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Purpose: This study was to investigate the diagnostic efficacy of radiomics

models based on the enhanced CT images in differentiating the malignant risk

of gastrointestinal stromal tumors (GIST) in comparison with the clinical

indicators model and traditional CT diagnostic criteria.

Materials and methods: A total of 342 patients with GISTs confirmed

histopathologically were enrolled from five medical centers. Data of patients

wrom two centers comprised the training group (n=196), and data from the

remaining three centers constituted the validation group (n=146). After CT

image segmentation and feature extraction and selection, the arterial phase

model and venous phase model were established. The maximum diameter of

the tumor and internal necrosis were used to establish a clinical indicators

model. The traditional CT diagnostic criteria were established for the

classification of malignant potential of tumor. The performance of the four

models was assessed using the receiver operating characteristics curve.

Reuslts: In the training group, the area under the curves(AUCs) of the arterial

phase model, venous phasemodel, clinical indicators model, and traditional CT

diagnostic criteria were 0.930 [95% confidence interval (CI): 0.895-0.965),

0.933 (95%CI 0.898-0.967), 0.917 (95%CI 0.872-0.961) and 0.782 (95%CI

0.717-0.848), respectively. In the validation group, the AUCs of the models

were 0.960 (95%CI 0.930-0.990), 0.961 (95% CI 0.930-0.992), 0.922 (95%CI

0.884-0.960) and 0.768 (95%CI 0.692-0.844), respectively. No significant

difference was detected in the AUC between the arterial phase model,

venous phase model, and clinical indicators model by the DeLong test,

whereas a significant difference was observed between the traditional CT

diagnostic criteria and the other three models.
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Conclusion: The radiomics model using the morphological features of GISTs

play a significant role in tumor risk stratification and can provide a reference for

clinical diagnosis and treatment plan.
KEYWORDS

gastrointestinal stromal tumors, traditional CT diagnosis, enhance different periods,
radiomics, multiple centers
Introduction

Gastrointestinal stromal tumors (GISTs) are the most

common mesenchymal tumors in the gastrointestinal tract of

middle-aged and elderly (60-70 years old) patients. The

common sites of GIST are stomach (50%-60%), small intestine

(20%-30%), colorectal (5%-10%), and esophagus (< 5%) (1, 2).

GISTs exhibit a specific malignant potential as well as early liver

and abdominal metastasis. According to the National Institute of

Health (NIH) 2008 standard (3), the risk of GIST can be divided

into very low risk, low risk, medium risk, and high risk.

Typically, GISTs with a very low or low risk are classified as

potential malignant, whereas those with a medium or high risk

are classified as malignant. Because of the heterogeneity,

different individuals considered different malignant potentials

with varied treatment approaches in the same GIST lesion.

Clinically, the potentially malignant GISTs are treated as a

benign tumor, whereas malignant GISTs are treated with

imatinib mesylate and other drugs before or after the

operation to prevent recurrence or metastasis (4). The gold

standard for malignant diagnosis of GIST is based on the

pathological results, including tumor size, mitotic count and

tumor site (Table 1) (3, 5). In order to obtain pathological

samples of tumor for risk grading and evaluation of the tumor, a

puncture biopsy is essential. However, this is an invasive method

and might lead to tumor cell metastasis and tumor bleeding.

Therefore, risk classification of the tumor should be obtained at

the earliest time possible for selection of an appropriate clinical

treatment plan. Although computed tomography (CT) is of a

great value in detecting GISTs (6), it is still difficult to judge the

malignant potential of tumors due to lack of understanding of

the images or unclear tumor signs.

In recent years, rapid development in medical imaging

analysis and imaging pattern recognition tools has promoted

the development of a high-throughput quantitative feature

extraction process, the radiomics, which converts images into

exploitable data for analysis (7). This technique can be used to

diagnose noninvasively the nature of lesions and ultimately assist

the radiologist in making an accurate diagnosis. In the

evaluation of the malignancy of GISTs, radiomics has been
02
applied using data of ultrasound, magnetic resonance imaging,

and CT (8–13). However, no studies have been performed wtih

CT data in the arterial and venous phase to extract the radiomics

features for evaluation of the malignancy of GISTs. The present

study aimed to explore the radiomics diagnostic models of GIST

with different degrees of risk based on the CT image data in the

arterial phase and venous phase from five medical centers, with

four models being estalibshed, including the arterial phase

model, venous phase model, clinical indicators model, and

traditional CT diagnostic criteria. The data in two centers were

set up as the training group to reduce the sampling bias and to

establish a more ubiquitous radiomics model than those in one

center only, with the slice thickness of images as 5 mm (14). The

diagnostic efficiency was also evaluated to find the best model to

guide the correct clinical decision-making process.
Materials and methods

Patients

This retrospective study was approved by the Institutional

Review Board of the Affiliated Hospital of Hebei University, and

all patients had given their signed informed consent to
TABLE 1 NIH 2008 criteria for risk stratification of GIST recurrence
after surgery.

Risk category Tumor size
(cm)

Mitotic index
(per 50 HPF)

Location

Very low risk ≤ 2.0 ≤ 5.0 Any

Low risk 2.1-5.0 ≤ 5.0 Any

Intermediate risk ≤ 5.0 6-10 Gastric

5.1-10.0 ≤ 5.0 Gastric

High risk >10.0 Any Any

Any >10 Any

>5.0 >5 Any

≤ 5.0 >5 Non-gastric

5.1-10.0 ≤ 5 Non-gastric
fron
GIST, gastrointestinal stromal tumor; HPF, high-power field.
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participate. All methods were performed in accordance with the

relevant guidelines and regulations. The data of CT images of

342 patients were collected from five medical centers from

January 2015 to August 2021. Two centers were randomly

selected and assigned to the training group, and the data of

the other three centers were set up as the validation group.

The inclusion criteria were patients with GISTs confirmed

by pathology, complete clinical and pathological data (lesion

size, origin location, and risk classification), and standard

dynamic enhanced CT scan at least 15 days before the

operation. The exclusion criteria were patients with a previous
Frontiers in Oncology 03
history of other coexisting malignant tumors, neoadjuvant

chemoradiotherapy before CT scan, and poor image quality

precluding quantitative analyses. The selection process of patient

cohorts is shown in Figure 1.
CT scanning instruments and methods

The Discovery CT750 HD scanner (GE Medical Systems,

Milwaukee, WI, USA), Toshiba Aquilion 64-slice spiral CT

scanner (Tokyo harbor area, Japan), Philips 256-slice ICT scanner
FIGURE 1

A flowchart shows selection of study population and exclusion criteria.
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(Amsterdam, The Netherlands), and Philips brilliance 64-slice CT

scanner (Amsterdam, The Netherlands) were used for CT scanning.

After fasting for 6-8 h, the patient had warm water (500-1000 mL)

10 min before the examination with plain and enhanced abdominal

scanning in the supine position. The scanning parameters were as

follows: slice thickness 5 mm, pitch 0.9-1.0, scanning field 350

mm×350 mm, matrix 512×512, tube voltage 100–120 kV, tube

current 160–300 mA, and X-ray tube rotation time 0.5–0.8 s. The

contrast agent was injected through the elbow vein at a flow rate of

3.0–3.5 mL/s and a dose of 1.0–1.2 mL/kg body weight. The

scanning time of the arterial phase, venous phase, and delayed

phase was 30-35 s, 50-60 s, and 180 s, respectively, after injection of

contrast agent. The CT images at the arterial and venous phase were

selected for imaging analysis.
Clinical data

The clinical data including age, gender of patients, and tumor

location were collected based on pathological results. The imaging

data including tumor maximal diameter and necrosis within the

tumor lesion were collected based on CT imaging. In the malignant

potential classification using the traditional CT diagnosis method,

the CT images were assessed by five radiologists (with 19, 15, 10, 8

and 4 years of working experience, respectively) who were blinded

to the pathological diagnoses in all cases. The tumor is divided into

potentially malignant and malignant according to the CT image
Frontiers in Oncology 04
characteristics, including tumor size, location, shape, boundary,

enhancement mode and degree, infiltration of peripheral organs,

and lymph node enlargement (15–17). In disagreement, a

consensus was reached after discussion.
CT image segmentation

Two radiologists (physicians 1 and 2) with 10 years of

experience in the abdominal imaging diagnosis applied the ITK-

SNAP software (version 3.8.0, https://www.itksnap.org) to delineate

the CT-enhanced images at the arterial and venous phases. The

delineated areas included the tumor lesion as much as possible

without inclusion of the surrounding normal tissues or other tissues

in order to generate a two-dimensional (2D) region of interest

(ROI) (Figure 2). The 2D ROI was then recombined to generate a

3D volume of interest (VOI) for subsequent image feature

extraction and analysis.
Radiomic feature extraction
and selection

CT images with different scanning parameters were

preprocessed. The linear interpolation method was used to

resample the image to 1×1×1 mm3, attempting to alleviate the

influence of different layer thicknesses. The image gray was
FIGURE 2

Imaging segmentation of gastrointestinal stromal tumors (GIST) on computed tomography (CT) imaging. (A) Two-dimensional (2D) CT arterial
phase image of potential malignant GIST. The tumor is quasicircular and uniformly enhanced. The red outline is the boundary drawn by
radiologists to show the tumor. (B) 2D segmentation of the tumor. (C) 3D segmentation of the tumor lesion. (D) 2D CT arterial phase image of
malignant GIST with irregular shape and uneven internal enhancement of the tumor. The red outline is the boundary drawn by radiologists to
show the tumor lesion. (E) 2D segmentation of the tumor. (F) 3D segmentation of the tumor.
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discretized, the bin width was set to 25, and the image filtering

process was used to highlight different bandwidth signals and

prevent the noise in ROI from interfering with texture

information. Parameters s 3 and 5 of Laplace of Gaussian (LOG)

filter and wavelet were used. After wavelet decomposition, eight

categories of information of the filtered features were obtained from

the original set of feature information. The preprocessed image and

the outlined ROI files were imported into the platform of

“pyradiomics” for radiomics feature extraction, and two sets of

image filtering were utilized. A total of 1037 features were generated

from the histogram (18 features), morphological feature (14

features), texture feature of gray level co-occurrence matrix

(GLCM, 24 features), gray-level run-length matrix (GLRLM, 16

features), gray-level size zone matrix (GLSZM, 16 features), gray-

level dependence matrix (GLDM, 14 features), and neighborhood

gray-tone difference matrix (NGTDM, 5 features).

In order to prevent overfitting risk, it was necessary to

reduce the dimension of data features and select those with

the best efficiency and most research significance. A total of 20

important features were selected using the minimum

redundancy maximum relevance feature selection (mRMR)

based on relevant references in the literature to prevent

distortion of model (18–20). Subsequently, the least absolute

contraction selection operator (LASSO) was used to further

eliminate collinear features, and 5 features in the arterial phase

and 11 features in the venous phase were kept.
Radiomics models building

The arterial phase model and venous phase model of

radiomics: After feature selection, 5 features of arterial phase

and 11 features of venous phase were used to retain the

minimum Akaike information criterion (AIC) feature set by

the multifactor stepwise regression.

Clinical indicators model of radiomics: The clinical

indicators of the tumor diameter (>5 cm) and internal

necrosis were used as clinical features. The model was

established by multiple regression analysis with the maximal

diameter of the tumor and presence of necrosis as the feature of

the model and benign or malignant nature as the goal.

Traditional CT diagnostic criteria of radiommics: According to

the consolidated GIST CT diagnosis results of the five evaluating

radiologists, the traditional CT diagnostic criteria were used for

classification of the malignant potential of the tumors.
Sample size estimation

In the training group, 196 consecutive patients were enrolled

in two centers between January 2016 and December 2019. The

training cohort contained 58 low-risk GIST patients and 138

high-risk patients. There were in total 2 predictors in our model
Frontiers in Oncology 05
(internal tumor necrosis and tumor diameter), making an event-

per-predictor ratio of large than 10, which fell in the range of 5-9

in the rule of thumb for event-per-predictor in logistic regression

models (21). In the validation group, the validation sample size

was determined according to the method of sample size

estimation for clinical research by Chow and colleagues (22),

with the sample size being calculated to test whether the means

of two groups were significantly different. Based on this method,

the mimimal number of validation sameples were 14 (low-risk)

and 36 (high-risk) in the group with the desired two-sided

significance level of a=0.05 and power of 1-b=95%.
Statistical analysis

All statistical analyses were performed using the R software

(version 4.1.0, www.rporject.org). Measurement data were

presented as median [Q1-Q3] if in non-normal distribution

and tested with the Mann-Whitney U test, and enumeration

data were expressed as numbers of cases (n) or percentage (%)

and tested with the Chi square test. The non-normal distribution

data of measurement were presented as median and interquartile

range and tested with the Chi square test. Interclass and

intraclass correlation coefficients (ICC) were used to evaluate

the consistency of imaging features within and between

observers. A total of 30 cases of CT images were randomly

selected for ROI segmentation by physicians 1 and 2. One week

later, physician 1 repeated the same steps, with an ICC >0.75

indicating good consistency in feature extraction. The

segmentation of the remaining image was also completed by

physician 1. The receiver operator characteristic (ROC) curve

was used to evaluate the predictive efficacy of the malignant

potential of GISTs in the models. The larger the area under the

ROC curve (AUC), the higher the diagnostic efficiency. The

AUC, accuracy, sensitivity, and specificity were calculated, and

the ROC curves were assessed by the Delong test. All indexes

were evaluated separately in the training and validation groups.

Two-side P<0.05 was set as statistic significant.
Results

Clinical characteristics

According to the inclusion and exclusion criteria, data from

342subjects with GISTs, including 156 (45.6%) males and 186

(54.4%) females with an age range 33-82 (62.00 [54.00-69.00])

years, were collected. The GIST lesion was in the stomach in 226

(66.1%) cases and of a non-stomach location in 106 (33.9%),

including 104 (30.4%) cases with potential malignancy (26 cases

with an extremely low risk and 78 cases with a low risk) and 238

(69.6%) cases with malignancy (86 cases with a moderate risk

and 152 cases with a high risk). According to the traditional CT
frontiersin.org
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diagnosis criteria for GISTs, 130 (38.0%) cases exhibited

potential malignancy, whereas 212 (62.0%) cases were

malignant. The diameter of the tumors was 1-24 (mean 6.9 ±

4.1) cm, with the tumor maximal diameter ≥5 cm in 214 (62.6%)

cases and <5 cm in 128 (37.4%). Internal necrosis was presented

in 176 (51.5%) cases. In the radiomics model, the patients were

divided into the training (n=196) and validation (n=146) group

(Table 2), with no significant (P>0.05) difference in the age,

gender, malignancy potential, CT diagnostic grade, tumor

maximal diameter >5 cm, and internal necrosis between the

training and validation groups.
Frontiers in Oncology 06
Univariable and multivariable analysis

In univariate analysis of GIST parameters, the tumor maximal

diameter and internal necrosis were statistically significant

(P<0.001) between potentially malignant and malignant GISTs

(Table 3). Using the significant variables from the univariate

analysis as inputs, multivariate logistic regression analysis

showed that lesion diameter ≥ 5cm (coeficient 3.264, OR 26.17

(7.832-109.083), P<0.001) and lesion internal necrosis (coefficient

2.014, OR 7.491 (1.969-31.461), P=0.003) were independent

factors for predicting malignant GIST.
ICC of radiomic features

A total of 1037 radiomics features with good consistency

(mena ICC 0.95, range 0.75-1.0) were selected, whereas 95

features with bad consistency (ICC <0.75) were removed.
Predictive performance of
radiomics models

After feature selection, the radiomics features of the arterial

and venous phases only preserved the morphological features.

ROC curve analyses were performed for the arterial and venous

phase models, clinical indicators model, and traditional CT

diagnostic criteria (Figure 3), with a good calibration

demonstrated in the arterial and venous phase models

(Figure 4). The Radscore distribution of the arterial and

venous phase models in the training and validation group

were shown in Figure 5.

In the ROC curve analyses for the training group, the AUC,

accuracy, sensitivity, and specificity for grading tumor

malignancy were 0.930 (95%CI: 0.895-0.965), 0.888, 0.928, and
TABLE 2 Clinical data of the training and validation groups.

Variables Training
(n=196)

Validation
(n=146)

P

Gender 0.1811

Female 112 74

Male 84 72

Age [median, Q1-Q3] 62.000
[56.000-69.000]

63.000
[52.000-69.000]

0.5082

Real malignant potential 0.7931

Potential malignancy 58(29.6%) 46(31.5%)

Malignant 138(70.4%) 100(68.5%)

Traditional CT
classification

0.9901

Potential malignancy 64 48

Malignant 132 98

Maximal diameter
≥5 cm

0.8471

No 72 56

Yes 124 90

Internal necrosis 0.0061

No 82 84

Yes 114 62
Q1,First quarter; Q3, Three quarter; 1 Chi square test; 2Mann-Whitney U test.
TABLE 3 Univariable analysis of potentially malignant and malignant GISTs.

Variables Training group Validation group

Potentially
malignant (n=104)

Malignant (n=238) P Potentially
malignant (n=104)

Malignant (n=238) P

Sex 0.9101 0.3161

Female 34(58.621%) 78(56.522%) 20(43.478%) 54(54.000%)

Male 24(41.379%) 60(43.478%) 26(56.522%) 46(46.000%)

Age[meadian, Q1-Q3] 61.000 [58.000-68.000] 63.000 [55.000-69.000] 0.6832 64.000 [54.250-71.500] 62.500 [51.000-68.000] 0.1722

Diameter ≥5 cm <0.0011 <0.0011

No 54(93.103%) 18(13.043%) 42(91.304%) 14(14.000%)

Yes 4(6.897%) 120(86.957%) 4(8.696%) 86(86.000%)

Internal necrosis <0.0011 <0.0011

No 54(93.103%) 28(20.290%) 46(100.000%) 38(38.000%)

Yes 4(6.897%) 110(79.710%) 0(0.000%) 62(62.000%)
frontier
GIST, gastrointestinal stromal tumors; Q1, First quarter; Q3, Three quarter; 1 Chi square test; 2 Mann-Whitney U test.
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0.793, respectively, for the arterial phase model; 0.933 (95%CI:

0.898-0.967), 0.857, 0.855, and 0.862, respectively, for the venous

phase model; 0.917 (95%CI: 0.872-0.961), 0.918, 0.913, and

0.931, respectively, for the clinical indicators model;, and 0.782

(95%CI: 0.717-0.848), 0.806, 0.841, and 0.724, respectively, for

the traditional CT diagnostic criteria. In the validation group,

the AUC, accuracy, sensitivity, and specificity were 0.960(95%

CI: 0.930-0.990), 0.932, 0.920, and 0.957, respectively, for the

arterial phase model; 0.961 (95%CI: 0.930-0.992), 0.932, 0.920,

and 0.957, respectively, for the venous phase model; 0.922 (95%

CI: 0.884-0.960), 0.890, 0.880, and 0.913, respectively, for the

clinical indicators model; and 0.768 (95%CI: 0.692-0.844), 0.795,

0.840 and 0.696, respectively, for the traditional CT diagnostic

criteria (Table 4).

Comparison of the AUC values in grading tumor malignancy

between different models using the Delong test was performed

(Table 5). No significant (P>0.05) difference was detected in the

AUC between the arterial and venous phase models, and clinical

indicators model, whereas significant (P<0.01) differences were

detected between the traditional CT diagnostic criteria (CT) and any

of the other three models. The AUC value was significantly (P<0.01)

better in the arterial phase model, venous phase model, and clinical

indicators model than that in the traditional CT diagnostic criteria.
Discussion

This study investigated the value of radiomics models in

grading tumor malignancy of GISTs using enhanced CT imaging

data from five medical centers, and four radiomics models were

established based on the morphological features of the arterial

and venous phase, clinical indicators, and traditional CT

diagnostic criteria for GISTs. The models of the arterial phase,
Frontiers in Oncology 07
venous phase, and clinical indicators were significantly better

than the traditional CT diagnostic criteria in grading the tumor

malignancy of GISTs.

After studying CT venous phase images and radiomics

features of GISTs in 222 cases including one training group

(n=130) and one validation group (n=92) in the raiomics, Chen
BA

FIGURE 3

Receiver operating characteristics (ROC) curve analysis for different models in the training group (A) and validation group (B).
FIGURE 4

Calibration curve for the arterial phase model, venous phase
model, clinical indicators model and the traditional CT diagnostic
criteria. The calibration of the four models was depicted by the
calibration curve in terms of the agrement between the
predicted risks of gastrointestinal stromal tumors (GISTs) and the
actual results based on the modified criteria. The grey line
represents an ideal prediction, and the other lines represent the
predictive performance of the models. The closer the fit of the
purpole line to the ideal line, the better the prediction.
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et al. (9) found that the radiomics features combined with

clinical indicators and traditional CT characteristics were more

effective in judging the malignant potential of GISTs as

compared to the clinical indicators or traditional CT

characteristic models. Through investigating 339 cases of

GISTs from four centers including the training group (n=148),

internal verification group (n=41), and external validation group
Frontiers in Oncology 08
(n=150), Zhang et al. (23) found that the radiomics features of

enhanced CT were significantly correlated with the expression of

Ki-67 in GISTs and that the tumor size had the highest

prediction accuracy of Ki-67 expression. Wang et al. (24)

established a radiomics model to predict the malignant

potential and mitotic count of GISTs by analyzing the portal

venous-phase images of 333 GIST cases, and it was also found
B

C D

A

FIGURE 5

The distribution of arterial and venous phase model radscore between patients suffered from malignant and potiential malignant tumors in the
training group (A, B) and the validation group (C, D).
TABLE 4 Effectiveness of radiomics models in the grading of GIST malignancy.

Model Training group(n=196) Validation group(n=146)

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

A 0.930 0.888 0.928 0.793 0.960 0.932 0.920 0.957

V 0.933 0.857 0.855 0.862 0.961 0.932 0.920 0.957

Clinical 0.917 0.918 0.913 0.931 0.922 0.890 0.880 0.913

CT 0.782 0.806 0.841 0.724 0.768 0.795 0.840 0.696
fro
GIST, gastrointestinal stromal tumor; AUC, area under the receiver operator characteristic curve; A, arterial phase model; V, venous phase model; Clinical, clinical indicators model; CT,
traditional CT diagnostic criteria.
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that the combination of radiomics features, subjective CT

examination results, and clinical indicators could be used to

realize individualized risk prediction and improve the diagnostic

level. However, these studies only selected the venous phase of

GIST images with enhanced scanning as the research object, and

no studies have investigated the difference in the radiomics

characteristics of GISTs between the arterial phase and venous

phase. Moreover, the data of the training group were from one

single center, lacking multicenter data and consequently

efficiency for generalization.

The texture performance of enhanced CT images at different

periods varies, and to set up an appropriate radiomics model, it is

crucial to select the texture features at different enhancement phases

such as those of the arterial phase and venous phase. Several

investigators have studied the CT enhancement degree of GIST,

albeit different in the conclusions (1, 25–30). With the increase of

GIST risk stratification, some researchers had found a declining

trend in the CT value at each phase of enhanced scanning (28),

whereas others had revealed that the degree of GIST enhancement

was not related to risk classification (16). In addition, some

investigators (17) had demonstrated that the GIST of the small

intestine was highly malignant, with the tumor enhancement degree

equal to that of adjacent intestinal wall. In case of an unclear

correlation between tumor risk and CT enhancement degree, the

radiomics features of CT images at different enhancement periods

were used to stratify the GIST risk. Liu et al. (1) evaluated 78

patients with GISTs and found significant differences in the CT

texture parameters with different GIST risks between the arterial

phase and venous phase. Feng et al. (25) found that the entropy

value at the venous phase was more accurate in distinguishing low-

risk small bowel GIST from medium- and high-risk small bowel

GIST as compared to that at the arterial phase. Also, some studies

established radiomics models based on the CT arterial phase images

(30) or venous phase images (29) so as to provide a noninvasive

detection method for prediction of potential malignancy and

malignancy of the GIST. Our study was based on GIST data

from multicenters, and after extracting and selecting the radiomic

features of the arterial and venous phases, only one morphological

feature remained: the maximal diameter of the tumor. With only
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one morpholigcal feature left, good consistency could be easily

obtained in the tumor delineation process, with similar efficiency in

the arterial phase and venous phase features. The fact that there

were no other radiomics features left could be attributed to the GIST

data from multiple centers. Strikingly, the imaging parameter

settings and scanning parameters of different CT scanners

manufactured by different companies varied greatly, which may

cause inconsistency in the data of radiomics model. When the

image was analyzed and extracted in the digital form, the differences

between extracted texture features might lead to some potential

changes in the acquired images (26), which need further

investigation for confirmation.

Although the AUC of the clinical indicators model was lower

than that of the arterial and venous phase models, its specificity was

improved as compared to the latter twomodels. Tumors with a large

volume or a large diameter was more likely to have internal necrosis

than those with a small volume. The internal necrosis of tumors

exhibited uneven enhancement on enhanced CT imaging. In one

study (27) investigating tumor location, size, shape, tumor growth,

imaging enhancement mode and degree, tumor necrosis percentage,

and distant metastasis on CT imaging in 42 patients with GISTs, it

was found that the malignant degree of GIST can be predicted from

the location, size, and necrosis rate of the tumor. Another study (31)

evaluating 1303 patients with GISTs showed that tumor size >5 cm

was significantly correlated with the increased rate of tumor

recurrence. Tumor size had also been found to be of important

diagnostic value in the risk classification of GISTs, irrespective of the

NIH standard, AFIP standard, or AJCC staging system (32). It can

be seen that themaximal diameter and internal necrosis of GISTs are

significant in clinical diagnosis of potential malignancy and

malignant tumors, as our study had confirmed the significant role

of tumor morphology at the arterial and venous phase.

The traditional CT diagnostic criteria of radiommics showed

low efficiency in the diagnosis of GISTs, with a significantly low

AUC value compared with the other three models. Accurate

diagnosis of the GIST tumor is closely related to the experience

of the radiologists and appropriate understanding of tumor

signs, especially atypical CT signs which may make differential

diagnosis even more difficult.

Currently, some radiomics studies on grading the GIST

malignant degree have been performed using ultrasound and

magnetic resonance imaging besides CT imaging data (12, 33–

39). Liu et al. (35) applied multicenter endoscopic ultrasound

imaging data of 914 patients to set up a triple normalization-

based deep learning framework with ultrasound-specific pretraining

and meta attention (TN-USMA model) to automatically grading

high- and low-risk GISTs. In comparing the diagnostic

performance of one radiomics-based method and two state-of-

the-art deep learning approaches, the TN-USMAmodel which was

composed of intensity normalization, size normalization, and

spatial resolution normalization achieved an overall accuracy of

0.834 (95%CI 0.772-0.885), an AUC of 0.881 (95%CI 0.825, 0.924),

a sensitivity of 0.844, and a specificity of 0.832. Although the AUC
TABLE 5 Comparison of AUC results among models by the Delong
test.

Model Training group Validation group
P P

A-V 0.879 0.897

A-Clinical 0.590 0.013

V-Clinical 0.439 0.013

A-CT <0.001 <0.001

V-CT <0.001 <0.001

Clinical-CT <0.001 <0.001
AUC, area under the receiver operator characteristic curve; A, arterial phase model;
V, venous phase model; Clinical, clinical indicators model; CT, traditional CT
diagnostic criteria.
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of the TN-USMA model significantly outperformed the other two

deep learning approaches (P < 0.05), it was less superior to our

models of radiomics. Yang et al. (12) employed the magnetic

resonance diffusion-weighted imaging (DWI) data of 91 patients

with pathologically-confirmed GIST for radiomic model

establishment and risk stratification, and the nomogram

incorporating the texture signature features, maximal tumor

diameter and location demonstrated a good discriminating effect

of GISTmalignancy with an AUC of 0.878 in the training and 0.903

in the validation group, suggesting that the texture-based model

could be used to predict the mitotic index and risk potential of

GISTs before surgery. Other radiomics models based on magnetic

resonance imaging data of T1WI, T2WI, and ADC (apparent

diffusion coefficient) had also be investigated in grading the

malignant risk of GISTs (36), although with good effects in

differentiating high-, intermediate- and low-risk GISTs, the AUC

value was below 0.85 for T1WI, T2WI, and ADC. In radiomics

models based on CT imaging data without the use of internal tumor

necrosis and tumor size for evaluating the malignant risk of GISTs

(33, 34, 37–39), good effects had been achieved on distinguishing

high- and low-risk malignancy, but the AUC values were all below

0.90. In our study, the radiomics models using the internal tumor

necrosis and tumor diameter imgaging data at the arterial and

venous phases achieved anAUC value over 0.93 in both the training

and validation group, suggesting a greater value of these radiomics

models in differentiating the malignant risk of GISTs.

Some limitations existed in our study including the retrospective

nature, Chinese patients enrolled only, a small cohort of patients at

each center, and differences in the CT scanners and scanning

parameters. All these issues may affect the publication bias, and

the results should be explained in caution. Future studies will have to

resolve these issues for better performances.

In conclusion, the morphological radiomic features of GISTs

play a significant role in tumor risk stratification and can provide

a reference for clinical diagnosis and treatment plan.
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