstruction approach [46], and set up a new ancestral re-
construction pipeline MLGO [18]. MLGO can handle big 
phylogeny problems and reconstruct the ancestral genomes 
even though the phylogeny is unknown. PMAG/PMAG++ 
could deal with the genome dataset with very high resolution 
(up to one gene), which was higher than all other current 
approaches. 

4. DISCUSSION 

 Currently, most of the computational ancestral recon-
struction approaches can only handle the genome datasets 
with equal contents with unique genome markers. And most 
of them can only handle the genome rearrangement event, 
which is only a fraction of the complicated evolutionary 
events in real life evolution. To deal with the complicated 
evolutionary event including insertion, deletion, duplication 
and whole-genome duplication, a few improvements have 
previously been studied [11, 26, 47]. Whole genome duplica-
tion is a special case in the evolution that results in doubling 
all the chromosomes of a genome, which is shown in the 
evolutionary history across the whole eukaryote domain 
[26]. It is further found to occur in the evolution of the Sac-
charomyces family and cancer cells [48, 49]. Ancestral re-
construction problems will become even more difficult and 
challenging when considering these complicated events men-
tioned above [26, 33]. In this paper, MGRA2 is the only dis-
tance/event-based approach reported can handle all kinds of 
evolutionary events [11]. For homology/adjacency-based 
approaches, only PMAG++, Gapped Adjacency and ANGES 
are reported can handle all kinds genome level evolutionary 

events. These approaches have the potential to be applied to 
solve real life ancestral reconstruction problems. 
 To explore the performance of these ancestral reconstruc-
tion approaches, we select four most famous and powerful 
approaches from both distance/event-based and homol-
ogy/adjacency-based categories. We analyze and compare 
their performance on simulated datasets and evaluate their 
outputs. For the distance/event-based approaches, we select 
MGRA2 and GASTS. MGRA2 is the only distance/event-
based approach that could deal with all kinds of evolutionary 
events [11]. GASTS is famous for its speed and accuracy for 
small-scale datasets, but it could only handle the problems 
with equal genome content [21]. For the homol-
ogy/adjacency-based approaches, we select the PMAG++ 
and Gapped Adjacency. These two approaches are more 
powerful than the ANGES since they could deal with the 
high-resolution data. We also try to run InferCARsPro on the 
same datasets. However, it cannot output any solutions for 
all of the testing datasets after running 48 hours. 

 To make the simulated data more approximate to the real 
genome data, we provide a few simulated genome datasets in 
different genome sizes and evolutionary complexities (with 
different kinds of evolutionary events and rates). Each ge-
nome in the dataset has a total gene number n, n ∈ {1000, 
2000, 3000, 4000}. Each genome may have different evolu-
tionary rates r, r ∈ {0.5, 1, 2} with 50% relative fluctuation. 
So that the total number of evolutionary events between any 

two generations is in the interval of [ , ]. We also 
group each genome datasets with 20 genomes. And each 
genome has 5 chromosomes. For each genome dataset, the 
ancestral reconstruction approaches need to reconstruct 19 
ancestral genomes, including 1 root ancestor and 18 internal 
ancestors. To make these experiments statistically reliable, 
for each particular setting, it simulates 10 independent 
datasets with distinct phylogenies. We record the average 
running time for each experiment and analysis the overall 
average accuracy from 10 independent experiments. The 
accuracy is calculated by the function: 

A=  

 and represent the gene adjacencies or gene content in 
the true and reconstructed ancestral genomes. This experi-
ment adapts a set of different evolutionary events in the 
simulated datasets, including genome rearrangements, inser-
tion and deletion. Since GASTS and all other distance/event-
based approaches could only deal with the genome rear-
rangements in equal content dataset, we conduct two sepa-
rate experiments to evaluate the performance: reconstruction 
for equal content genome datasets with only genome rear-
rangement, and reconstruction for unequal genome content 
datasets with a combination of genome rearrangement, inser-
tion and deletion. 

4.1. Experiments on Equal Content Genome Datasets 

 As shown in (Fig. 1), we present the results analyses on 
gene adjacency and genome content reconstruction for 
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equal genome content datasets. 80% of the genome rear-
rangement events are set to inversions. And 20% are set to 
translocations. As shown in (Fig. 1A), when the evolution-
ary rate r is small (0.5), the homology/adjacency-based 
approaches PMAG++ and Gapped Adjacency can reach 
very high accuracy (almost 1) in gene adjacency recon-
struction. For the distance/event-based approach, GASTS 
and MGRA2 have achieved a little bit higher accuracy 
(also almost 1) than the homology/adjacency-based ap-
proaches. MGRA2 has a lower accuracy than GASTS. All 
of these four methods could recover 100% of the genome 
content. In this case, distance/event-based approaches re-
quire less running time than the homology/adjacency-based 
approaches. For all four methods, as the genome size gets 
larger, the running time gets longer and the accuracy tends 
to be a bit lower but not much. (Fig. 1B) shows that as the 
revolutionary rate gets higher (r=1), the gene adjacency 
accuracies of PMAG++, Gapped Adjacency and GASTS 
get lower, but still preserve high accuracies that larger than 
0.9. However, the MGRA2 could not give any output after 
running for 48 hours for all of the genome datasets with an 
evolutionary rate r larger than 1. GASTS achieve the high-
est accuracy and the shortest running time of these four 
approaches. When the evolutionary rate is set to 2, (Fig. 
1C) shows that GASTS still keeps the highest accuracy 
(around 0.9), PMAG++ achieves the second highest accu-
racy (around 0.8), and Gapped Adjacency has the lowest 
accuracy (around 0.7). MGRA2 does not give any output. 

As the genome size getting larger, the running time of 
GASTS increases much faster than the homology 
/adjacency-based approaches.  

 In this experiment, none of these four approaches misses 
any genome content in the ancestral reconstruction. For the 
distance/event-based approaches, GASTS could grantee a 
sound performance in recovering the gene adjacencies. It can 
solve the ancestral reconstruction problems in very short 
time when the evolutionary rate is low. The homol-
ogy/adjacency-based approaches need a few hundred sec-
onds to solve the same problems. However, as the evolution-
ary rate getting higher, GASTS needs much more time than 
the homology/adjacency-based approaches to output the so-
lutions for the large-scale datasets. Since it needs to solve 
much more difficult median problems with NP-complete 
complexity [21]. MGRA2 could only deal with the genome 
dataset with a low evolutionary rate. It could not give any 
output after running for 48 hours for the genome dataset with 
a high evolutionary rate. The homology/adjacency-based 
approaches PMAG++ and Gapped Adjacency could keep 
very high accuracy while the evolutionary rates are low. As 
the evolutionary rate increases, the performances for all 
methods decrease. The PMAG++ always has higher accu-
racy than the Gapped Adjacency in all cases. It is also impor-
tant to notice that the gene number in the genome dataset has 
little influence on the performance of accuracies for the an-
cestral reconstruction. 

 
Fig. (1). Results analyses and comparisons of different approaches on equal content genome datasets. (The legend of MGRA2 is miss-
ing in Fig. B and C, because it cannot give any output after running 48 hours.) 
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4.2. Experiments on Unequal Content Genome Datasets 

 In order to compare the performances in unequal content 
genome datasets with more complicated genome evolution-
ary events. We set up evolutionary events between any two 
generations with 80% inversions, 10% translocations, 5% 
insertions and 5% deletions. The settings for the evolution-
ary rates and genome sizes are the same. (Fig. 2) presents the 
results analyses and comparisons for these four approaches. 
For the distance/event-based approaches, GASTS could not 
handle these complicated evolutionary events. MGRA2 was 
reported being capable of handling this kind of problem [11], 
but it could not give any output after running for 48 hours for 
any of these datasets. Only the homology/adjacency-based 
approaches could solve these problems and reconstruct the 
ancestral genomes. As it shown in (Fig. 2A), PMAG++ pre-
serve very high gene adjacency accuracy (almost 1) for all 
four datasets with different genome size, while the accuracy 
of Gapped Adjacency is always about 10% lower (around 
0.9). Both the PMAG++ and Gapped Adjacency could re-
construct the genome contents with very high accuracy. The 
PMAG++ preserves a higher accuracy (almost 1) than 
Gapped Adjacency (around 0.95) in the genome content re-
construction. The Gapped Adjacency requires less running 
time than PMAG++. (Fig. 2B) shows, when the evolutionary 
rate reaches 1, the PMAG++ could still keep a high accuracy 
(around 0.95), while the Gapped Adjacency could only reach 

the accuracy of 0.8. In the genome content and running time 
comparison, they have the similar result with (Fig. 2A). (Fig. 
2C) shows the performance of these approaches under high 
evolutionary rate r=2. In this experiment, PMAG can still 
grantee a sound gene adjacency accuracy of 0.8 for all four 
genome datasets. However, the Gapped Adjacency can only 
reach the accuracy of 0.6. PMAG++ also maintains higher 
accuracy (> 0.95) than Gapped Adjacency (around 0.9) in 
the genome content reconstruction. 
 Compared with the three experiments above, PMAG++ 
outperforms Gapped Adjacency in reconstructing the ances-
tral genome adjacency and genome content. PMAG++ pre-
serves consistently better performance than the Gapped Ad-
jacency in all cases. As the evolutionary rate getting higher, 
the accuracy gets lower, but PMAG++ could still keep a high 
accuracy even the evolutionary rate is high. Both PMAG++ 
and Gapped Adjacency can maintain very high accuracy in 
reconstructing the genome content. Both of them only re-
quire hundreds of seconds to get the solutions for the small-
scale or large-scale dataset. The genome size of the testing 
dataset also has little influence on the performance of accu-
racy for gene adjacency and genome content, but it did affect 
the running time. Gapped Adjacency requires less running 
time than the PMAG++ in all experiments. MGAR2 cannot 
give any output after running for 48 hours for all experi-
ments. 

 
Fig. (2). Results analyses and comparisons of different approaches on unequal content genome datasets. (The legend of MGRA2 is 
missing in this figure, because it cannot give any output after running 48 hours. The legend of GASTS is missing in this figure, because it 
cannot handle this datasets.) 
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4.3. Improvement of Current Approaches 

 Recently the “intermediate genomes” approach is pro-
posed, which is more likely a combined algorithm that could 
universally improve the current ancestral reconstruction 
methods. It searches for all possible adjacencies of interme-
diate genomes in a parsimonious path between two genomes. 
It also uses the restriction that all internal nodes must be in 
the intermediate genomes, to improve the current gene adja-
cency sets and find the ancestral genome. This algorithm 
uses an ancestral reconstruction approaches (such as SCJ and 
inferCARs) as extra information to search for the possible 
set of “intermediate ancestral genomes”, which is also called 
the “adjacency guide G”. The “adjacencies guide G” is used 
as a guide and call another function Guided-IG to build a set 
of adjacencies of the ancestral genome by calling the func-
tion Guided-IG-C. The Guide-IG-C function calls itself re-
cursively in turn when an adjacency is applied in a compo-
nent. It keeps running and finishing the ancestral genome 
reconstruction until no new adjacency being returned for 
homology/adjacency-based approaches, or until all adjacen-
cies are in the same color, and one with more common adja-
cencies with the input genomes is returned for distance-base 
approaches [47]. This approach could improve the perform-
ance of homology/adjacency-based approaches with slightly 
increasing in wrong adjacencies. It also can improve dis-
tance/event-based approaches in almost all measurements 
[50]. 

CONCLUSION 

 This paper reviews the most recent and popular ancestral 
reconstruction approaches on the whole genome level. These 
approaches are either based on the evolutionary distance/ 
events among genomes, or the similarities of homologies 
/adjacencies of genomes. We review the advantages and 
limitations of these approaches in dealing with different 
datasets, evolutionary event and reconstruction problems. 
We also talk about the improvement and development of 
these approaches. Only a few of these approaches can deal 
with big phylogeny problem and reconstruct the phylogeny 
and ancestral genomes using the same input dataset, even if 
the phylogeny is unknown. These approaches include 
GRAPPA, MGR, MGRA MGRA2, MLGO, GASTS, and 
SCJ. Only Gapped Adjacency, PMAG++, MGRA2 and 
ANGES can handle unequal content genome datasets and all 
kinds of genome level evolutionary events. This paper se-
lects two distance/event-based and two homology/adjacency-
based approaches, analyzes and compares their performance 
in dealing with different datasets with different evolutionary 
events and complexities. GASTS achieves the best perform-
ance in solving the problems with equal genome contents, 
but it needs much more time when the evolutionary rate and 
genome size get larger. PMAG++ achieves the best perform-
ance in solving the problems with complicated evolutionary 
events with unequal genome contents, but the accuracy will 
get lower when the evolutionary rate gets higher. It is also 
important to notice that the intermediate genomes method 
could universally improve the performances for both dis-
tance/event-based and homology/adjacency-based ap-
proaches. 
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